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Preface

This book represents the natural evolution of the lecture notes of the course
“Dynamics and Vibrations of Machines” held at the Politecnico di Milano in the
academic years 1981–1992 and of a book already published for the course
“Simulation and modelling of mechanical systems” (academic years 1993–2014).

These collected works can be considered as a natural extension of the didactic
work carried out in this area, initially by Prof. O. Sesini and later by Profs.
A. Capello, E. Massa and G. Bianchi. The contents of this book also sum up
decades of experience gained by the research group which is part of the Section of
Mechanical Systems at the Politecnico di Milano (former Institute of Applied
Mechanics). It also draws upon the research topics developed by a research group
of the Department of Mechanics, to which the authors belong. Said research was
generally based on problems encountered in the industrial world, performed in
collaboration with organizations and research centres including ABB, ENEL
(Italian General Electricity Board), FS (Italian Railways), Bombardier, Alstom,
Ansaldo, ENEL-CRIS, ISMES, Fiat, Ferrari and Pirelli, as well as countless others.
In this context, the following research topics were considered of prime importance:

• analytical and experimental investigations on the vibration of power lines;
• slender structures—wind interaction;
• aeroelastic behaviour of suspension bridges;
• dynamic behaviour of structures subjected to road and rail traffic;
• rail vehicle dynamics, pantograph—catenary interaction, train—railway infra-
structure interaction, etc.;

• ground vehicle dynamics; and
• rotor dynamics.

These themes impacted significantly on the development of this book.
The educational content of this volume is primarily addressed to students of

engineering taking courses in mechanics, aerospace, automation and energy, dis-
ciplines introduced recently by the Italian Ministry of Education in compliance with
the New Italian University Order. However, given its organic structure and the
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comprehensive overview of the subjects dealt with, the book could also serve as a
useful tool to professionals in the industry.

In this book, an engineering approach for the schematization of a generic
mechanical system, applicable both to rigid and deformable bodies, is introduced.
Such an approach is necessary to identify the behaviour of a mechanical system
subject to different excitation sources. In addition to the traditional aspects asso-
ciated with the dynamics and vibrations of mechanical systems, the engineering
approach illustrated herein allows us to reproduce the interaction of mechanical
systems with different force fields acting on its various components (e.g. action
of fluids and contact forces), i.e. forces dependent on system motion, and, conse-
quently, its state.

This concept, dealing with the interaction of force fields and mechanical systems,
gives rise to a new system on which the dynamic behaviour is considered, focusing,
in particular, on the analysis of motion stability.

Controlled systems, in which the action of the actuator, controlled in a closed
loop, defines forces as a function of the state of the system, can also be assimilated
to systems interacting with force fields and, for this reason, dealt with in a similar
way.

Traditionally, however, there are typical approaches in this area that cannot be
ignored and, for this reason, controlled systems are treated in a separate text.1

In this text, however, an effort has been made to reference the symbols and main
techniques used in control engineering, in order to create an easy interface for
mechanical engineers dealing with electronic control.

More specifically, in the first part of this book, we will analyse mechanical
systems with 1 or more degrees of freedom (d.o.f.), generally in large motion and,
subsequently, the small motion of systems in the neighbourhood of either the
steady-state motion or the static equilibrium position. In this phase, we will analyse
both discrete and continuous systems, for which certain discretization procedures
will be discussed (modal approach, finite elements).

Conversely, the second part of this text deals with the study of mechanical
systems subjected to force fields, with many examples such as fluid–elastic inter-
action, train and railway interaction, rotor dynamics, experimental techniques
related to parameter identification and random excitations.

The first part of the text can be a useful tool for undergraduate courses to
approach the dynamics and the vibration problems in the mechanical systems.

The second part is more suitable for graduate and Ph.D. students to analyse
many real problems due to the interaction of mechanical systems with different
surrounding fields of forces. The main problems related to the behaviour and sta-
bility of these systems are fully described in the last part of the book and will be
very useful for the students.

1Diana and Resta [1].

vi Preface



www.manaraa.com

We would like to extend our special thanks to all the lecturers and researchers
of the Section of System Mechanics of the Department of Mechanics at the
Politecnico di Milano for all their help and input provided during the drafting of this
book.

The authors would also like to express their gratitude especially to Professor
Bruno Pizzigoni for his hard and excellent work for the audit and the check of the
English text. It goes without saying that, as always, there are likely to be omissions
and errors for which we hope you will forgive us.

Federico Cheli
Giorgio Diana

Reference

1. Diana G, Resta F (2006) Controllo dei sistemi meccanici. Polipress, Milano

Preface vii



www.manaraa.com

Contents

1 Nonlinear Systems with 1-n Degrees of Freedom . . . . . . . . . . . . . . 1
1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Cartesian Coordinates, Degrees of Freedom,

Independent Coordinates . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.3 Writing Equations of Motion . . . . . . . . . . . . . . . . . . . . . . . . . 11

1.3.1 Definition of the Various Forms of Energy
as a Function of the Physical Variables . . . . . . . . . . . . 12

1.3.2 Definition of the Various Forms of Energy
as a Function of the Independent Variables . . . . . . . . . 17

1.3.3 Application of Lagrange’s Equations. . . . . . . . . . . . . . 19
1.3.4 Lagrange Multiplier Method . . . . . . . . . . . . . . . . . . . 20
1.3.5 Method of Introducing Real Constraints

Using Force Fields . . . . . . . . . . . . . . . . . . . . . . . . . . 23
1.4 Nonlinear Systems with One Degree of Freedom . . . . . . . . . . . 23

1.4.1 Writing Equations of Motion “in the Large” . . . . . . . . 24
1.4.2 Writing Linearized Equations . . . . . . . . . . . . . . . . . . . 30

1.5 Nonlinear Systems with 2 Degrees of Freedom . . . . . . . . . . . . 37
1.6 Multi-Body Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

1.6.1 Vector Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
1.6.2 Kinematic Analysis of the Rigid Body . . . . . . . . . . . . 48
1.6.3 Rotations and Angular Velocity of the Rigid Body . . . . 53
1.6.4 The Transformation Matrix of the Coordinates

in Terms of Cardan Angles . . . . . . . . . . . . . . . . . . . . 55
1.6.5 Relationship Between the Angular Velocities

and the Velocities in Terms of Cardan Angles . . . . . . . 57
1.7 The Dynamics of a Rigid Body . . . . . . . . . . . . . . . . . . . . . . . 57

1.7.1 Inertial Terms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
1.7.2 External Excitation Forces . . . . . . . . . . . . . . . . . . . . . 62
1.7.3 Elastic and Gravitational Forces . . . . . . . . . . . . . . . . . 64
1.7.4 Dissipation Forces . . . . . . . . . . . . . . . . . . . . . . . . . . 68
1.7.5 Definition of Kinetic Energy . . . . . . . . . . . . . . . . . . . 70

ix

http://dx.doi.org/10.1007/978-3-319-18200-1_1
http://dx.doi.org/10.1007/978-3-319-18200-1_1
http://dx.doi.org/10.1007/978-3-319-18200-1_1#Sec26
http://dx.doi.org/10.1007/978-3-319-18200-1_1#Sec26
http://dx.doi.org/10.1007/978-3-319-18200-1_1#Sec1
http://dx.doi.org/10.1007/978-3-319-18200-1_1#Sec1
http://dx.doi.org/10.1007/978-3-319-18200-1_1#Sec1
http://dx.doi.org/10.1007/978-3-319-18200-1_1#Sec2
http://dx.doi.org/10.1007/978-3-319-18200-1_1#Sec2
http://dx.doi.org/10.1007/978-3-319-18200-1_1#Sec3
http://dx.doi.org/10.1007/978-3-319-18200-1_1#Sec3
http://dx.doi.org/10.1007/978-3-319-18200-1_1#Sec3
http://dx.doi.org/10.1007/978-3-319-18200-1_1#Sec4
http://dx.doi.org/10.1007/978-3-319-18200-1_1#Sec4
http://dx.doi.org/10.1007/978-3-319-18200-1_1#Sec4
http://dx.doi.org/10.1007/978-3-319-18200-1_1#Sec5
http://dx.doi.org/10.1007/978-3-319-18200-1_1#Sec5
http://dx.doi.org/10.1007/978-3-319-18200-1_1#Sec6
http://dx.doi.org/10.1007/978-3-319-18200-1_1#Sec6
http://dx.doi.org/10.1007/978-3-319-18200-1_1#Sec7
http://dx.doi.org/10.1007/978-3-319-18200-1_1#Sec7
http://dx.doi.org/10.1007/978-3-319-18200-1_1#Sec7
http://dx.doi.org/10.1007/978-3-319-18200-1_1#Sec8
http://dx.doi.org/10.1007/978-3-319-18200-1_1#Sec8
http://dx.doi.org/10.1007/978-3-319-18200-1_1#Sec9
http://dx.doi.org/10.1007/978-3-319-18200-1_1#Sec9
http://dx.doi.org/10.1007/978-3-319-18200-1_1#Sec10
http://dx.doi.org/10.1007/978-3-319-18200-1_1#Sec10
http://dx.doi.org/10.1007/978-3-319-18200-1_1#Sec11
http://dx.doi.org/10.1007/978-3-319-18200-1_1#Sec11
http://dx.doi.org/10.1007/978-3-319-18200-1_1#Sec12
http://dx.doi.org/10.1007/978-3-319-18200-1_1#Sec12
http://dx.doi.org/10.1007/978-3-319-18200-1_1#Sec13
http://dx.doi.org/10.1007/978-3-319-18200-1_1#Sec13
http://dx.doi.org/10.1007/978-3-319-18200-1_1#Sec14
http://dx.doi.org/10.1007/978-3-319-18200-1_1#Sec14
http://dx.doi.org/10.1007/978-3-319-18200-1_1#Sec15
http://dx.doi.org/10.1007/978-3-319-18200-1_1#Sec15
http://dx.doi.org/10.1007/978-3-319-18200-1_1#Sec16
http://dx.doi.org/10.1007/978-3-319-18200-1_1#Sec16
http://dx.doi.org/10.1007/978-3-319-18200-1_1#Sec16
http://dx.doi.org/10.1007/978-3-319-18200-1_1#Sec17
http://dx.doi.org/10.1007/978-3-319-18200-1_1#Sec17
http://dx.doi.org/10.1007/978-3-319-18200-1_1#Sec17
http://dx.doi.org/10.1007/978-3-319-18200-1_1#Sec18
http://dx.doi.org/10.1007/978-3-319-18200-1_1#Sec18
http://dx.doi.org/10.1007/978-3-319-18200-1_1#Sec19
http://dx.doi.org/10.1007/978-3-319-18200-1_1#Sec19
http://dx.doi.org/10.1007/978-3-319-18200-1_1#Sec20
http://dx.doi.org/10.1007/978-3-319-18200-1_1#Sec20
http://dx.doi.org/10.1007/978-3-319-18200-1_1#Sec21
http://dx.doi.org/10.1007/978-3-319-18200-1_1#Sec21
http://dx.doi.org/10.1007/978-3-319-18200-1_1#Sec22
http://dx.doi.org/10.1007/978-3-319-18200-1_1#Sec22
http://dx.doi.org/10.1007/978-3-319-18200-1_1#Sec23
http://dx.doi.org/10.1007/978-3-319-18200-1_1#Sec23


www.manaraa.com

1.7.6 Writing the Equations of Motion . . . . . . . . . . . . . . . . 75
1.7.7 The Cardinal Equations of Dynamics . . . . . . . . . . . . . 76

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

2 The Dynamic Behaviour of Discrete Linear Systems . . . . . . . . . . . 83
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
2.2 Writing Equations of Motion . . . . . . . . . . . . . . . . . . . . . . . . . 83

2.2.1 Kinetic Energy. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
2.2.2 Dissipation Function . . . . . . . . . . . . . . . . . . . . . . . . . 88
2.2.3 Potential Energy. . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
2.2.4 Virtual Work of Active Forces . . . . . . . . . . . . . . . . . . 93
2.2.5 Equations of Motion . . . . . . . . . . . . . . . . . . . . . . . . . 95

2.3 Some Application Examples . . . . . . . . . . . . . . . . . . . . . . . . . 97
2.3.1 One-Degree-of-Freedom Systems . . . . . . . . . . . . . . . . 97
2.3.2 Two-Degree-of-Freedom Systems . . . . . . . . . . . . . . . . 99
2.3.3 An Additional Example of Two-Degree-of-Freedom

Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
2.3.4 A Further Example of a Two-Degree-of-Freedom

Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115
2.3.5 n-Degree-of-Freedom Systems . . . . . . . . . . . . . . . . . . 117

2.4 Solving the Equations of Motion . . . . . . . . . . . . . . . . . . . . . . 125
2.4.1 One-Degree-of-Freedom System . . . . . . . . . . . . . . . . . 125
2.4.2 Two-Degree-of-Freedom Systems . . . . . . . . . . . . . . . . 170
2.4.3 n-Degree-of-Freedom System. . . . . . . . . . . . . . . . . . . 198

2.5 Modal Approach for Linear n-Degree-of-Freedom Systems . . . . 211
2.5.1 Modal Approach for Two-Degree-of-Freedom

Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 211
2.5.2 Modal Approach for n-Degree-of-Freedom

Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 215
2.5.3 Forced Motion in Principal Coordinates . . . . . . . . . . . 224

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 239

3 Vibrations in Continuous Systems . . . . . . . . . . . . . . . . . . . . . . . . . 241
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 241
3.2 Transverse Vibrations of Cables . . . . . . . . . . . . . . . . . . . . . . . 241

3.2.1 Propagative Solution . . . . . . . . . . . . . . . . . . . . . . . . . 245
3.2.2 Stationary Solution . . . . . . . . . . . . . . . . . . . . . . . . . . 247

3.3 Transverse Vibrations in Beams . . . . . . . . . . . . . . . . . . . . . . . 252
3.3.1 Transverse Vibrations in Beams Subjected

to an Axial Load (Tensioned Beam) . . . . . . . . . . . . . . 265
3.4 Torsional Vibrations in Beams . . . . . . . . . . . . . . . . . . . . . . . . 273
3.5 Analysis of the General Integral of the Equation

of Motion in Continuous Systems. . . . . . . . . . . . . . . . . . . . . . 275

x Contents

http://dx.doi.org/10.1007/978-3-319-18200-1_1#Sec24
http://dx.doi.org/10.1007/978-3-319-18200-1_1#Sec24
http://dx.doi.org/10.1007/978-3-319-18200-1_1#Sec25
http://dx.doi.org/10.1007/978-3-319-18200-1_1#Sec25
http://dx.doi.org/10.1007/978-3-319-18200-1_1#Bib1
http://dx.doi.org/10.1007/978-3-319-18200-1_2
http://dx.doi.org/10.1007/978-3-319-18200-1_2
http://dx.doi.org/10.1007/978-3-319-18200-1_2#Sec1
http://dx.doi.org/10.1007/978-3-319-18200-1_2#Sec1
http://dx.doi.org/10.1007/978-3-319-18200-1_2#Sec2
http://dx.doi.org/10.1007/978-3-319-18200-1_2#Sec2
http://dx.doi.org/10.1007/978-3-319-18200-1_2#Sec3
http://dx.doi.org/10.1007/978-3-319-18200-1_2#Sec3
http://dx.doi.org/10.1007/978-3-319-18200-1_2#Sec4
http://dx.doi.org/10.1007/978-3-319-18200-1_2#Sec4
http://dx.doi.org/10.1007/978-3-319-18200-1_2#Sec5
http://dx.doi.org/10.1007/978-3-319-18200-1_2#Sec5
http://dx.doi.org/10.1007/978-3-319-18200-1_2#Sec6
http://dx.doi.org/10.1007/978-3-319-18200-1_2#Sec6
http://dx.doi.org/10.1007/978-3-319-18200-1_2#Sec7
http://dx.doi.org/10.1007/978-3-319-18200-1_2#Sec7
http://dx.doi.org/10.1007/978-3-319-18200-1_2#Sec8
http://dx.doi.org/10.1007/978-3-319-18200-1_2#Sec8
http://dx.doi.org/10.1007/978-3-319-18200-1_2#Sec9
http://dx.doi.org/10.1007/978-3-319-18200-1_2#Sec9
http://dx.doi.org/10.1007/978-3-319-18200-1_2#Sec10
http://dx.doi.org/10.1007/978-3-319-18200-1_2#Sec10
http://dx.doi.org/10.1007/978-3-319-18200-1_2#Sec13
http://dx.doi.org/10.1007/978-3-319-18200-1_2#Sec13
http://dx.doi.org/10.1007/978-3-319-18200-1_2#Sec13
http://dx.doi.org/10.1007/978-3-319-18200-1_2#Sec17
http://dx.doi.org/10.1007/978-3-319-18200-1_2#Sec17
http://dx.doi.org/10.1007/978-3-319-18200-1_2#Sec17
http://dx.doi.org/10.1007/978-3-319-18200-1_2#Sec18
http://dx.doi.org/10.1007/978-3-319-18200-1_2#Sec18
http://dx.doi.org/10.1007/978-3-319-18200-1_2#Sec22
http://dx.doi.org/10.1007/978-3-319-18200-1_2#Sec22
http://dx.doi.org/10.1007/978-3-319-18200-1_2#Sec23
http://dx.doi.org/10.1007/978-3-319-18200-1_2#Sec23
http://dx.doi.org/10.1007/978-3-319-18200-1_2#Sec35
http://dx.doi.org/10.1007/978-3-319-18200-1_2#Sec35
http://dx.doi.org/10.1007/978-3-319-18200-1_2#Sec48
http://dx.doi.org/10.1007/978-3-319-18200-1_2#Sec48
http://dx.doi.org/10.1007/978-3-319-18200-1_2#Sec57
http://dx.doi.org/10.1007/978-3-319-18200-1_2#Sec57
http://dx.doi.org/10.1007/978-3-319-18200-1_2#Sec58
http://dx.doi.org/10.1007/978-3-319-18200-1_2#Sec58
http://dx.doi.org/10.1007/978-3-319-18200-1_2#Sec58
http://dx.doi.org/10.1007/978-3-319-18200-1_2#Sec59
http://dx.doi.org/10.1007/978-3-319-18200-1_2#Sec59
http://dx.doi.org/10.1007/978-3-319-18200-1_2#Sec59
http://dx.doi.org/10.1007/978-3-319-18200-1_2#Sec61
http://dx.doi.org/10.1007/978-3-319-18200-1_2#Sec61
http://dx.doi.org/10.1007/978-3-319-18200-1_2#Bib1
http://dx.doi.org/10.1007/978-3-319-18200-1_3
http://dx.doi.org/10.1007/978-3-319-18200-1_3
http://dx.doi.org/10.1007/978-3-319-18200-1_3#Sec111
http://dx.doi.org/10.1007/978-3-319-18200-1_3#Sec111
http://dx.doi.org/10.1007/978-3-319-18200-1_3#Sec1
http://dx.doi.org/10.1007/978-3-319-18200-1_3#Sec1
http://dx.doi.org/10.1007/978-3-319-18200-1_3#Sec2
http://dx.doi.org/10.1007/978-3-319-18200-1_3#Sec2
http://dx.doi.org/10.1007/978-3-319-18200-1_3#Sec3
http://dx.doi.org/10.1007/978-3-319-18200-1_3#Sec3
http://dx.doi.org/10.1007/978-3-319-18200-1_3#Sec4
http://dx.doi.org/10.1007/978-3-319-18200-1_3#Sec4
http://dx.doi.org/10.1007/978-3-319-18200-1_3#Sec5
http://dx.doi.org/10.1007/978-3-319-18200-1_3#Sec5
http://dx.doi.org/10.1007/978-3-319-18200-1_3#Sec5
http://dx.doi.org/10.1007/978-3-319-18200-1_3#Sec6
http://dx.doi.org/10.1007/978-3-319-18200-1_3#Sec6
http://dx.doi.org/10.1007/978-3-319-18200-1_3#Sec7
http://dx.doi.org/10.1007/978-3-319-18200-1_3#Sec7
http://dx.doi.org/10.1007/978-3-319-18200-1_3#Sec7


www.manaraa.com

3.6 Analysis of the Particular Integral of Forced Motion . . . . . . . . . 278
3.6.1 Hysteretic Damping in the Case

of a Taut Cable (Direct Approach) . . . . . . . . . . . . . . . 282
3.7 Approach in Principal Coordinates . . . . . . . . . . . . . . . . . . . . . 284

3.7.1 Taut Cable Example . . . . . . . . . . . . . . . . . . . . . . . . . 286
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 309

4 Introduction to the Finite Element Method . . . . . . . . . . . . . . . . . . 311
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 311
4.2 The Shape Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 314

4.2.1 Shape Function for the Taut Cable Element . . . . . . . . . 315
4.2.2 The Shape Function for the Beam Element . . . . . . . . . 318
4.2.3 Shape Function for Generic Finite Elements . . . . . . . . 320

4.3 The Equations of Motion of the System . . . . . . . . . . . . . . . . . 322
4.4 Taut Cable Finite Element (an Application Example) . . . . . . . . 323

4.4.1 Discretization of the Structure . . . . . . . . . . . . . . . . . . 323
4.4.2 Definition of the Stiffness [Kj] and Mass [Mj]

Matrix of the Taut Cable Finite Element in the
Local Reference System . . . . . . . . . . . . . . . . . . . . . . 326

4.4.3 Transformation of Coordinates: Local Reference
System, Absolute Reference System . . . . . . . . . . . . . . 329

4.4.4 Definition of the Stiffness [Kj] and Mass [Mj]
Matrix of the Taut Cable Element
in the Global Reference System . . . . . . . . . . . . . . . . . 333

4.4.5 Assembly of the Complete Structure . . . . . . . . . . . . . . 333
4.4.6 Calculation of the Generalized Forces . . . . . . . . . . . . . 339
4.4.7 Imposition of Constraints (Boundary Conditions) . . . . . 346
4.4.8 Solving the Equations of Motion . . . . . . . . . . . . . . . . 350
4.4.9 A Numerical Example. . . . . . . . . . . . . . . . . . . . . . . . 353

4.5 An Application Example: Finite Beam Element . . . . . . . . . . . . 356
4.5.1 Discretization of the Structure . . . . . . . . . . . . . . . . . . 356
4.5.2 Definition of the Stiffness [Kl] and Mass [Ml]

Matrix of the Beam Element in the Local
Reference System. . . . . . . . . . . . . . . . . . . . . . . . . . . 358

4.5.3 Definition of the Stiffness [Kj] and Mass [Mj]
Matrix of the Beam Element in the Global
Reference System. . . . . . . . . . . . . . . . . . . . . . . . . . . 372

4.5.4 Writing of the Equations of Motion
and Their Solution . . . . . . . . . . . . . . . . . . . . . . . . . . 374

4.5.5 A Numerical Example. . . . . . . . . . . . . . . . . . . . . . . . 374

Contents xi

http://dx.doi.org/10.1007/978-3-319-18200-1_3#Sec8
http://dx.doi.org/10.1007/978-3-319-18200-1_3#Sec8
http://dx.doi.org/10.1007/978-3-319-18200-1_3#Sec9
http://dx.doi.org/10.1007/978-3-319-18200-1_3#Sec9
http://dx.doi.org/10.1007/978-3-319-18200-1_3#Sec9
http://dx.doi.org/10.1007/978-3-319-18200-1_3#Sec10
http://dx.doi.org/10.1007/978-3-319-18200-1_3#Sec10
http://dx.doi.org/10.1007/978-3-319-18200-1_3#Sec11
http://dx.doi.org/10.1007/978-3-319-18200-1_3#Sec11
http://dx.doi.org/10.1007/978-3-319-18200-1_3#Bib1
http://dx.doi.org/10.1007/978-3-319-18200-1_4
http://dx.doi.org/10.1007/978-3-319-18200-1_4
http://dx.doi.org/10.1007/978-3-319-18200-1_4#Sec68
http://dx.doi.org/10.1007/978-3-319-18200-1_4#Sec68
http://dx.doi.org/10.1007/978-3-319-18200-1_4#Sec1
http://dx.doi.org/10.1007/978-3-319-18200-1_4#Sec1
http://dx.doi.org/10.1007/978-3-319-18200-1_4#Sec2
http://dx.doi.org/10.1007/978-3-319-18200-1_4#Sec2
http://dx.doi.org/10.1007/978-3-319-18200-1_4#Sec3
http://dx.doi.org/10.1007/978-3-319-18200-1_4#Sec3
http://dx.doi.org/10.1007/978-3-319-18200-1_4#Sec4
http://dx.doi.org/10.1007/978-3-319-18200-1_4#Sec4
http://dx.doi.org/10.1007/978-3-319-18200-1_4#Sec5
http://dx.doi.org/10.1007/978-3-319-18200-1_4#Sec5
http://dx.doi.org/10.1007/978-3-319-18200-1_4#Sec6
http://dx.doi.org/10.1007/978-3-319-18200-1_4#Sec6
http://dx.doi.org/10.1007/978-3-319-18200-1_4#Sec7
http://dx.doi.org/10.1007/978-3-319-18200-1_4#Sec7
http://dx.doi.org/10.1007/978-3-319-18200-1_4#Sec8
http://dx.doi.org/10.1007/978-3-319-18200-1_4#Sec8
http://dx.doi.org/10.1007/978-3-319-18200-1_4#Sec8
http://dx.doi.org/10.1007/978-3-319-18200-1_4#Sec8
http://dx.doi.org/10.1007/978-3-319-18200-1_4#Sec8
http://dx.doi.org/10.1007/978-3-319-18200-1_4#Sec8
http://dx.doi.org/10.1007/978-3-319-18200-1_4#Sec9
http://dx.doi.org/10.1007/978-3-319-18200-1_4#Sec9
http://dx.doi.org/10.1007/978-3-319-18200-1_4#Sec9
http://dx.doi.org/10.1007/978-3-319-18200-1_4#Sec10
http://dx.doi.org/10.1007/978-3-319-18200-1_4#Sec10
http://dx.doi.org/10.1007/978-3-319-18200-1_4#Sec10
http://dx.doi.org/10.1007/978-3-319-18200-1_4#Sec10
http://dx.doi.org/10.1007/978-3-319-18200-1_4#Sec10
http://dx.doi.org/10.1007/978-3-319-18200-1_4#Sec10
http://dx.doi.org/10.1007/978-3-319-18200-1_4#Sec11
http://dx.doi.org/10.1007/978-3-319-18200-1_4#Sec11
http://dx.doi.org/10.1007/978-3-319-18200-1_4#Sec13
http://dx.doi.org/10.1007/978-3-319-18200-1_4#Sec13
http://dx.doi.org/10.1007/978-3-319-18200-1_4#Sec17
http://dx.doi.org/10.1007/978-3-319-18200-1_4#Sec17
http://dx.doi.org/10.1007/978-3-319-18200-1_4#Sec18
http://dx.doi.org/10.1007/978-3-319-18200-1_4#Sec18
http://dx.doi.org/10.1007/978-3-319-18200-1_4#Sec24
http://dx.doi.org/10.1007/978-3-319-18200-1_4#Sec24
http://dx.doi.org/10.1007/978-3-319-18200-1_4#Sec25
http://dx.doi.org/10.1007/978-3-319-18200-1_4#Sec25
http://dx.doi.org/10.1007/978-3-319-18200-1_4#Sec26
http://dx.doi.org/10.1007/978-3-319-18200-1_4#Sec26
http://dx.doi.org/10.1007/978-3-319-18200-1_4#Sec27
http://dx.doi.org/10.1007/978-3-319-18200-1_4#Sec27
http://dx.doi.org/10.1007/978-3-319-18200-1_4#Sec27
http://dx.doi.org/10.1007/978-3-319-18200-1_4#Sec27
http://dx.doi.org/10.1007/978-3-319-18200-1_4#Sec27
http://dx.doi.org/10.1007/978-3-319-18200-1_4#Sec27
http://dx.doi.org/10.1007/978-3-319-18200-1_4#Sec40
http://dx.doi.org/10.1007/978-3-319-18200-1_4#Sec40
http://dx.doi.org/10.1007/978-3-319-18200-1_4#Sec40
http://dx.doi.org/10.1007/978-3-319-18200-1_4#Sec40
http://dx.doi.org/10.1007/978-3-319-18200-1_4#Sec40
http://dx.doi.org/10.1007/978-3-319-18200-1_4#Sec40
http://dx.doi.org/10.1007/978-3-319-18200-1_4#Sec41
http://dx.doi.org/10.1007/978-3-319-18200-1_4#Sec41
http://dx.doi.org/10.1007/978-3-319-18200-1_4#Sec41
http://dx.doi.org/10.1007/978-3-319-18200-1_4#Sec42
http://dx.doi.org/10.1007/978-3-319-18200-1_4#Sec42


www.manaraa.com

4.6 Two-Dimensional and Three-Dimensional Finite Elements
(Brief Outline) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 374
4.6.1 Definition of the Generic Shape Function . . . . . . . . . . 378
4.6.2 General Definition of the Stiffness and Mass Matrices

of the Generic Three-Dimensional Finite Element. . . . . 379
4.6.3 Two-Dimensional Elements (Membrane) . . . . . . . . . . . 383
4.6.4 Three-Dimensional Elements (Brick Elements) . . . . . . . 387
4.6.5 Plate Elements and Shell Elements . . . . . . . . . . . . . . . 390
4.6.6 Isoparametric Elements . . . . . . . . . . . . . . . . . . . . . . . 391

4.7 Nonlinear Analysis in Structures Using the Finite
Element Method (Brief Outline) . . . . . . . . . . . . . . . . . . . . . . . 394
4.7.1 Introduction to the Non-linear Problem . . . . . . . . . . . . 395
4.7.2 Linearization of the Equations of Motion About

the Equilibrium Position . . . . . . . . . . . . . . . . . . . . . . 397
4.8 Numerical Integration of the Equations

of Motion (Brief Outline) . . . . . . . . . . . . . . . . . . . . . . . . . . . 406
4.8.1 The Newmark Method in a Linear Field . . . . . . . . . . . 409
4.8.2 The Newmark Method in a Nonlinear Field . . . . . . . . . 410

4.9 Summary. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 411
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 411

5 Dynamical Systems Subjected to Force Fields . . . . . . . . . . . . . . . . 413
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 413
5.2 Vibrating Systems with 1 DOF Perturbed Around

the Position of Equilibrium . . . . . . . . . . . . . . . . . . . . . . . . . . 417
5.2.1 System with 1 DOF Placed in an Aerodynamic

Force Field . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 422
5.3 Vibrating Systems with 2 d.o.f. Perturbed Around

the Position of Equilibrium . . . . . . . . . . . . . . . . . . . . . . . . . . 439
5.3.1 Two-Degree-of-Freedom System with Placed

in a Field of Purely Positional Forces . . . . . . . . . . . . . 443
5.3.2 Two-Degrees-of-Freedom System Placed in a Field

of Position and Velocity Dependent Forces . . . . . . . . . 461
5.4 Multi-Degree-of-Freedom Vibrating Systems Perturbed

Around the Position of Equilibrium . . . . . . . . . . . . . . . . . . . . 480
5.4.1 The General Method for Analysing

a n-Degree-of-Freedom System Subject
to Non-conservative Forces . . . . . . . . . . . . . . . . . . . . 480

5.4.2 An Example: An Aerofoil Hit by a Confined
Flow (n-Degree-of-Freedom System). . . . . . . . . . . . . . 484

5.5 Systems Perturbed Around the Steady-State Position. . . . . . . . . 498
5.5.1 Systems with 1 d.o.f . . . . . . . . . . . . . . . . . . . . . . . . . 498
5.5.2 Systems with 2 d.o.f . . . . . . . . . . . . . . . . . . . . . . . . . 502

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 548

xii Contents

http://dx.doi.org/10.1007/978-3-319-18200-1_4#Sec43
http://dx.doi.org/10.1007/978-3-319-18200-1_4#Sec43
http://dx.doi.org/10.1007/978-3-319-18200-1_4#Sec43
http://dx.doi.org/10.1007/978-3-319-18200-1_4#Sec44
http://dx.doi.org/10.1007/978-3-319-18200-1_4#Sec44
http://dx.doi.org/10.1007/978-3-319-18200-1_4#Sec45
http://dx.doi.org/10.1007/978-3-319-18200-1_4#Sec45
http://dx.doi.org/10.1007/978-3-319-18200-1_4#Sec45
http://dx.doi.org/10.1007/978-3-319-18200-1_4#Sec46
http://dx.doi.org/10.1007/978-3-319-18200-1_4#Sec46
http://dx.doi.org/10.1007/978-3-319-18200-1_4#Sec49
http://dx.doi.org/10.1007/978-3-319-18200-1_4#Sec49
http://dx.doi.org/10.1007/978-3-319-18200-1_4#Sec53
http://dx.doi.org/10.1007/978-3-319-18200-1_4#Sec53
http://dx.doi.org/10.1007/978-3-319-18200-1_4#Sec56
http://dx.doi.org/10.1007/978-3-319-18200-1_4#Sec56
http://dx.doi.org/10.1007/978-3-319-18200-1_4#Sec57
http://dx.doi.org/10.1007/978-3-319-18200-1_4#Sec57
http://dx.doi.org/10.1007/978-3-319-18200-1_4#Sec57
http://dx.doi.org/10.1007/978-3-319-18200-1_4#Sec58
http://dx.doi.org/10.1007/978-3-319-18200-1_4#Sec58
http://dx.doi.org/10.1007/978-3-319-18200-1_4#Sec59
http://dx.doi.org/10.1007/978-3-319-18200-1_4#Sec59
http://dx.doi.org/10.1007/978-3-319-18200-1_4#Sec59
http://dx.doi.org/10.1007/978-3-319-18200-1_4#Sec64
http://dx.doi.org/10.1007/978-3-319-18200-1_4#Sec64
http://dx.doi.org/10.1007/978-3-319-18200-1_4#Sec64
http://dx.doi.org/10.1007/978-3-319-18200-1_4#Sec65
http://dx.doi.org/10.1007/978-3-319-18200-1_4#Sec65
http://dx.doi.org/10.1007/978-3-319-18200-1_4#Sec66
http://dx.doi.org/10.1007/978-3-319-18200-1_4#Sec66
http://dx.doi.org/10.1007/978-3-319-18200-1_4#Sec67
http://dx.doi.org/10.1007/978-3-319-18200-1_4#Sec67
http://dx.doi.org/10.1007/978-3-319-18200-1_4#Bib1
http://dx.doi.org/10.1007/978-3-319-18200-1_5
http://dx.doi.org/10.1007/978-3-319-18200-1_5
http://dx.doi.org/10.1007/978-3-319-18200-1_5#Sec1
http://dx.doi.org/10.1007/978-3-319-18200-1_5#Sec1
http://dx.doi.org/10.1007/978-3-319-18200-1_5#Sec2
http://dx.doi.org/10.1007/978-3-319-18200-1_5#Sec2
http://dx.doi.org/10.1007/978-3-319-18200-1_5#Sec2
http://dx.doi.org/10.1007/978-3-319-18200-1_5#Sec3
http://dx.doi.org/10.1007/978-3-319-18200-1_5#Sec3
http://dx.doi.org/10.1007/978-3-319-18200-1_5#Sec3
http://dx.doi.org/10.1007/978-3-319-18200-1_5#Sec7
http://dx.doi.org/10.1007/978-3-319-18200-1_5#Sec7
http://dx.doi.org/10.1007/978-3-319-18200-1_5#Sec7
http://dx.doi.org/10.1007/978-3-319-18200-1_5#Sec8
http://dx.doi.org/10.1007/978-3-319-18200-1_5#Sec8
http://dx.doi.org/10.1007/978-3-319-18200-1_5#Sec8
http://dx.doi.org/10.1007/978-3-319-18200-1_5#Sec16
http://dx.doi.org/10.1007/978-3-319-18200-1_5#Sec16
http://dx.doi.org/10.1007/978-3-319-18200-1_5#Sec16
http://dx.doi.org/10.1007/978-3-319-18200-1_5#Sec22
http://dx.doi.org/10.1007/978-3-319-18200-1_5#Sec22
http://dx.doi.org/10.1007/978-3-319-18200-1_5#Sec22
http://dx.doi.org/10.1007/978-3-319-18200-1_5#Sec23
http://dx.doi.org/10.1007/978-3-319-18200-1_5#Sec23
http://dx.doi.org/10.1007/978-3-319-18200-1_5#Sec23
http://dx.doi.org/10.1007/978-3-319-18200-1_5#Sec23
http://dx.doi.org/10.1007/978-3-319-18200-1_5#Sec25
http://dx.doi.org/10.1007/978-3-319-18200-1_5#Sec25
http://dx.doi.org/10.1007/978-3-319-18200-1_5#Sec25
http://dx.doi.org/10.1007/978-3-319-18200-1_5#Sec28
http://dx.doi.org/10.1007/978-3-319-18200-1_5#Sec28
http://dx.doi.org/10.1007/978-3-319-18200-1_5#Sec29
http://dx.doi.org/10.1007/978-3-319-18200-1_5#Sec29
http://dx.doi.org/10.1007/978-3-319-18200-1_5#Sec31
http://dx.doi.org/10.1007/978-3-319-18200-1_5#Sec31
http://dx.doi.org/10.1007/978-3-319-18200-1_5#Bib1


www.manaraa.com

6 Rotordynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 555
6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 555
6.2 Description of the System Composed of the Rotor

and the Supporting Structure Interacting with It . . . . . . . . . . . . 555
6.2.1 Schematising the Rotor . . . . . . . . . . . . . . . . . . . . . . . 557
6.2.2 Schematising Bearings . . . . . . . . . . . . . . . . . . . . . . . 561
6.2.3 Defining the Field of Forces in Seals or More

in General Between Rotor and Stator . . . . . . . . . . . . . 574
6.2.4 Schematising the Casing and the Supporting

Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 575
6.2.5 The Overall Model (an Example of Application) . . . . . 584

6.3 Analysing the Different Vibration Problems
Encountered in Rotordynamics . . . . . . . . . . . . . . . . . . . . . . . . 592

6.4 Critical Speed, Response of the Rotor to Unbalance . . . . . . . . . 595
6.4.1 Two Degree-of-Freedom Model Without Damping . . . . 596
6.4.2 Two-Degree-of-Freedom Model with Damping . . . . . . 600
6.4.3 Determining the Generalised Forces Acting

on a Rotor Due to Unbalance. . . . . . . . . . . . . . . . . . . 602
6.5 Balancing Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 608

6.5.1 Disk Balancing . . . . . . . . . . . . . . . . . . . . . . . . . . . . 610
6.5.2 Balancing a Real Rotor . . . . . . . . . . . . . . . . . . . . . . . 616

6.6 Two-Per-Rev Vibrations Excited by Different Rotor
Stiffnesses, in Horizontal Shafts . . . . . . . . . . . . . . . . . . . . . . . 644
6.6.1 Two-Degree-of-Freedom Model . . . . . . . . . . . . . . . . . 647
6.6.2 Schematisation of the Problem on a Real Rotor . . . . . . 654

6.7 The Hysteretic Damping Effect . . . . . . . . . . . . . . . . . . . . . . . 661
6.7.1 Two-Degree-of-Freedom Model . . . . . . . . . . . . . . . . . 661

6.8 The Gyroscopic Effect . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 670
6.9 Oil-Film Instability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 681

6.9.1 Estimating Instability Using the Eigenvalue
and Eigenvector Solution. . . . . . . . . . . . . . . . . . . . . . 683

6.9.2 Estimating Instability with the Modal Method . . . . . . . 683
6.9.3 Estimating Instability with the Forced Method . . . . . . . 685
6.9.4 Effect of Load Variations on Supports

on the Conditions of Instability . . . . . . . . . . . . . . . . . 687
6.10 Torsional Vibrations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 689

6.10.1 Methods for Reducing to an Equivalent System . . . . . . 692
6.10.2 Schematisations with N-Degree-of-Freedom Systems . . 694
6.10.3 Schematisation with Continuous Bodies . . . . . . . . . . . 698
6.10.4 Finite Element Schematisation . . . . . . . . . . . . . . . . . . 699
6.10.5 Elements that Can Be Adopted to Reduce

Torsional Vibrations . . . . . . . . . . . . . . . . . . . . . . . . . 700
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 703

Contents xiii

http://dx.doi.org/10.1007/978-3-319-18200-1_6
http://dx.doi.org/10.1007/978-3-319-18200-1_6
http://dx.doi.org/10.1007/978-3-319-18200-1_6#Sec1
http://dx.doi.org/10.1007/978-3-319-18200-1_6#Sec1
http://dx.doi.org/10.1007/978-3-319-18200-1_6#Sec2
http://dx.doi.org/10.1007/978-3-319-18200-1_6#Sec2
http://dx.doi.org/10.1007/978-3-319-18200-1_6#Sec2
http://dx.doi.org/10.1007/978-3-319-18200-1_6#Sec3
http://dx.doi.org/10.1007/978-3-319-18200-1_6#Sec3
http://dx.doi.org/10.1007/978-3-319-18200-1_6#Sec4
http://dx.doi.org/10.1007/978-3-319-18200-1_6#Sec4
http://dx.doi.org/10.1007/978-3-319-18200-1_6#Sec7
http://dx.doi.org/10.1007/978-3-319-18200-1_6#Sec7
http://dx.doi.org/10.1007/978-3-319-18200-1_6#Sec7
http://dx.doi.org/10.1007/978-3-319-18200-1_6#Sec8
http://dx.doi.org/10.1007/978-3-319-18200-1_6#Sec8
http://dx.doi.org/10.1007/978-3-319-18200-1_6#Sec8
http://dx.doi.org/10.1007/978-3-319-18200-1_6#Sec12
http://dx.doi.org/10.1007/978-3-319-18200-1_6#Sec12
http://dx.doi.org/10.1007/978-3-319-18200-1_6#Sec13
http://dx.doi.org/10.1007/978-3-319-18200-1_6#Sec13
http://dx.doi.org/10.1007/978-3-319-18200-1_6#Sec13
http://dx.doi.org/10.1007/978-3-319-18200-1_6#Sec14
http://dx.doi.org/10.1007/978-3-319-18200-1_6#Sec14
http://dx.doi.org/10.1007/978-3-319-18200-1_6#Sec15
http://dx.doi.org/10.1007/978-3-319-18200-1_6#Sec15
http://dx.doi.org/10.1007/978-3-319-18200-1_6#Sec16
http://dx.doi.org/10.1007/978-3-319-18200-1_6#Sec16
http://dx.doi.org/10.1007/978-3-319-18200-1_6#Sec17
http://dx.doi.org/10.1007/978-3-319-18200-1_6#Sec17
http://dx.doi.org/10.1007/978-3-319-18200-1_6#Sec17
http://dx.doi.org/10.1007/978-3-319-18200-1_6#Sec18
http://dx.doi.org/10.1007/978-3-319-18200-1_6#Sec18
http://dx.doi.org/10.1007/978-3-319-18200-1_6#Sec19
http://dx.doi.org/10.1007/978-3-319-18200-1_6#Sec19
http://dx.doi.org/10.1007/978-3-319-18200-1_6#Sec22
http://dx.doi.org/10.1007/978-3-319-18200-1_6#Sec22
http://dx.doi.org/10.1007/978-3-319-18200-1_6#Sec31
http://dx.doi.org/10.1007/978-3-319-18200-1_6#Sec31
http://dx.doi.org/10.1007/978-3-319-18200-1_6#Sec31
http://dx.doi.org/10.1007/978-3-319-18200-1_6#Sec32
http://dx.doi.org/10.1007/978-3-319-18200-1_6#Sec32
http://dx.doi.org/10.1007/978-3-319-18200-1_6#Sec34
http://dx.doi.org/10.1007/978-3-319-18200-1_6#Sec34
http://dx.doi.org/10.1007/978-3-319-18200-1_6#Sec35
http://dx.doi.org/10.1007/978-3-319-18200-1_6#Sec35
http://dx.doi.org/10.1007/978-3-319-18200-1_6#Sec36
http://dx.doi.org/10.1007/978-3-319-18200-1_6#Sec36
http://dx.doi.org/10.1007/978-3-319-18200-1_6#Sec39
http://dx.doi.org/10.1007/978-3-319-18200-1_6#Sec39
http://dx.doi.org/10.1007/978-3-319-18200-1_6#Sec40
http://dx.doi.org/10.1007/978-3-319-18200-1_6#Sec40
http://dx.doi.org/10.1007/978-3-319-18200-1_6#Sec41
http://dx.doi.org/10.1007/978-3-319-18200-1_6#Sec41
http://dx.doi.org/10.1007/978-3-319-18200-1_6#Sec41
http://dx.doi.org/10.1007/978-3-319-18200-1_6#Sec42
http://dx.doi.org/10.1007/978-3-319-18200-1_6#Sec42
http://dx.doi.org/10.1007/978-3-319-18200-1_6#Sec43
http://dx.doi.org/10.1007/978-3-319-18200-1_6#Sec43
http://dx.doi.org/10.1007/978-3-319-18200-1_6#Sec44
http://dx.doi.org/10.1007/978-3-319-18200-1_6#Sec44
http://dx.doi.org/10.1007/978-3-319-18200-1_6#Sec44
http://dx.doi.org/10.1007/978-3-319-18200-1_6#Sec45
http://dx.doi.org/10.1007/978-3-319-18200-1_6#Sec45
http://dx.doi.org/10.1007/978-3-319-18200-1_6#Sec46
http://dx.doi.org/10.1007/978-3-319-18200-1_6#Sec46
http://dx.doi.org/10.1007/978-3-319-18200-1_6#Sec47
http://dx.doi.org/10.1007/978-3-319-18200-1_6#Sec47
http://dx.doi.org/10.1007/978-3-319-18200-1_6#Sec48
http://dx.doi.org/10.1007/978-3-319-18200-1_6#Sec48
http://dx.doi.org/10.1007/978-3-319-18200-1_6#Sec49
http://dx.doi.org/10.1007/978-3-319-18200-1_6#Sec49
http://dx.doi.org/10.1007/978-3-319-18200-1_6#Sec50
http://dx.doi.org/10.1007/978-3-319-18200-1_6#Sec50
http://dx.doi.org/10.1007/978-3-319-18200-1_6#Sec50
http://dx.doi.org/10.1007/978-3-319-18200-1_6#Bib1


www.manaraa.com

7 Random Vibrations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 709
7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 709
7.2 Defining a Random Process . . . . . . . . . . . . . . . . . . . . . . . . . . 712
7.3 Parameters Defining the Statistical Characteristics

of a Random Process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 713
7.3.1 Calculating the Power Spectral Density Function

and Cross-Spectra. . . . . . . . . . . . . . . . . . . . . . . . . . . 722
7.4 Defining the Random Stationary and Ergodic Process . . . . . . . . 731
7.5 The Response of a Vibrating System to Random Excitation. . . . 733

7.5.1 Analysis with Several Correlated Processes . . . . . . . . . 738
7.6 Some Examples of Application . . . . . . . . . . . . . . . . . . . . . . . 738

7.6.1 Response of a Structure to Turbulent Wind . . . . . . . . . 738
7.6.2 Response of a Structure to Wave Motion . . . . . . . . . . 749
7.6.3 Irregularities in the Road Profile. . . . . . . . . . . . . . . . . 760

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 768

8 Techniques of Identification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 771
8.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 771

8.1.1 Identifying the Parameters of a Mechanical
System in the Time and Frequency Domain. . . . . . . . . 774

8.1.2 The Least Squares Method . . . . . . . . . . . . . . . . . . . . 776
8.2 Modal Identification Techniques. . . . . . . . . . . . . . . . . . . . . . . 778

8.2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 778
8.2.2 An Outline of the Basic Equations . . . . . . . . . . . . . . . 778
8.2.3 Graphic Representations of the Transfer Function . . . . . 783
8.2.4 Defining the Experimental Transfer Function . . . . . . . . 785
8.2.5 Determining Modal Parameters . . . . . . . . . . . . . . . . . 791
8.2.6 Applications and Examples . . . . . . . . . . . . . . . . . . . . 801

8.3 Identification in the Time Domain . . . . . . . . . . . . . . . . . . . . . 803
8.3.1 The Ibrahim Method . . . . . . . . . . . . . . . . . . . . . . . . . 805

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 817

xiv Contents

http://dx.doi.org/10.1007/978-3-319-18200-1_7
http://dx.doi.org/10.1007/978-3-319-18200-1_7
http://dx.doi.org/10.1007/978-3-319-18200-1_7#Sec1
http://dx.doi.org/10.1007/978-3-319-18200-1_7#Sec1
http://dx.doi.org/10.1007/978-3-319-18200-1_7#Sec2
http://dx.doi.org/10.1007/978-3-319-18200-1_7#Sec2
http://dx.doi.org/10.1007/978-3-319-18200-1_7#Sec3
http://dx.doi.org/10.1007/978-3-319-18200-1_7#Sec3
http://dx.doi.org/10.1007/978-3-319-18200-1_7#Sec3
http://dx.doi.org/10.1007/978-3-319-18200-1_7#Sec4
http://dx.doi.org/10.1007/978-3-319-18200-1_7#Sec4
http://dx.doi.org/10.1007/978-3-319-18200-1_7#Sec4
http://dx.doi.org/10.1007/978-3-319-18200-1_7#Sec9
http://dx.doi.org/10.1007/978-3-319-18200-1_7#Sec9
http://dx.doi.org/10.1007/978-3-319-18200-1_7#Sec10
http://dx.doi.org/10.1007/978-3-319-18200-1_7#Sec10
http://dx.doi.org/10.1007/978-3-319-18200-1_7#Sec11
http://dx.doi.org/10.1007/978-3-319-18200-1_7#Sec11
http://dx.doi.org/10.1007/978-3-319-18200-1_7#Sec12
http://dx.doi.org/10.1007/978-3-319-18200-1_7#Sec12
http://dx.doi.org/10.1007/978-3-319-18200-1_7#Sec13
http://dx.doi.org/10.1007/978-3-319-18200-1_7#Sec13
http://dx.doi.org/10.1007/978-3-319-18200-1_7#Sec16
http://dx.doi.org/10.1007/978-3-319-18200-1_7#Sec16
http://dx.doi.org/10.1007/978-3-319-18200-1_7#Sec20
http://dx.doi.org/10.1007/978-3-319-18200-1_7#Sec20
http://dx.doi.org/10.1007/978-3-319-18200-1_7#Bib1
http://dx.doi.org/10.1007/978-3-319-18200-1_8
http://dx.doi.org/10.1007/978-3-319-18200-1_8
http://dx.doi.org/10.1007/978-3-319-18200-1_8#Sec1
http://dx.doi.org/10.1007/978-3-319-18200-1_8#Sec1
http://dx.doi.org/10.1007/978-3-319-18200-1_8#Sec2
http://dx.doi.org/10.1007/978-3-319-18200-1_8#Sec2
http://dx.doi.org/10.1007/978-3-319-18200-1_8#Sec2
http://dx.doi.org/10.1007/978-3-319-18200-1_8#Sec3
http://dx.doi.org/10.1007/978-3-319-18200-1_8#Sec3
http://dx.doi.org/10.1007/978-3-319-18200-1_8#Sec4
http://dx.doi.org/10.1007/978-3-319-18200-1_8#Sec4
http://dx.doi.org/10.1007/978-3-319-18200-1_8#Sec5
http://dx.doi.org/10.1007/978-3-319-18200-1_8#Sec5
http://dx.doi.org/10.1007/978-3-319-18200-1_8#Sec6
http://dx.doi.org/10.1007/978-3-319-18200-1_8#Sec6
http://dx.doi.org/10.1007/978-3-319-18200-1_8#Sec7
http://dx.doi.org/10.1007/978-3-319-18200-1_8#Sec7
http://dx.doi.org/10.1007/978-3-319-18200-1_8#Sec8
http://dx.doi.org/10.1007/978-3-319-18200-1_8#Sec8
http://dx.doi.org/10.1007/978-3-319-18200-1_8#Sec11
http://dx.doi.org/10.1007/978-3-319-18200-1_8#Sec11
http://dx.doi.org/10.1007/978-3-319-18200-1_8#Sec23
http://dx.doi.org/10.1007/978-3-319-18200-1_8#Sec23
http://dx.doi.org/10.1007/978-3-319-18200-1_8#Sec24
http://dx.doi.org/10.1007/978-3-319-18200-1_8#Sec24
http://dx.doi.org/10.1007/978-3-319-18200-1_8#Sec25
http://dx.doi.org/10.1007/978-3-319-18200-1_8#Sec25
http://dx.doi.org/10.1007/978-3-319-18200-1_8#Bib1


www.manaraa.com

Introduction

Dynamic analysis is a necessary step to design, verify, edit and then operate,
diagnose and monitor a generic mechanical system. The term “dynamic analysis”
refers to the study aimed at identifying the dynamic behaviour (displacements,
velocities, accelerations, strains and stresses) of the different components of a
mechanical system subject to the different forces (excitation causes) occurring
under normal operating conditions. Mechanical systems are generally constituted
by mutually interconnected bodies subjected to forces that can be explicit functions
of time (i.e. independent from the dynamics of the system itself) or forces that,
generically, depend on time and possibly on the motion of the system itself. In the
latter case, we speak generically of “force fields”. Figure 1 shows some examples of
mechanical systems in the presence of force fields.

Generically speaking, mechanical systems can perform large motions or small
motions about a position of static equilibrium (rest): this allows for the immediate
classification of mechanical systems into two different categories:

• “structures”, i.e. systems that admit a static equilibrium position (rest position)
about which “small motions” are studied;

• “machines”, i.e. systems in which this type of rest position is not always present,
and which, therefore, either have generic large motions or are in “steady-state”
motion.

For the structures, motion is permitted by the deformability of the various
components: in this case, the dynamic analysis will concern the vibratory motion
about the equilibrium position.

Conversely, even without considering the deformability of their components,
machines possess motion: typical examples are a shaft rotating around its own axis,
a road or rail vehicle (Fig. 1), the slider–crank mechanism of an internal combustion
engine or any machine element in motion (articulated systems, robots, etc.).

To evaluate the behaviour of a generic mechanical system at design level or
during tuning operation, it is necessary to realize a mathematical model that
attempts to simulate its dynamic behaviour.
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Fig. 1 Some examples of mechanical systems subject to force fields: high speed trains, gas
turbines and new skyscrapers in Milan
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The schematizations that can be adopted in the creation of mathematical models
of mechanical systems can be more or less complex, depending on the type of
problem that needs to be solved. Mathematical models may be more or less
accurate:

• rigid body models [with one or more degree of freedom (d.o.f.)];
• deformable bodies (i.e. with infinite degrees of freedom);
• linear models or models linearized about an equilibrium condition (rest or steady
state) and;

• nonlinear models to simulate generically large motions.

In some cases, a scheme of interconnected rigid bodies can be sufficiently
accurate; conversely, in others, it is necessary to consider the distributed defor-
mability of the various elements. As an example, the analysis of the dynamics of
motion of a rotor subjected to torques and resistant moments can be carried out by
considering the rotor as rigid while for the study of bending and torsional motions
around the steady-state speed of rotation, it is necessary to keep account of the
deformability of the rotor itself.

In addition to the mechanical system, it is also necessary to model the forces that
are applied to it. In this case too, different schematization “levels” of these forces
exist:

• models in which constraints are considered as ideal;
• models where real constraints are considered, in which the contact forces due to
the same constraints can be attributed to force fields;

• models in which the interactions between any pair of bodies or between body and
fluid are reproduced through the definition of force fields; and

• models in which a control action is taken into account and where both the control
logic and the actuators, used to impose the necessary forces, have to be described.

Therefore, in the analysis of a dynamic system, an in-depth knowledge of the
different force fields acting on the various elements is required (see Fig. 1, fluid
action, contact forces between bodies, action of electromagnetic fields, etc.), since
such fields can significantly affect the behaviour of the system itself.

An approach of this kind leads to an accurate, and, as such, complex modelling.
Let us consider, as an example, the slider–crank mechanism of internal combustion
engines: despite considering the crank, connecting rod and piston as rigid bodies,
each of them should be allocated (though only considering plane motion for the
sake of simplicity) three degrees of freedom, allowed by the deformability
of the lubricant films present in the various pairs. Due to the presence of fluid in the
various mechanism components (lubricant in the couplings, fluid contained in the
combustion chamber subject to thermodynamic transformation), force fields arise as
a function of their positions and relative speeds. To write the equations of motion
of the system, the definition of these force fields is essential. Depending on the
particular nature of the problem considered and the aim of the analysis, more simple
models can be obtained. If, in the previous example, the law of motion of the piston
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has to be calculated, it seems sufficiently accurate to neglect the relative motions
due to the deformability of the lubricant fluid films in the mechanism pairs. In this
case, the mechanism is reduced to a one degree-of-freedom system. If the objective
of the analysis is, for example, to define the pressure and temperature distributions
on the piston skirt, as previously mentioned, system modelling must be carried out.

Once the overall mathematical model of the mechanical system has been defined
(i.e. mechanical system model and applied forces), the equations of motion must be
written and solved to evaluate the dynamic response of same.

To write the equations of motions, various methods can be applied. Methods that
best lend themselves to a systematic analysis of various problems are definitely
those of dynamic equilibrium and Lagrange’s equations:

• dynamic equilibrium can definitely be used for simple rigid body
schematizations;

• in systems subject to ideal constraints, by using Lagrange’s method, it is not
necessary to introduce constraint reactions;

• Lagrange’s equations must be used if body deformability is considered, e.g. by
using a discretization method of the finite element type.

The differential equations that describe systems subject to large motions,
obtained using the methods described above, appear to be nonlinear. Small motions
about an equilibrium position are described by linear differential equations.

When analysing machines, it may often be useful to linearize the equations of
motion about a static or dynamic equilibrium condition (i.e. about a rest or steady-
state condition), like, for example, when calculating natural frequencies or ana-
lysing incipient instability conditions.

At this point, the choice of the algorithm used to solve the equations of motion
becomes important: in the case of linear or linearized systems, the analysis often
provides solutions to various problems in a closed form while, for nonlinear sys-
tems, a solution has to be found by using numerical techniques.

As regards the analysis of a generic mechanical system, a fundamental aspect
that will be taken into account in this book is the definition of a systematic approach
to the schematization of the system itself. The study of the dynamics of systems
with rigid or deformable interconnected bodies has had recent developments, based
on the use of coordinate transformation matrices, thus giving rise to a method, now
known as the “Multi-Body System Method”, particularly suited to computer
implementation in order to represent the kinematics of the various elements.2

The study of a dynamics problem consists in writing the equations of motion—
generally nonlinear—in finding an existing equilibrium condition and in linearizing
the equations of motion around this condition, for stability analysis.

Dynamic analysis is also aimed at studying the transient motion performed to
possibly attain a steady-state situation or limit cycle. Stability analysis is usually

2Cheli and Pennestrì [1], Shabana [2].
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carried out by using a linear approach; conversely, the study of the transient motion
or the determination of any limit cycles requires the solution of nonlinear problems.

For example, when wishing to tackle problems related to the dynamics of a
vehicle in motion on a straight road or on a curve, once the equations of motion
have been obtained, it is first necessary to find a steady-state solution (i.e. a vehicle
moving at a constant speed on a straight line or on a curve), subsequently going on
to analyse the perturbed motion around the main trajectory. This analysis may either
be performed by means of equations linearized around steady-state conditions, or
by integrating nonlinear equations with assigned initial conditions: in this way, in
addition to the analysis of the stability, any “large” motion of the vehicle can be
defined. Although it is not easy to make a clear distinction of subjects, it can be
stated that the analysis of large motion is a subject of “Applied Mechanics”,3

although in Applied Mechanics courses simplified rigid body schematizations,
typically either with one or a few degree of freedom, are usually presented.

Conversely, in this book, the foundations for an engineering approach to the
general problem are given, mainly by investigating the aspects associated with the
analysis of the stability and vibrations of mechanical systems. In the first part of the
text, we will consider the small motions of systems arising from perturbations of
stable static equilibrium conditions, which represent the classic study of vibrating
systems. By considering an energy approach (Lagrange’s equations), the forms of
energy involved in the vibratory phenomenon are kinetic energy due to the mass
of the system, the elastic potential energy, possibly gravity and, finally, energy
dissipation either due to the imperfect elasticity of the materials or comparable to
viscous effects. Mechanical systems falling into this category are termed dissipative.
For this class of systems, we will consider motions arising from small perturbations
of static equilibrium conditions, perturbed free motions and the forced motions due
to external excitation forces, generally functions of time.

These systems will be analysed in order of complexity, starting gradually from
systems with one degree of freedom, systems with 2-n degree of freedom (in this
context, multi-body methodologies for writing equations of motion will be men-
tioned, see Chaps. 1 and 2), finally extending the discussion to systems with infinite
degree of freedom (continuous systems, Chap. 3).

As far as the latter are concerned, procedures pertaining to their discretization
will be described, with particular reference to the modal approach (Chap. 3), the
finite element technique (Chap. 4) and, finally, the identification techniques of
modal parameters from experimental tests (Chap. 8).

The second part of this book will be devoted to the study of mechanical systems
subjected to force fields (Chap. 5): In addition to the possible steady-state solution,
the perturbed motion about same will be also studied. To achieve this, it is

3Bachschmid et al. [3].
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necessary to define the motion of the system in a more complete and complex form
than that used in the classical treatises of Applied Mechanics, i.e. by also consid-
ering the deformability of the system, in the event of this being deemed important to
define its dynamic behaviour. The approach is of the general type: after writing the
equations of motion, a steady-state solution is looked for. If such a solution is
found, the subsequent dynamic analysis can be performed by linearizing the system
about this steady-state solution in order to check stability. The linearized equations
may present constant coefficients or coefficients as functions of time. The meth-
odology of analysis depends on the structure of these equations: more in particular,
for the first category of equations, a systematic study is possible, while, with
coefficients as functions of time, analysis procedures are more complex. The
dynamic behaviour of the generic system can also be analysed by using a nonlinear
approach consisting of a numerical integration of the equations of motion or, for
some kind of nonlinear problems, of the use of approximate analytical methods. To
write the equations that govern the mechanical system in its most general form, it is
necessary to consider not only the kinetic energy, potential energy and dissipative
function, but also the presence of force fields surrounding the system: in addition to
the elastic one, force fields due to the action of a fluid, contact forces between
bodies or electromagnetic fields may be present. The forces that the various ele-
ments of a mechanical system exchange, not only with each other but also with the
surrounding environment, are generally functions of the independent variables that
define the motion of the system itself and their derivatives. In a broad sense, these
interactions are considered to be due to “force fields”. Generally speaking, these
force fields (Chap. 5) are nonlinear and characterize system behaviour significantly.

If the forces are solely functions of the configuration of the system, they will be
referred to as “positional” force field; on the contrary, if they depend on the velocity
of the system, they will be termed “velocity” force field (force fields that have not
been dealt with in other courses will be described briefly in the same chapter).

Not only does the presence of force fields condition steady state but also free
motion, influencing system stability: for example, owing to the fact that positional
non-conservative force fields are able to introduce energy into the system, they can
generate forms of instability. Velocity force fields are non-conservative by defini-
tion, meaning that they are also capable of modifying the stability of a system. The
development of the study of mechanical systems subjected to force fields, in
addition to those regarding elastic and dissipative ones, is common to many dis-
ciplines and falls within the analysis of mechanical systems in a more general sense.

Controlled systems can also be classified in this category, in the sense that a
control system applies forces proportional to the values of the independent variables
or to the difference between a reference quantity value and the actual value of same
(function of the independent variables). From this point of view, control systems
can also be considered as force fields. However, although this course is not aimed at
the systematic analysis of control problems, it definitely lays the foundations for

3 Bachschmid et al. [3].
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control engineering, with which it shares innumerable problems and solution
methods, at least as far as the study of stability is concerned. Therefore, where
possible, an effort will be made to approach the structure of equations and the
symbolism adopted in the field of control engineering, so as to deal with the study
of mechanical systems in a similar way to that of controlled systems. The equations
of motion of a mechanical system are generally written in the form:

½M�€xþ ½R� _xþ ½K�x ¼ Fðx; _x;€x; tÞ ð1Þ

where x is the vector of independent variables, F the applied external forces (due to
force fields or known functions of time or due to the action of a controller), ½M�, ½R�
and ½K� the mass, damping and stiffness matrices. By linearizing these equations
about an equilibrium or steady-state position, in addition to the structural matrices,
terms arising from the linearization of the force fields also appear. These terms are
called the Jacobians of the force fields: the equation of motion in this case can be
rewritten in the form:

½½M� þ ½MF ��€xþ ½½R� þ ½RF �� _xþ ½½K� þ ½KF ��x ¼ FðtÞ ð2Þ

where ½MF �, ½RF � and ½KF � are the matrices arising from the linearization of the force
fields while, on the right hand side, only the external forces, explicit functions of
time, remain. The analysis of the overall structure of the matrices (whether sym-
metric, definite positive or not) allows us to check system stability. An approach of
this type (see Eq. 2) is typical of mechanics; however, the same equations can be
rewritten in the equivalent form:

_z ¼ ½A�zþ uðtÞ ð3Þ

in which ½A� is formed by the matrices ½M�, ½R� and ½K�: in turn, this type of matrix
can be a function of time if the equations of motion arising from the linearization do
not present constant coefficients. In Eq. (3), the vector of so-called state variables is
indicated:

z ¼ _x
x

� �
ð4Þ

while uðtÞ is the vector of known terms, solely a function of time, owing to the fact
that the state-dependent control forces are already included in a linear way in ½MF �,
½RF � and ½KF �. The two approaches (1) and (3) only differ in terms of a symbolic
aspect, even though matrix ½A� loses the physical meanings of the problem with
respect to matrices ½M�, ½R� and ½K�.

More in detail, the second part (Chap. 5) is structured as follows:

• a general discussion of the problem of systems subjected to force fields;
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• an analysis of systems subjected to positional force fields, differing from gravi-
tational and elastic ones, and a discussion of stability for systems with one and
two degrees of freedom;

• a steady-state solution and linearization of the force field;
• analysis of systems with one or two degrees of freedom subjected to positional
and velocity force fields; and

• the development of several examples including the analysis of a 2D airfoil flow,
motion of a journal inside a bearing with hydrodynamic lubrication, motion of a
train axle and of a road vehicle, or extensions to continuous systems (finite
element models).

In dedicated chapters, the course will also deal with problems related to:

• rotor dynamics (balancing, oil film instability, interaction with the foundation,
etc., Chap. 6);

• the definition of different types of random excitation forces including those due to
turbulent wind, waves and earthquakes (Chap. 7): in this chapter, the problem of
vortex shedding will be illustrated, referencing the more general problem of
vibrations induced by fluids, outlined in previous chapters; and

• the experimental identification of parameters of a real system (Chap. 8): this
aspect is fundamental in modelling.

The creation of mathematical models, targeted at defining the dynamic behav-
iour of mechanical systems in the terms mentioned above, is a well-established
discipline. Algorithms developed to simulate, as accurately as possible, the
behaviour of structures and machines subjected to different excitation causes have
become essential tools for the design and operation of such systems.
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Chapter 1
Nonlinear Systems with 1-n Degrees
of Freedom

1.1 Introduction

Our aim is to simulate the behaviour of systems with 1 or n degrees of freedom,
which undergo large motion or rather in which the displacements of the single
bodies composing the system itself are not small compared with the body dimen-
sions: under these conditions it is not possible to linearize the system. The aim of
this chapter is not only to provide the necessary instruments for the analysis of
motion in the large which, as will be seen, always gives rise to nonlinear differential
equations but also to show how the linearization of these equations can be achieved
within about an equilibrium or steady-state configuration, in case of this existing.
Conversely, in the following chapter we will deal with linear or linearized systems
within the neighbourhood of an equilibrium position (rest or steady-state).

1.2 Cartesian Coordinates, Degrees of Freedom,
Independent Coordinates

The configuration of a generic multi-body system with rigid bodies (such as the one
shown in Fig. 1.1) can be described by the displacements (translations and rota-
tions), velocities and accelerations of the single bodies defined with respect to a
reference system: generally speaking, two types of reference systems [1] are nec-
essary for a multi-body system:

• A global or inertial reference system (O-X-Y-Z);
• A local reference system (Oc-Xc-Yc-Zc), that is connected to each body, so that

this reference system translates and rotates with the body itself.

Without loss of generality, it is possible to assume the origin of the local reference
system Oc coinciding with centre of mass Gc of the generic body and the local axes
parallel to the main axes of inertia [2–4], Fig. 1.2.

© Springer International Publishing Switzerland 2015
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DOI 10.1007/978-3-319-18200-1_1

1



www.manaraa.com

The configuration assumed by each rigid body in space can be identified by 6
Cartesian coordinates q

c
:

q
c
¼

xc
yc
zc
qc
bc
rc

8>>>>>><
>>>>>>:

9>>>>>>=
>>>>>>;

ð1:1Þ

three of which ðxc; yc; zcÞ describe the translation of the body’s centre of mass (i.e.
the origin of the moving reference frame) with respect to the absolute reference
system (O-X-Y-Z), while the other three coordinates ðqc; bc; rcÞ define the

Fig. 1.1 A typical multi-
body system

Fig. 1.2 Global (O-X-Y-Z)
and local (Oc-Xc-Yc-Zc)
reference systems

2 1 Nonlinear Systems with 1-n Degrees of Freedom
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orientation in space of the body, i.e. the orientation of the moving reference frame
with respect to the inertial reference frame. It is possible to assume Euler angles,
Cardan angles, Rodriguez parameters and quaternions (as will be described in detail
further on)1as rotation coordinates [1, 2, 5]. The complete system, constituted by nc
rigid bodies can thus be described by nt Cartesian coordinates with:

nt ¼ 6 � nc ð1:2Þ

formally defining the vector q
t
of the total Cartesian coordinates:

q
t
¼

q
1

q
2

. . .
q
c

. . .
q
nc

8>>>>>><
>>>>>>:

9>>>>>>=
>>>>>>;

ð1:3Þ

Considering the single bodies as separate from each other and not constrained to
the ground, the equations of motion of a generic mechanical system can be obtained
by means of Lagrange’s equations2 [3–5]:

d
dt

@Ec

@ _qt

 !( )T

� @Ec

@ q
t

( )T

þ @D
@ _qt

( )T

þ @V
@ q

t

( )T

¼ Q
t

ð1:4Þ

where Ec, D and V respectively represent the kinetic energy, the dissipation function
and the potential energy of the system and, finally, Q

t
the vector of the noncon-

servative forces obtained from the virtual work d�L performed by all the forces not
considered in the various forms of energy in (1.4)3:

1When writing the equations of motion of a multi-body system, it is also possible to assume, as
independent variables, those associated with the relative motion of one reference frame with
respect to another.
2The equations of motion can obviously also be obtained by means of other methodologies [1, 2, 5],
such as, for example, the cardinal equations of dynamics.
3The virtual work, in scalar form defined as:

d�L ¼
Xnt
i¼1

Qid � qi ð1:3:1Þ

Having organized both the independent coordinates qi ði ¼ 1; ntÞ and the Lagrangian compo-
nents Qi ði ¼ 1; ntÞ in column matrices:

qT
t
¼ q1 . . . qi . . . qntf g; QT

t
¼ Q1 . . . Qi . . . Qntf g ð1:3:2Þ

can be rewritten in matrix form as:

d�L ¼ QT
t
d� q

t
ð1:3:3Þ

1.2 Cartesian Coordinates, Degrees of Freedom, Independent Coordinates 3
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d�L ¼ QT
t
d� q

t
ð1:5Þ

where d� q
t
is the virtual displacement of the Cartesian coordinates.4

The constraints to which the mechanical system is subjected reduce its possi-
bilities of motion and, as a consequence, reduce its degrees of freedom. The
kinematic constraint conditions can be described in terms of nv nonlinear algebraic
equations of the type5, 6:

f
v
ðq

t
Þ ¼ 0 ð1:6Þ

which are able to represent the fact that the generic body comprising the system as a
whole is constrained to the ground in one or two points or that relative constraints
exist between different bodies.

In this case, the total Cartesian coordinates are no longer all independent one
from the other: the number of free coordinates of the system (corresponding to the

4In the matrix formulation adopted, we used the convention whereby the derivative of a generic
scalar s with respect to a vector v (column matrix of n terms) is defined by means of a vector line
consisting of n terms:

@s
@v

¼ @s
@v1

@s
@v2

. . . @s
@vn�1

@s
@vn

n o
¼ vTs ð1:4:1Þ

Consequently, the derivative of a generic vector v (consisting of n terms) with respect to another
just as generic vector w (consisting of m terms) is a matrix (n m) defined as:

@v
@w

¼

@v1
@w1

@v1
@w2

. . . . . . @v1
@wm�1

@v1
@wm

@v2
@w1

@v2
@w2

. . . . . . @v2
@wm�1

@v2
@wm

. . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . .
@vn�1
@w1

@vn�1
@w2

. . . . . . @vn�1
@wm�1

@vn�1
@wm

@vn
@w1

@vn
@w2

. . . . . . @vn
@wm�1

@vn
@wm

2
66666664

3
77777775
¼ vw½ � ð1:4:2Þ

5For example, a spherical hinge on the ground means that, in the point where the hinge is
positioned, the three components of absolute displacement of the body are null and this condition
is analytically introduced by means of three constraint equations.
6Let us remember that, generally speaking, the equations of kinematic constraint can also be a
function of time, i.e.:

f
v
ðq

t
; tÞ ¼ 0 ð1:6:1Þ

In this particular text, we will not consider constraints whose characteristics change over time, or
rather, we will only analyze the condition of holonomic constraints.

4 1 Nonlinear Systems with 1-n Degrees of Freedom
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actual degrees of freedom), which we will subsequently indicate by means of q
l
, is

defined by the following relation7:

nl ¼ nt � nv ¼ 6 � nc � nv ð1:7Þ

By using this approach, vector q
t
of all the Cartesian coordinates (Eq. (1.3)) can

be divided into two sub-vectors respectively containing the free coordinates q
l
and

the dependent coordinates q
d
:

q
t
¼ q

l
q
d

� �
ð1:8Þ

Imposing constraints (1.5) on the system involves a relationship between the
dependent q

d
and independent variables q

l
formally of the type:

q
d
¼ q

d
ðq

l
Þ ð1:9Þ

This relationship can be expressed in terms of velocity, by directly deriving (1.9)
with respect to time:

_q
d
¼ @ q

d

@ q
l

" #
_q
l

ð1:10Þ

thus obtaining a linear relationship (defined by means of the Jacobian @ q
d

@ q
l

h i
) between

the velocities of the free coordinates and the dependent ones.
The equations of motion of a generic mechanical system in which constraints are

considered prove to be a system of hybrid equations, partially non-linear differential
(1.4) and partially non-linear algebraic (1.6):

d
dt

@Ec

@ _qt

 !( )T

� @Ec

@ q
t

( )T

þ @D
@ _qt

( )T

þ @V
@ q

t

( )T

¼ Q
t

f
v
ðq

t
Þ ¼ 0

8>><
>>: ð1:11Þ

7The number of Cartesian coordinates and free coordinates and, therefore, the number of degrees
of freedom, of a multi-body mechanical system depends on the schematization with which we wish
to simulate the dynamics of the system which, in turn, depends on the complexity of the problem
that we wish to solve and on the level of schematization adopted for the model, as well as on the
constraints to which this is subjected. This aspect of the problem will be dealt with in the chapter
on fields of force (Chap. 5).

1.2 Cartesian Coordinates, Degrees of Freedom, Independent Coordinates 5
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In this text, as regards the various techniques available in literature [1, 2, 6, 7] for
the numerical solution of the hybrid system (1.11) including the differential
equations of motion and the nonlinear algebraic equations, reference will be made
to the three most widely used methods:

• the method of Lagrange multipliers, in which all the q
t
are considered as

independent coordinates q

q ¼ q
t

ð1:12Þ

By using this approach, the constraints are removed and the work of the constraint
forces R, (in a number equal to nv), is added into the equations. By using this
approach, the nv constraint equations are added to the system equations of motion
(6 � nc differential equations) thus obtaining nt þ nv equations, in the unknowns
q
t
þR . As will be seen further on, by deriving the constraint equations with respect

to time, it is possible to obtain a single system of differential equations.

• the minimal set method in which the constraint equations (1.6) are used to
directly reduce the degrees of freedom of the system: assuming only the free
coordinates as independent coordinates:

q ¼ q
l

ð1:13Þ

By using this approach, the total number of differential equations to be solved is
equal to the number of degrees of freedom of system nl and the reaction forces due
to constraints do not appear. Using this method, in order to apply Lagrange’s
equations:

d
dt

@Ec

@ _q
l

 !( )T

� @Ec

@ q
l

( )T

þ @D
@ _q

l

( )T

þ @V
@ q

l

( )T

¼ Q
l

ð1:14Þ

it is necessary to introduce the relationship between dependent and free coordi-
nates (1.9).

• method involving the introduction of real constraints by means of fields of
forces: this approach is used in more refined schematization, in which ideal
constraints no longer exist and the external and internal constraint reactions
exchanged between the bodies are defined, as specified further on, as fields of
forces which are functions of the independent variables themselves (Chap. 5).

Before attempting a more in-depth description of the methodologies necessary to
write the equations of motion of a generic mechanical system, it might be useful to
use an example to clarify the concept of Cartesian coordinates and independent
coordinates.

6 1 Nonlinear Systems with 1-n Degrees of Freedom
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For this purpose, for reasons of simplicity, let us consider a flat system consti-
tuted by a plane four bar linkage, as shown in Fig. 1.3a. Members of the four bar
linkage will be termed a, b and c while the corresponding grounded bar will be
termed d: the centres of gravity of the moving bars, each having a mass, miði ¼
1; 2; 3Þ and a mass moment of inertia Iiði ¼ 1; 2; 3Þ with respect to the centre of
mass, will be termed G1, G2 and G3.

Considering as independent coordinates of each body the two Cartesian com-
ponents of the displacement of its centre of gravity and its rotation (see Figs. 1.3b
and c), the total number of degrees of freedom is equal to nt ¼ 3nc ¼ 9:

qT
t
¼ a1 a2 a3 x1 y1 x2 y2 x3 y3f g ð1:15Þ

The number of constraint degrees is nv ¼ 8, since 2 degrees of freedom have been
eliminated from each hinge (in correspondence to which, absolute or relative dis-
placements are prevented).

Thus, the system analysed has only one degree of freedom nl ¼ 1: in order to
describe motion, using the minimal set method, it is sufficient to assume only one
independent variable (e.g. rotation a1 of bar 1) while the other dependent coordi-
nates need to be expressed as a function of the only independent variable ql:

(a) (b)

(c)

Fig. 1.3 Articulated quadrilateral: kinematic analysis

1.2 Cartesian Coordinates, Degrees of Freedom, Independent Coordinates 7
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q
d
¼ q

d
ðq

l
Þ ð1:16Þ

having assumed, for example, rotation a1 of rod OA as an independent coordinate:

q
l
¼ ql ¼ a1 ð1:17Þ

Due to the plane motion of the linkage, these relationships can easily be cal-
culated by directly keeping account of the constraints introduced by the 3 hinges
positioned in O, A and B which reduce the total number of coordinates to only 3
rotations of the 3 bars of the system and subsequently express the equations of
constraint introduced by the hinge positioned in C in terms of a vector closure
equations, expressed using the complex number algorithm [8]8:

aeia1 þ beia2 þ ceia3 ¼ d ð1:18Þ

By using closure equations it is thus possible to express the relationships between
the independent coordinate assumed and the dependent coordinates:

f
v
ðq

t
Þ ¼ 0 ) a cos a1 þ b cos a2 þ c cos a3 � d

a sin a1 þ b sin a2 � c sin a3

� �
¼ 0 ð1:19Þ

From which, having indicated with:

qT
d
¼ a2 a3f g ð1:20Þ

it is possible to obtain:

q
d
¼ q

d
ðqlÞ ) a2

a3

� �
¼ a2ða1Þ

a3ða1Þ
� �

ð1:21Þ

If Eq. (1.21) is derived with respect to time, it is possible to express the velocities of
the dependent variables as a function of the independent variable

_q
d
¼ @ q

d

@ q
l

" #
_q
l
) _a2

_a3

� �
¼

@a2=@a1
@a3=@a1

" #
_a1 ð1:22Þ

where it is possible to observe a linear relationship between these derivatives. As

previously mentioned, in order to obtain the Jacobian @ q
d

@ q
l

h i
, it is possible to derive

Eq. (1.19) with respect to time, thus obtaining:

8More generally speaking, by analysing a mechanical system in space (see Sect. 1.6) it is more
practical to use the natural algorithm of the vectors, using a matrix type approach and reasoning in
terms of components.

8 1 Nonlinear Systems with 1-n Degrees of Freedom
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�a _a1 sin a1 � b _a2 sin a2 þ c _a3 sin a3 ¼ 0

a _a1 cos a1 þ b _a2 cos a2 � c _a3 cos a3 ¼ 0
ð1:23Þ

or rather, in matrix form:

_a2
_a3

� �
¼

@a2
@a1
@a3
@a1

� �
_a1 ¼ �b sin a2 c sin a3

b cos a2 �c cos a3

� ��1
a sin a1
�a cos a1

� �
_a1 ¼ Jða1Þ½ � _a1 ð1:24Þ

having indicated the Jacobian matrix with ½Jða1Þ�:

Jða1Þ½ � ¼ J2ða1Þ
J3ða1Þ

� �
¼ �b sin a2 c sin a3

b cos a2 �c cos a3

� ��1
a sin a1
�a cos a1

� �
ð1:25Þ

After expressing the relationship between the dependent variables q
d
and the

independent variables q
l
(1.19), (1.24), it is now possible to introduce this rela-

tionship into the various forms of energy in order to obtain the equations of motion
using Lagrange’s equation (1.14).

Conversely, if these equations are obtained using the cardinal equations of
dynamics [1, 8, 9], i.e. by directly introducing the inertia forces, it is necessary to
define the accelerations relative to the dependent variables in terms of the inde-
pendent variables deriving from (1.23):

�a a
::
1 sin a1 � a _a21 cos a1 � b a

::
2 sin a2 � b _a22 cos a2 þ c a

::
3 sin a3 þ c _a23 cos a3 ¼ 0

a a
::
1 cos a1 � a _a21 sin a1 þ b a

::
2 cos a2 � b _a22 sin a2 � c a

::
3 cos a3 þ c _a23 sin a3 ¼ 0

ð1:26Þ

i.e. in matrix form, keeping account of (1.25):

�b sin a2 c sin a3
b cos a2 �c cos a3

� �
€a2
€a3

� �
¼ a sin a1

�a cos a1

� �
€a1 þ

a cos a1
a sin a1

� �
_a21 þ

b cos a2
b sin a2

� �
_a22 �

c cos a3
c sin a3

� �
_a23

¼ a sin a1
�a cos a1

� �
€a1þ

a cos a1
a sin a1

� �
þ b cos a2

b sin a2

� �
J22ða1Þ �

c cos a3
c sin a3

� �
J23ða1Þ

� �
_a21

ð1:27Þ

which can be rewritten as, see Eq. (1.25):

€a2
€a3

� �
¼

@2a2
@2a1
@2a3
@2a1

� �
_a21 þ

@a2
@a1
@a3
@a1

� �
€a1 ¼ ½Hða1Þ� _a21 þ½Jða1Þ� €a1 ð1:28Þ

1.2 Cartesian Coordinates, Degrees of Freedom, Independent Coordinates 9
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having indicated the Hessian matrix by means of ½Hða1Þ�:

H a1ð Þ½ � ¼ �b sin a2 c sin a3
b cos a2 �c cos a3

� ��1 a cos a1
�a sin a1

� �
þ b cos a2

b sin a2

� �
J22ða1Þ

�
þ �c cos a3

�c sin a3

� �
J23ða1Þ

�
_a21

ð1:29Þ

Equations (1.1), (1.24) and (1.28) represent the relationship between the physical
variables, i.e. rotations of members of the quadrilateral (Fig. 1.3) and the only
independent variable assumed a1.

Even the relationship between physical variables, components of the displace-
ment of the centers of mass of the single rod can be obtained by means of the same
procedure, where:

x1 ¼ a
2
cos a1

y1 ¼ a
2
sin a1

8><
>:

x2 ¼ a cos a1 þ b
2
cos a2

y2 ¼ a sin a1 þ b
2
sin a2

8>><
>>:

x3 ¼ a cos a1 þ b cos a2 þ c
2
cos a3

y3 ¼ a sin a1 þ b sin a2 � c
2
sin a3

8><
>:

ð1:30Þ

By deriving these relations with respect to time, it is possible to obtain the rela-
tionship between the physical variables and the only independent variable used to
describe the motion of the crank mechanism (Fig. 1.3) in terms of velocity:

_x1 ¼ � a
2
sin a1

� �
_a1 ¼ @x1

@a1

� 	
_a1

_y1 ¼ a
2
cos a1

� �
_a1 ¼ @y1

@a1

� 	
_a1

8>>><
>>>:

_x2 ¼ � _a1a sin a1 � _a2
b
2
sin a2 ¼ �a sin a1 � J2ða1Þ b2 sin a2

� 	
_a1 ¼ @x2

@a1

� 	
_a1

_y2 ¼ _a1a cos a1 þ _a2
b
2
cos a2 ¼ a cos a1 þ J2ða1Þ b2 cos a2

� 	
_a1 ¼ @y2

@a1

� 	
_a1

8>>><
>>>:

_x3 ¼ � _a1a sin a1 � _a2b sin a2 � _a3
c
2
sin a3 ¼ �a sin a1 � J2ða1Þb sin a2 � J3ða1Þ c2 sin a3

� �
_a1 ¼ @x3

@a1

� 	
_a1

_y3 ¼ _a1a cos a1 þ _a2b cos a2 � _a3
c
2
cos a3 ¼ a cos a1 þ J2ða1Þb cos a2 � J3ða1Þ c2 cos a3

� �
_a1 ¼ @y3

@a1

� 	
_a1

8>>><
>>>:

ð1:31Þ
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and accelerations:

€x1 ¼ � a
2
sin a1

� �
€a1 þ � a

2
cos a1

� �
_a21 ¼

@x1
@a1

� 	
€a1 þ @2x1

@a21

� 	
_a21

€y1 ¼ a
2
cos a1

� �
€a1 þ � a

2
sin a1

� �
_a21 ¼

@y1
@a1

� 	
€a1 þ @2y1

@a21

� 	
_a21

8>>><
>>>:

€x2 ¼ �a sin a1 � J2ða1Þ b2 sin a2
� 	

€a1 þ �a cos a1 � @J2ða1Þ
@a1

b
2
sin a2 � J22ða1Þ

b
2
cos a2

� 	
_a21

¼ @x2
@a1

� 	
€a1 þ @2x2

@a21

� 	
_a21

€y2 ¼ a cos a1 þ J2ða1Þ b2 cos a2
� 	

€a1 þ �a sin a1 þ @J2ða1Þ
@a1

b
2
cos a2 � J22ða1Þ

b
2
sin a2

� 	
_a21

¼ @y2
@a1

� 	
€a1 þ @2y2

@a21

� 	
_a21

8>>>>>>>>>>>>>><
>>>>>>>>>>>>>>:

€x3 ¼ � � � ¼ @x3
@a1

� 	
€a1 þ @2x3

@a21

� 	
_a21

€y3 ¼ � � � ¼ @y3
@a1

� 	
€a1 þ @2y3

@a21

� 	
_a21

8>>><
>>>:

ð1:32Þ

Having introduced the general concept that enables us to describe the motion of a
generic mechanical system, we will now go on to give a more accurate description
of the methodology that can be used to write the equations of motion of same.

1.3 Writing Equations of Motion

As is known, a useful, widely-used approach to write the equations of motion of a
generic mechanical system [1] is using Lagrange’s equations [1, 2, 8]. For this
purpose, let us consider a generic mechanical system composed by nc rigid bodies
and let us indicate the vector of the variables chosen to describe motion by q: as is
known the equations can thus be defined by the following relation:

d
dt

@Ec

@ _q

 !( )T

� @Ec

@q

( )T

þ @D
@ _q

( )T

þ @V
@q

( )T

¼ Q ð1:33Þ

where Ec, D and V respectively represent kinetic energy, the dissipation function
and the potential energy with which the system is equipped and finally Q is the
vector of nonconservative forces acting on same obtained from the relation:

1.2 Cartesian Coordinates, Degrees of Freedom, Independent Coordinates 11
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d�L ¼ QT d�q ð1:34Þ

where d�q is the virtual displacement of the same variables. According to the theory
outlined in this paragraph, the vector q can be represented by the independent
variables (minimal set method) or by the total number of variables (q

t
¼ nc � 6 or

q
t
¼ nc � 3, method of Lagrange multipliers): the only difference lies in the fact

that, with the first approach, the constraint reactions R do not appear in the equa-
tions of motions if, obviously, they do not perform any work. Following the second
method, in the virtual work of the external forces it is necessary to introduce the
work performed by these reactions, since, having freed the constraints, the same R
are external forces, performing work. In order to apply (1.33) it is thus necessary to
clearly express the various forms of energy and the virtual work of the external
forces (1.34) as a function of the variables q and of their derivatives.

1.3.1 Definition of the Various Forms of Energy
as a Function of the Physical Variables

In order to easily define the expressions of the energy forms, it is useful to refer to
physical variables, by choosing the most convenient ones describing the system.

The generic kth physical variable Yfk is always correlated to independent vari-
ables q according to relations (generally non-linear) of the type:

Yfk ¼ YfkðqÞ ðk ¼ 1; 2; . . .;mÞ ð1:35Þ

By introducing this relationship into the expressions of the various forms of energy
(1.33), by applying Lagrange’s equations it is possible to obtain the equations of
motion of the mechanical system analysed.

Let us remember that [1–3] the kinetic energy Ecj associated with a standard jth
rigid body constituting the entire system is given by:

Ecj ¼ 1
2
mj _x

2
j þ

1
2
mj _y

2
j þ

1
2
mj _z

2
j þ

1
2
Jxjx

2
xj þ

1
2
Jyjx

2
yj þ

1
2
Jzjx

2
zj ð1:36Þ

which can be expressed in matrix form as:

Ecj ¼ 1
2
_yT
mj

Mfj

 �

_y
mj

ð1:37Þ
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having used:

_y
mj

¼

_xj
_yj
_zj
xxj

xyj

xzj

8>>>>>><
>>>>>>:

9>>>>>>=
>>>>>>;

ð1:38Þ

to indicate the vector of the physical variables, which are convenient to define the
kinetic energy of the generic rigid body constituting a part of the mechanical system
and

Mfj

 � ¼

mj 0 0 0 0 0
0 mj 0 0 0 0
0 0 mj 0 0 0
0 0 0 Jxj 0 0
0 0 0 0 Jyj 0
0 0 0 0 0 Jzj

2
6666664

3
7777775 ð1:39Þ

to indicate the mass matrix, as a function of the same physical variables (1.38).
In vector _y

mj
, the first three terms keep account of the contribution to the

translation in terms of the components _xj; _yj and _zj of vector ~Vj (Fig. 1.4) which
defines the absolute velocity of the centre of gravity in the absolute reference
system, while the next three terms keep account of the contribution to rotation by

(a) (b)

Fig. 1.4 Definition of the velocity components V
!

j ed x!j for a generic rigid body
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expressing the absolute angular velocity vector ~xj of the body as a function of the
three components xxj;xyj and xzj, expressed in a Cartesian reference system
Gj � nj1 � nj2 � nj3
� 

. This reference system is connected to the body itself, with
origin Oj in its centre of gravity Gj and axes parallel to the principal axes of inertia
(in this way and in this case, the inertia tensor is diagonal [3, 4, 10].

For a generic vibrating system constituted by nc rigid bodies each with 6 d.o.f.,
the total kinetic energy Ec will be given by the sum of the kinetic energies asso-
ciated with the single bodies constituting the vibrating system itself:

Ec ¼
Xnc
j¼1

Ecj ð1:40Þ

Equation (1.40) can be expressed in matrix forma as:

Ec ¼ 1
2
_yT
m
Mf

 �

_y
m

ð1:41Þ

and having used:

_y
m
¼

_y
m1
_y
m2
. . .
_y
mj
. . .
_y
mnc

8>>>>>><
>>>>>>:

9>>>>>>=
>>>>>>;

ð1:42Þ

to indicate the vector of the physical variables relative to all the bodies composing
the mechanical system and:

Mf

 � ¼

Mf 1

 �

0½ � . . . 0½ � . . . 0½ �
0½ � Mf 2


 �
. . . 0½ � . . . 0½ �

. . . . . . . . . . . . . . . . . .
0½ � 0½ � . . . Mfj


 �
. . . 0½ �

. . . . . . . . . . . . . . . . . .
0½ � 0½ � . . . 0½ � . . . Mfnc


 �

2
6666664

3
7777775 ð1:43Þ

to indicate the relative mass matrix, still in physical coordinates.
The potential energy V associated with the elastic field due to the nk elastic

elements of interconnection and to the presence of nP weight forces assumes a
general expression of the type:

V ¼ 1
2

Xnk
j¼1

kjDl
2
j þ

Xnp
j¼1

pjhj ð1:44Þ

14 1 Nonlinear Systems with 1-n Degrees of Freedom
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in which kj represents the stiffness of the generic jth elastic element and pj the
weight force applied to the centre of gravity Gj of the generic jth body. In (1.44) the
physical coordinates Dlj and hj respectively represent (Fig. 1.5) the relative dis-
placement of the extremities of the generic spring, in the direction of the spring
itself and the elevation of the centre of gravity of the generic body which, on
account of being organized in matrix form:

Dlk ¼

Dl1
Dl2
. . .

Dlnk�1

Dlnk

8>>>><
>>>>:

9>>>>=
>>>>;
; hp ¼

h1
h2
. . .

hnp�1

hnp

8>>>><
>>>>:

9>>>>=
>>>>;

ð1:45Þ

allow us to rewrite the expression of the potential energy V (1.44), as a function of
the assumed physical variables, as:

V ¼ 1
2
DlTk ½KDl�Dlk þ pT hp ð1:46Þ

having organized the stiffness matrix in physical coordinates ½KDl� and the vector of
the weight forces p as follows:

½KDl� ¼

k1 0 . . . 0 0
0 k2 . . . 0 0
. . . . . . . . . . . . . . .
0 0 . . . knk�1 0
0 0 . . . 0 knk

2
66664

3
77775; p ¼

p1
p2
. . .

pnp�1

pnp

8>>>><
>>>>:

9>>>>=
>>>>;

ð1:47Þ

The dissipation energy, due to the presence of ns viscous dampers of constant rj can
be defined as:

Fig. 1.5 Definition of the
terms connected to the
potential energy
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D ¼ 1
2

Xns
j¼1

rj _Dlj
2 ð1:48Þ

in which the physical coordinate _Dlj represents the relative velocity to which the
extremities of the generic jth damper are subjected, along the direction of the
damper itself (Fig. 1.5). By grouping these components in only one vector:

_Dlk ¼

_Dl1
_Dl2
. . .
_Dlns�1
_Dlns

8>>>><
>>>>:

9>>>>=
>>>>;

ð1:49Þ

it is possible to rewrite (1.48) in matrix form as:

D ¼ 1
2
_Dl

T
r ½RDl� _Dlr ð1:50Þ

having organized the damping matrix in physical coordinates ½RDl� as:

½RDl� ¼

r1 0 . . . 0 0
0 r2 . . . 0 0
. . . . . . . . . . . . . . .
0 0 . . . rns�1 0
0 0 . . . 0 rns

2
66664

3
77775 ð1:51Þ

Finally, let us consider the virtual work d�L performed by the nf forces F
!

j for a
virtual displacement d� y!fj: for sake of simplicity, we will use d�yfj to indicate the

displacement component in the direction of the generic force F
!

j so that:

d�L ¼
Xnf
j¼1

F
!

j � d� y!fj ¼
Xnf
j¼1

Fjd
�yfj ð1:52Þ

By assembling the forces and the virtual displacements in two vectors:

F ¼

F1

F2

. . .
Fnf�1

Fnf

8>>>><
>>>>:

9>>>>=
>>>>;
; y

f
¼

yf 1
yf 2
. . .
ynf�1

ynf

8>>>><
>>>>:

9>>>>=
>>>>;

ð1:53Þ
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it is possible to rewrite (1.52) in matrix form as:

d�L ¼ FT d� y
f

ð1:54Þ

The forces can either depend explicitly on time F ¼ FeðtÞ or, more generally
speaking, on the state of the system q and _q: this is applicable to the field forces
F ¼ Fcðq; _qÞ (dealt with in-depth in Chap. 5) or to the control forces (see bibli-
ography [11]), thus obtaining

F ¼ FeðtÞ þ Fcðq; _qÞ ð1:55Þ

All the forces that do not come from of the kinetic (inertia forces), potential and
dissipation energy, such as, for example, the non-linear elastic and dissipation ones,
are finally established and represented in the F vector. All the conservative forces
(both in terms of module and direction) (1.46) and (1.47) have been assembled in
vector p of (1.45).

1.3.2 Definition of the Various Forms of Energy
as a Function of the Independent Variables

Now that we have described all the various forms of energy, it is necessary to
express the physical variables _y

m
(1.41), hp and Dlk(1.46), _Dlr(1.50), d

�y
f
(1.54) as a

function of the independent variables q, respectively as:

y
m
¼ y

m
ðqÞ ) _y

m
¼ @ y

m

@q

" #
_q

Dlk ¼ DlkðqÞ
hp ¼ hpðqÞ

Dlr ¼ DlrðqÞ ) _Dlr ¼
@ Dlr
@q

" #
_q

y
f
¼ y

f
ðqÞ ) d� y

f
¼

@ y
f

@q

" #
d�q

ð1:56Þ

By keeping account of these relations, it is thus possible to express the various
forms of energy as a function of the independent coordinates assumed to describe
system motion

By keeping account of coordinate transformations (1.56), the kinetic energy of
the entire system (1.41) becomes:
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Ec ¼ 1
2
_yT
m
My

 �

_y
m
¼ 1

2
_qT

@ y
m

@q

" #T
Mf

 � @ y

m

@q

" #
_q ¼ 1

2
_qT M½ � _q ð1:57Þ

having used:

M½ � ¼ @ y
m

@q

" #T
Mf

 � @ y

m

@q

" #
¼ M q

� �h i
ð1:58Þ

to indicate the mass matrix expressed as a function of the independent coordinates.
By keeping account of Eq. (1.56), potential energy (1.146) can be expressed as:

V ¼ 1
2
DlTk ðqÞ KDl½ �DlkðqÞ þ pT hpðqÞ ð1:59Þ

By keeping account of Eq. (1.56), the dissipation function (1.50) can be rewritten in
the independent variables as:

D ¼ 1
2
_Dl

T
r Ry

 �

_Dlr ¼
1
2
_qT

@ Dlr
@q

" #T
Ry

 � @ Dlr

@q

" #
_q ¼ 1

2
_qT R½ � _q ð1:60Þ

having used:

R½ � ¼ @ Dlr
@q

" #T
Ry

 � @ Dlr

@q

" #
¼ R q

� �h i
ð1:61Þ

to indicate the damping matrix in independent coordinates.
Finally, by introducing the transformation of variables (1.56), the virtual work

done by external forces (1.54), becomes:

d�L ¼ FT d�y
f
¼ FT

@y
f

@q

" #
d�q ¼ QT d�q ð1:62Þ

having used:

Q ¼
@y

f

@q

" #T
F ¼ QðqÞ ð1:63Þ

to indicate the vector of the generalized forces of the system.
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1.3.3 Application of Lagrange’s Equations

Having expressed the various forms of energy as a function of the independent
variables, Eqs. (1.57) ÷ (1.64), it is now possible to write the equations of motion of
the system, by applying the Lagrange’s Equation (1.33).

The first inertia term present in Lagrange’s Equation (1.33) can be obtained by
keeping account of expressions (1.57) and relationships (1.56) that lead to:

@Ec

@ _q

( )T

¼ ½M� _q ) d
dt

@Ec

@ _q

 !( )T

¼ M½ �q:: þ ½ _M� _q ð1:64Þ

where

½ _M� ¼ d½M�
dt

ð1:65Þ

while the second term can be expressed, in matrix form as:

@Ec

@q

( )T

¼ Q
c
¼

. . .

. . .

1
2 _q

T @ M½ �
@qj

h i
_q

. . .

. . .

8>>>><
>>>>:

9>>>>=
>>>>;

ð1:66Þ

The Lagrangian component of conservative forces, i.e. the derivative with
respect to the independent variables of potential energy (1.59), can formally be
obtained as follows:

@V
@q

( )T

¼ @V
@Dlk

� �
@Dlk
@q

" #( )T

þ @V
@hp

( )
@hp

@q

" #( )T

¼ @Dlk
@q

" #T
½KDl�Dlk þ

@hp

@q

" #T
p ¼ Q

p
ðqÞ ð1:67Þ

and thus results as a nonlinear function of q, since V (1.59) is a non-quadratic
function of the independent variables.

The forcing terms associated with the dissipation function (1.60) in turn become:

@D
@ _q

( )T

¼ ½RðqÞ� _q ð1:68Þ

1.3 Writing Equations of Motion 19



www.manaraa.com

Since dissipation energy D (1.60) is generally a non-quadratic form, the Jacobians
@ Dlr
@q

h i
which appear in Eq. (1.56) are themselves, given the nonlinear relationship

between the physical variables and the independent variables, functions of q and,
therefore, as previously mentioned, the damping matrix:

R½ � ¼ @ Dlr
@q

" #T
Ry

 � @ Dlr

@q

" #
¼ R q

� �h i
ð1:69Þ

is also generally a function of q.
Application of the Lagrange’s equations thus leads to the definition of the

Lagrangian component of the active external non-conservative forces by keeping
account of Eq. (1.55):

Q ¼
@ y

f

@q

" #T
Fðq; _q; tÞ ¼ Qðq; _q; tÞ ð1:70Þ

which will be a function of time t due to the presence of the forces which are
explicit functions of both time and the free coordinates, due to their presence in

Fðq; _q; tÞ and in the Jacobian
@ y

f

@q

h i
. This Jacobian is constant only in the case of a

linear relationship between y
f
and q.

By keeping account of Eqs. (1.64) ÷ (1.70), the equations of motion of the
system can thus generally be expressed by a set of second order, nonlinear, dif-
ferential equations which can be expressed as a function of the independent
coordinates q:

½MðqÞ�q:: ¼ �½ _Mðq; _qÞ� _qþ Q
c
ðq; _qÞ � Q

p
ðqÞ � ½RðqÞ� _qþ Qðq; _q; tÞ ð1:71Þ

where, depending on the position assumed by same, the system’s mass matrix is
expressed by ½MðqÞ�, the terms �½ _Mðq; _qÞ� _qþ Q

c
ðq; _qÞ contain the gyroscopic

effects and the Coriolis components, ½RðqÞ� _q represent the contribution of the dis-
sipation elements and Q

p
ðqÞ contains the elastic terms.

1.3.4 Lagrange Multiplier Method

As previously mentioned, an alternative approach is that of the Lagrange multi-
pliers. This consists in considering all the q

t
as independent variables and in freeing

the constraints by also introducing the work of the nv constraining reactions R into
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the equations. By using this approach, the virtual work of the forces also includes
the constraining reactions, external and internal to system R:

d�L ¼ FT d�yf þ RT d� y
R
¼ FT

@ y
f

@ q
t

" #
þ RT

@ y
R

@ q
t

" #( )
d� q

t
¼ QT

t
d� q

t
ð1:72Þ

and vector Q
t
of the generalized forces can be expressed using this approach as:

Q
t
¼ Q

tF
þQ

tR
¼

@ y
f

@ q
t

" #T
F þ @ y

R

@ q
t

" #T
R ¼ ½CtF �TF þ ½CtR�TR ð1:73Þ

where ½CtR� is the Jacobian matrix associated with the constraints, (1.6):

½CtR� ¼
@ y

R

@ q
t

" #
ð1:74Þ

By using the Lagrange multiplier method, we thus consider both the equations of
motion and the constraint Equation (1.11), which, by keeping account of (1.72) and
(1.73) generally become:

½MtðqtÞ�q
::

t ¼ �½ _Mtðqt; _qtÞ� _qt þ Q
tc
ðq

t
; _q

t
Þ � Q

tp
ðq

t
Þ � ½RtðqtÞ� _qt þ Q

tF
þ ½CtR�TR

f
v
ðq

t
Þ ¼ 0

(

ð1:75Þ

By using this approach, the dynamics of the multi-body systems is therefore
described by a hybrid system of differential and algebraic Equation (1.74) coupled
with each other (called in literature differential algebraic equations, see [6, 9, 7, 12,
13]. In order to transform the system of differential algebraic equations into a
system of ordinary differential equations, it is customary to suitably manipulate the
algebraic equations relative to the constraint conditions [2], in order to give them a
better formulation. For this purpose, the constraint equations9 are derived with
respect to time:

f
v
ðq

t
Þ ¼ 0 ) @f

v

@q
t

" #
_q
t
¼ ½CtR� _qt ¼ 0 ) ½CtR�q

::

t þ
@ ½CtR� _qt
n o

@q
t

_q
t
¼ 0 ð1:76Þ

thus obtaining:

9It is easy to demonstrate [1, 2] that the Jacobian ½CtR� di (1.74), associated with the constraint
equations, is the same Jacobian that appears in the Lagrangian component of the constraining
reactions (1.76).
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½MtðqtÞ�q
::

t ¼ �½ _Mtðqt; _qtÞ� _qt þ Q
tc
ðq

t
; _q

t
Þ � Q

tp
ðq

t
Þ � ½RtðqtÞ� _qt þ Q

tF
þ ½CtR�TR

CtR½ �q:: t ¼ � @ ½CtR� _qt
� �

@q
t

_q
t

8<
:

ð1:77Þ

The same equations written in the following compact form:

MtðqtÞ
h i

� CtRðqtÞ
h iT

CtRðqtÞ
h i

½0�

2
4

3
5 _q

t
R

� �
¼ Q

tt
ðt; q

t
; _q

t
Þ

Q
tv
ðq

t
; _q

t
Þ

� �
ð1:78Þ

Having indicated the above by

Q
tt
ðt; q

t
; _q

t
Þ ¼ �½ _Mtðqt; _qtÞ� _qt þQ

tc
ðq

t
; _q

t
Þ � Q

tp
ðq

t
Þ � ½RtðqtÞ� _qt þQ

tF

Q
tv
ðq

t
; _q

t
Þ ¼ � @ ½CtR� _qt

� �
@ q

t

� �
_q
t

ð1:79Þ

Minimum Set of Variables Method
As previously mentioned, in (1.70) QðtÞ is the vector of the generalized external
forces applied to the system. By adopting the minimum set of variables method, this
term is defined by all the forces external to system F (in this case, the constraining
reactions R do not appear owing to the fact that these, by keeping account of the
external forces of the constraint conditions do not by definition, perform any work):

d�L ¼ FT d� y
f
¼ FT

@ y
f

@ q
l

" #
d� q

l
¼ QT

lF
d� q

l
ð1:80Þ

from which:

Q
lF
¼

@ y
f

@ q
l

" #T
F ¼ ½ClF �TF ð1:81Þ

and the final solving system consists of a set of nl (equal to degrees of freedom of
the system) nonlinear, second order differential equations, of the type:

½MlðqlÞ�q
::

l ¼ �½ _Mlðql; _qlÞ� _ql þ Q
lc
ðq

l
; _q

l
Þ � Q

lp
ðq

l
Þ � ½RlðqlÞ� _ql þ Q

lF
ð1:82Þ
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1.3.5 Method of Introducing Real Constraints Using Force
Fields

Both minimum set of variables (Sect. 1.3.5) and Lagrange multiplier (Sect 1.3.4)
methods presuppose the presence of ideal non-deformable constraints that do not
dissipate energy. In reality, the contact actions exercised by the constraints are, in a
more realistic schematization of the problem, attributable to field forces, functions
of the independent coordinates themselves (see Chap. 5).

To simplify matters, in the text that follows we will first introduce and then
consider the ideal constraint condition. Then, at a later stage, we will keep account
of the real field forces: by using this approach we will eliminate the constraints and
replace them with a more accurate schematization, by means of field forces.

By using this approach:

• ideal constraints no longer exist;
• all the 6*N (3*N for in-plane motion) physical coordinates relative to all the N

bodies are considered as independent variables;
• the internal and external actions Rtc exchanged between the bodies are defined

as force fields, i.e. functions of the independent variables themselves:

Rtc ¼ Rtcðqt; _qtÞ ð1:83Þ

By using this approach, the equations of motion (1.71) become:

½MtðqtÞ�q
::

t ¼ �½ _Mtðqt; _qtÞ� _qt þ Q
tc
ðq

t
; _q

t
Þ � Q

tp
ðq

t
Þ � ½RtðqtÞ� _qt þ Q

tF

þ ½CtR�TRtcðqt; _qtÞ ð1:84Þ

i.e. nt ¼ 6 · nc nonlinear differential equations in the nt unknown q
t
.

Examples of this approach will be described in Chaps. 5 and 6 to simulate the
behaviour of the force fields applied to the mechanical system analysed, as, for
example, in the case of hydrodynamic lubricated bearings (see Chap. 6) or during
contact between the wheel and the rail or the tyre and the road (see Chap. 5).

1.4 Nonlinear Systems with One Degree of Freedom

We will now apply the approaches previously described to a system with one
degree of freedom.

As previously mentioned, the assumption of considering a system to have one
degree of freedom obviously depends on the schematization adopted and, in general,
on the assumption that the constraints of the mechanical system analysed are ideal.
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1.4.1 Writing Equations of Motion “in the Large”

In the event of using the minimum set of variables method, the mechanical system
analysed can have nl ¼ nt � nv ¼ 1, in other words it can only have one degree of
freedom (1 d.o.f.): in this case, the motion of the system can be described by only
one independent variable:

q ¼ q
l
¼ q ð1:85Þ

and the various forms of energy, see Eqs. (1.57) ÷ (1.63), thus become:

Ec ¼ 1
2
_yT
m
Mf

 �

_y
m
¼ 1

2
_qT

@ y
m

@q

� �T
Mf

 � @ y

m

@q

� �
_q ¼ 1

2
mðqÞ _q2

V ¼ 1
2
DlTk ðqÞ KDl½ �DlkðqÞ þ pT hpðqÞ ¼ VðqÞ ¼ 1

2

Xnk
j¼1

KjDl
2
j ðqÞ þ

Xnp
j¼1

pjhjðqÞ

D ¼ 1
2
_Dl

T
r RDl½ � _Dlr ¼

1
2
_qT

@ Dlr
@q

� �T
RDl½ � @ Dlr

@q

� �
_q ¼ 1

2
rðqÞ _q2

d�L ¼ FT d�y
f
¼ FT

@ y
f

@q

" #
d�q ¼

Xnf
j¼1

Fj
@yfj
@q

� 	
d�q ¼ Q Td�q ð1:86Þ

By applying Lagrange’s equations (in scalar form, since in this case q is not a vector
now)

d
dt

@Ec

@ _q

� 	
� @Ec

@q
þ @D

@ _q
þ @V

@q
¼ Q; ð1:87Þ

we obtain:

@Ec

@ _q

� 	
¼ mðqÞ _q

d
dt

@Ec

@ _q

� 	
¼ mðqÞ q:: þ @mðqÞ

@q
_q2

@Ec

@q
¼ 1

2
@mðqÞ
@q

_q2

@V
@q

¼
Xnk
j¼1

KjDlj
@Dlj
@q

� 	
þ
Xnp
j¼1

pj
@hj
@q

� 	
@D
@ _q

¼ rðqÞ _q

Q ¼
Xnf
j¼1

@yfi
@q

� 	
Fj

ð1:88Þ
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and therefore:

mðqÞ q:: þ 1
2
@mðqÞ
@q

_q2 þ rðqÞ _qþ
Xnk
j¼1

KjDlj
@Dlj
@q

� 	
þ
Xnp
j¼1

pj
@hj
@q

� 	
¼
Xnf
j¼1

@yfj
@q

� 	
Fj ð1:89Þ

where

mðqÞ ¼ @ y
m

@q

� �T

Mf

 � @ y

m

@q

� �
¼ @ y

m

@q

� �T

diag½mi�
@ y

m

@q

� �

rðqÞ ¼ @Dlr
@q

� �T

Rf

 � @Dlr

@q

� �
¼ @Dlr

@q

� �T

diag½ri� @Dlr
@q

� � ð1:90Þ

The problem involved in writing this equation basically lies in solving the kine-
matic problem, i.e. in the definition of the relationships between the physical
variables and independent variables and, consequently, in the evaluation of the

terms @y
m

@q

h i
; @Dlk

@q

h i
; @Dlr

@q

h i
;

@y
f

@q

h i
.

As we proceed, we will try to outline the methodologies used for this purpose,
methodologies which, for in-plane kinematical problem, use the definition of
vectors through complex numbers (see [8] and Sect. 1.2). For 3D problems, a real
vectorial algorithm, developed by means of a matrix-type algorithm (see [1, 2, 5]
and Sects. 1.6 and 1.7) is referred to.

The equation of motion obtained in this way (1.89) is neither linear nor generally
can it be integrated analytically. In the event of our being interested in studying the
problem of large oscillations, it is essential to keep account of the intrinsic non-
linearity of the system by directly integrating expressions (1.89): in order to define
the solution, it is possible to resort either to numerical integration (see Chap. 4,
Sect. 4.8 and bibliography [1, 14, 15]) or to approximate analytical methods that are
generally valid for specific classes of equations of motion.

Let us now apply the methodology described in a general form for 1 d.o.f.
systems to a standard slider-crank mechanism shown in Fig. 1.6, subjected to in-
plane motion (in the horizontal plane) consisting of a connecting rod, its relative
slider and a crank. We assume ideal constraints in the crank, crank-connecting rod
and connecting rod-piston journal bearings and in the prismatic piston-cylinder
coupling. A more suitable schematization should keep account of the relative

Fig. 1.6 Standard centered crank gear
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motion of the journals in their housings, the ideal constraints should be released and
the forces exerted by the lubricant films should be introduced instead, as functions
of the variables governing the relative motion.

Let us indicate the mass of the piston by m and the mass moment of inertia of the
crank with respect to its rotation axis by Jo (this will result from a reduced mass
model of the connecting rod [8], so that this component is devoid of mass: part of it is
added to the piston, which becomes of mass m, and the remaining part to the crank,
whose resulting mass moment of inertia becomes Jo). The piston (see Fig. 1.6) is
connected to the ground by means of a spring of stiffness KX and a viscous damper of
constant RX : actually, these terms can represent the damping and equivalent line-
arized elastic effects of the fluid contained in the cylinder.10 Furthermore, we also
assume that a force, which is a function of time FðtÞ (which allows us, for example,
to represent the part of the forces transmitted by the fluid, an explicit function of
time) acts on the piston while the crank, connected to the ground by means of a
spring of flexural stiffness KT , is subject to a constant torque Mo.

The overall number of degrees of freedom of the system (in plane motion) is
equal to nt ¼ 3� nc ¼ 9, the number of constraints is nv ¼ 8 (i.e.: 2 for the hinge
on the ground, 2 for the relative displacements for the other two hinges and finally 2
for the piston, for which vertical displacement and rotation are inhibited): the
system thus only has one degree of freedom nl ¼ 1.

To consider this system as having only one degree of freedom is, as previously
mentioned, a simplification, associated with the hypothesis of ideal constraints, i.e. by
assuming that the relative displacements in the revolute and prismatic joints, allowed
by the lubricant film, are negligible, neglecting the internal frictions and finally
considering as rigid all the bodies of the system itself: thanks to this hypothesis, in
order to define the motion of the system in question it is not necessary to evaluate the
constraint reactions on the ground or the internal reactions in the mechanism.

A general methodology used to deal with this problem is based on the consid-
eration that the entire system is composed of several rigid bodies, interconnected by
ideal constraints and (since this is an in- plane problem) on the representation of the
displacement vectors through complex numbers in exponential form (Fig. 1.7, [8]).

The horizontal displacement x of piston, measured from the attachment point of
spring Kx to the ground, and rotation h of the crank from the horizontal axis
y (Fig. 1.7) are chosen as physical coordinates. The rotation of the crank is chosen
as a free coordinate q (i.e. as an independent coordinate):

q
l
¼ q ¼ h ð1:91Þ

For reasons of simplicity, let us assume that both springs are unloaded in corre-
spondence of the angular position hs of the crank, to which a piston position x ¼ ls
also corresponds:

10A detailed description of the fluid-dynamic phenomena (fluid-structure interaction) will be given
in Chap. 5.
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x ¼ ls
h ¼ hs ) q ¼ qs

ð1:92Þ

We will use Lagrange’s equations to write the equations of motion of the system:
this choice is convenient, first and foremost, to write the various forms of energy
and virtual work (1.54) as a function of the physical coordinates. As regards the
system in question, the various forms of energy as a function of the physical
variables chosen are:

Ec ¼ 1
2
m _x2 þ 1

2
Jo _h

2

V ¼ 1
2
KTðh� hsÞ2 þ 1

2
KXðx� lsÞ2 �Moh

D ¼ 1
2
RX _x2

d�L ¼ FðtÞd�x

ð1:93Þ

The next step is to impose the relationship between the physical coordinates y
f
and

the independent coordinate assumed:

y
f
¼ y

f
ðqÞ ð1:94Þ

In order to do this, it is possible to write the equations of constraint imposed by the
kinematics of the system (see Fig. 1.7), which, in vector form, becomes:

ðB� OÞ ¼ ðB� AÞ þ ðA� OÞ ð1:95Þ

This constraint (equation of closure of the analysed mechanism [8]) can be
described in terms of complex numbers by means of the relation:

y ¼ reih þ leib ð1:96Þ

Fig. 1.7 A general approach using complex numbers
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i.e. in scalar form, by projecting the vectors on axes y and z:

y ¼ r cos hþ l cos b

0 ¼ r sin hþ l sin b
ð1:97Þ

Having indicated with D the distance (C-O) between the journal axis of the crank
and the attachment point of the spring to the ground, it is possible to obtain the
dependence of coordinate x from independent variable h by means of the relation
(see Fig. 1.7):

x ¼ ðB� CÞ ¼ D� reih � leib ð1:98Þ

Which, in scalar form, can be rewritten as:

x ¼ D� r cos h� l cos b

0 ¼ �r sin h� l sin b

(
ð1:99Þ

By substituting the second relation in the first, we obtain the relationship between
the physical variable x and the coordinate h, assumed as independent:

sin b ¼ � r
l
sin h

x ¼ D� r cos h� l
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� sin2 b

q
� ¼ D� r cos h� l

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� r

l

� �2
sin2 h

r
8>><
>>: ð1:100Þ

In order to simplify Eq. (1.100), by considering the connecting rod as infinitely long
[8, 16, 17] and keeping account of (1.91), relation (1.100) becomes:

x ¼ D� l� r cos h ¼ D� l� r cos q

_x ¼ r sin q _q
ð1:101Þ

By now introducing Eq. (1.101) into the expressions of the various forms of energy
(1.93), it is possible to express them as a function of the only independent variable q:

Ec ¼ 1
2
ðJo þ mr2 sin2 qÞ _q2 ¼ 1

2
mðqÞ _q2

V ¼ 1
2
KTðq� qsÞ2 þ 1

2
KXr

2ðcos qs � cos qÞ2 �Moq ¼ VðqÞ

D ¼ 1
2
RX _x2 ¼ 1

2
ðRXr

2 sin2 qÞ _q2 ¼ 1
2
r � ðqÞ _q2

d � L ¼ FðtÞd�x ¼ FðtÞ @x
@q

� 	
d�q ¼ FðtÞr sin qð Þd�q ¼ Qðt; qÞd�q

ð1:102Þ
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where:

m � ðqÞ ¼ Jo þ mr2 sin2 q ð1:103Þ

is used to indicate the generalized mass of the system:

r � ðqÞ ¼ RXr
2 sin2 q ð1:104Þ

the generalized relative damping and

Qðt; qÞ ¼ FðtÞr sin q ð1:105Þ

the Lagrangian component of the external force.
Being x a nonlinear function of q (1.101), both the kinetic energy E and the

dissipation function D are a non-quadratic form, resulting in the generalized mass
m � ðqÞ and generalized viscous damping r � ðqÞ. It is at this point that the
Lagrange’s equations can be applied, deriving the various forms of energy (1.102)
with respect to the independent variable assumed.

By deriving the kinetic energy we obtain:

@Ec

@ _q
¼ m*ðqÞ _q ¼ Jo þ m r2 sin2 q

� 
_q

d
dt

@Ec

@ _q

� 	
¼ m � ðqÞ q:: þ @mðqÞ

@q

� 	
_q2 ¼ Jo þ m r2 sin2 q

� 
q
:: þ 2m r2 sin q cos q _q2

@Ec

@q

� 	
¼ 1

2
@m � ðqÞ

@q

� 	
_q2 ¼ m r2 sin q cos q _q2

d
dt

@Ec

@ _q

� 	
� @Ec

@q

� 	
¼ Jo þ m r2 sin2 q
� 

q
:: þm r2 sin q cos q _q2

ð1:106Þ

in which the presence of non-linear terms in q and _q2 can be noted.
Since this is not a quadratic form in q, the derivative of potential energy provides

a nonlinear term:

@V
@q

¼ KTq� KTqs þ Kxr
2 cos qs sin q� Kxr

2 cos q sin q�Mo ð1:107Þ

and, finally, the derivative of dissipation function D becomes:

@D
@ _q

¼ Rxr2 sin2 q
� 

_q ð1:108Þ
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The equation of motion in the large of the system analysed (Fig. 1.6) is thus a
differential equation with total derivatives:

Jo þ m r2 sin2 q
� 

q
:: þm r2 sin q cos q _q2 þ Rx r

2 sin2 q
� 

_q

þ KTq� KTqs þ Kx r
2 cos qs sin q � Kxr

2 cos q sin q ¼ Mo þ FðtÞ r sin q

ð1:109Þ

As can be seen, this equation is strongly nonlinear: in the event of our wanting to
integrate (1.109), it is necessary to adopt the step-by-step numerical integration
procedures described in Chap. 4, Sect. 4.7 (see also [14, 15, 18]).

1.4.2 Writing Linearized Equations

Conversely, limiting our study to small oscillation about a static equilibrium
position, it is possible to linearize the same equations around the equilibrium
position itself (rest or steady-state) in order to obtain a linear equation with constant
coefficients. As opposed to the numeric integration of nonlinear equations, the
linearization of the equations of motion permits the use of standard algorithms for
the analysis of linear systems (this system will be analysed in detail in Chap. 2). In
this case it is necessary to find the position, if this exists, of either static equilibrium
(rest) or steady state motion, by solving generally a nonlinear equation and sub-
sequently linearizing the equation of motion itself.

To simplify the issues and due to educational nature of this text, as we proceed
we will make reference to:

• Systems with one degree of freedom, with reference, in particular, to the min-
imum set of variables method;

• Excitation forces applied to the system depending both on time alone and on the
state of the system:

F ¼ FðtÞ þ Fcðq; _qÞ ð1:110Þ

• the linearization of the same equations about a static equilibrium position (rest).

The static equilibrium position qo is defined by solving the nonlinear equation in
the variable q representing the static equilibrium condition, obtained as a particular
case of the Lagrange’s equation by keeping account of only the constant terms of
the external forces:

@V
@q

� 	
o
¼ 0 ð1:111Þ
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In this case in question, this equation becomes:

KTqo � KTqs þ Kxr
2 cos qs sin qo � Kxr

2 cos qo sin qo �Mo ¼ 0 ð1:112Þ

The solution, i.e. the static position qo, if this exists, is generally obtained using
suitable numerical methods of the Newton-Raphson type [18].

In the neighbourhood of this position, the equation of motion is linearized by
means of suitable series developments of the various functions that appear in the
Lagrange’s equation by introducing, as an independent variable q, which describes
the perturbed motion of the system in the neighbourhood of the same static equi-
librium position:

q ¼ qo þ �q ) �q ¼ q� qoþ ) _q ¼ _q ¼) q
:: ¼ q

:: ð1:113Þ

To obtain a linear equation of motion of the vibrating system, kinetic energy Ec,
dissipation function D and potential energy V (1.102) must assume a quadratic form
in the independent variables.

Let us first consider kinetic energy Ec [Eqs. (1.57), (1.86)]: in the case in
question, i.e. a system with only one degree of freedom, in order to obtain a
quadratic form the generalized mass is obtained by a series expansion in the
neighbourhood of the static equilibrium position q ¼ qo, only keeping account of
the constant term, calculated in correspondence to position qo, thus obtaining:

½M qð Þ� ¼ @ y
m

@q

� �T
½My�

@ y
m

@q

� �
� @ y

m

@q

� �T
o
½My�

@ y
m

@q

� �
o
¼ ½m qoð Þ� ¼ mo ð1:114Þ

In the case in question (Fig. 1.6), by substituting (1.113) in the expression of kinetic
energy (1.102) we obtain the expression, in quadratic form, of Ec as a function of
the independent variable _q:

EcL ¼ 1
2
_q
T
Jo þ mr2 sin2 qo
� 

_q ¼ 1
2
_q
T
mo _q ¼ 1

2
mo _q

2 ð1:115Þ

By now applying the Lagrange’s equations to expression EcL, (1.115), expressed in
quadratic form, the linearized inertia terms in the neighbourhood of the static
equilibrium position are obtained:

d
dt

@EcL

@ _q

� 	� �
� @EcL

@�q

� �
¼ moq

:: ð1:116Þ

As with the kinetic energy, dissipation function D (1.60), (1.86) must also be
expressed in quadratic form, making reference to Taylor series expansion of the
damping matrix ½R� up to the constant term:
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½R qð Þ� ¼ @ Dlr
@q

� �T
½Ry� @ Dlr

@q

� �
� @ Dlr

@q

� �T
o
½Ry� @ Dlr

@q

� �
o
¼ ½R qoð Þ� ¼ ro ð1:117Þ

In the case of the slider-crank mechanism analysed (1.102), it is possible to make
the dissipation function quadratic:

DL ¼ 1
2
_q
T
Rxr

2 sin2 qo
� 

_q ¼ 1
2
_q
T
ro _q ¼ 1

2
ro _q

2 ð1:118Þ

from which:

@DL

@ _q

� �
¼ ro _q ð1:119Þ

In order to linearize the equations of motion of the general nonlinear vibrating
system, potential energy V must also be made quadratic: for this purpose, we
proceed with the Taylor series expansion of function V ¼ VðqÞ (1.59) and (1.86)
about the static equilibrium position, defined by the relation q ¼ qo, up to the
quadratic term:

VL ¼ VðqoÞ þ @V
@q

� �
o
qþ 1

2
@2V
@q2

� �
o
q2 ¼ VðqoÞ þ @V

@q

� �
o
qþ 1

2
ko q

2 ð1:120Þ

after using, as mentioned in (1.113), variable q to define the perturbed motion in the
neighbourhood of the static equilibrium position and having indicated generalized
stiffness with:

ko ¼ @2V
@q2

� �
o

ð1:121Þ

By remembering the equation that permitted us to define the static equilibrium

position @V
@q

� �
o
¼ 0 (1.111) and by recalling that in Lagrange’s equations it is

necessary to derive the potential energy with respect to the independent variable q
(to whose derivative the constant terms and, in particular, term V qoð Þ, do not give
any contribution), the expression of the linearized potential energy itself can always
be rewritten as:

VL ¼ 1
2
ko q

2 ð1:122Þ

from which:

@VL

@q
¼ koq ð1:123Þ
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By analysing a generic system with one degree of freedom, the expression of
potential energy V (1.86) in scalar form is:

V ¼ 1
2

Xnk
j¼1

kjDl
2
j þ

Xnp
j¼1

pjhj ð1:124Þ

we obtain:

@V
@q

¼ 1
2

Xnk
j¼1

@ kjDl2j
� �
@Dlj

@Dlj
@q

þ
Xnp
j¼1

pj
@hj
@q

¼
Xnk
j¼1

kjDlj
@Dlj
@q

� 	
þ
Xnp
j¼1

pj
@hj
@q

� 	
ð1:125Þ

and similarly the second derivative of potential energy can be expressed as:

@2V
@q2

¼
Xnk
j¼1

kjDlj
@2Dlj
@q2

� 	
þ
Xnk
j¼1

kj
@Dlj
@q

� 	2

þ
Xnp
j¼1

pj
@2hj
@q2

� 	
ð1:126Þ

The stiffness of the linearized system (1.121), (1.126), thus becomes:

@2V
@q2

����
0
¼
Xnk
j¼1

kjDljo
@2Dlj
@q2

� 	
o
þ
Xnk
j¼1

kj
@Dlj
@q

� 	2

o
þ
Xnp
j¼1

pj
@2hj
@q2

� 	
o

¼ k0o þ k0o þ k000o ¼ ko

ð1:127Þ

In particular, in (1.127), the single terms assume the following meaning. The term:

k0o ¼
Xnk
j¼1

kjDljo
@2Dlj
@q2

� 	
o
¼
Xnk
j¼1

Precjo
@2Dlj
@q2

� 	
o

ð1:128Þ

represents the elastic restoring force due to the static pre-load Precjo ¼ kjDljo of the
springs, a non-null term if the second derivative of elongation is different from zero,
e.g. if the link between the elongation of the single elastic elements Dlj depends in
linear form on the independent variable q. The term:

k00o ¼
Xnk
j¼1

kj
@Dlj
@q

� 	2

o
ð1:129Þ

keeps account of the stiffness of the generic jth spring, according to the free
coordinate q of the system: this term is what is usually identified as “system
stiffness”, normally different from zero. Finally, in (1.127):

k000o ¼
Xnp
j¼1

pj
@2hj
@q2

� 	
o

ð1:130Þ
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is the term due to the constant loads pj which are non- null if the second derivative
@2hj
@q2

� �
o
is different from zero: this term is conceptually similar to that of (1.128),

even though, in this case, it is a question of a constant force that has been spe-
cifically applied and which does not derive from the preload of a spring.

The constant forces (whether external or due to preloaded springs) can thus give
a non-null contribution to the system stiffness in the equations that define the
perturbed motion of same: this occurs if the displacement of their application point
is a nonlinear function of the independent variable q, with a non-null second
derivative in correspondence to the static solution qo.

Every time that constant forces (such as e.g. weight) or preloads, due to springs,
act on the system, these will not appear in the linearized equation of motion around
the static equilibrium position if the relationship between the physical variables
(components of the displacements of the application points of the forces or elon-
gations of the springs) are linear functions of the free coordinate q. In fact, in the
case of a linear relation, the second derivative of functions v and hjðqÞ is null and
thus the terms (1.128) and (1.130) are null. Viceversa, in the case of a nonlinear
relationship, the constant forces (or the preloads of the springs, deriving from the

static solution), multiplied by terms @2Dlj
@q2

� �
o
o @2hj

@q2

� �
o
, calculated in correspondence

to the static equilibrium position, will generally appear in (1.127).
In the case of the standard slider-crank mechanism analysed (Fig. 1.6), the

various terms of (1.120), keeping account of (1.125) and (1.126), starting from
expression (1.102) and (1.107), become:

V qoð Þ ¼ 1
2
KTðqo � qsÞ2 þ 1

2
KXr

2ðcos qs � cos qoÞ2 �Moqo ¼ Vo

@V
@q

� 	
¼ KTq� KTqs þ Kxr

2 cos qs sin q� Kxr
2 cos q sin q�Mo

@V
@q

� 	
o
¼ KTqo � KTqs þ Kxr

2 cos qs sin qo � Kxr
2 cos qo sin qo �Mo ¼ 0

@2V
@q2

� �
¼ KT þ Kxr

2 cos qs cos qþ Kxr
2 sin2 q� Kxr

2 cos2 q

¼ KT þ Kxr
2 cos qs cos q� Kxr

2 cos 2q

@2V
@q2

� �
o
¼ KT þ Kxr

2 cos qs cos qo � Kxr
2 cos 2qo ¼ ko ð1:131Þ

In the case in question, the expression of potential energy that has been rendered
quadratic (1.120), thus becomes:

VL ¼ 1
2

@2V
@q2

� �
o
q2 ¼ 1

2
ko q

2 ¼ 1
2

KT þ Kxr
2 cos qs cos qo � Kxr

2 cos 2qo
� 

q2 ð1:132Þ
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By using Lagrange’s equation to derive the quadratic form of potential energy VL,
(1.132), we obtain:

@VL

@q

� 	
¼ KT þ Kxr

2 cos qs cos qo � Kxr
2 cos 2qo

� 
q ¼ koq ð1:133Þ

As a last step, we consider the virtual work d�L of the non-conservative forces:
these forces can be rewritten, always for a system with one degree of freedom, as:

FðtÞ þ Fcðq; _qÞ ¼ FðtÞ þ Fcðq; _qÞ ð1:134Þ

By expanding the Lagrangian component of these forces around the static equilib-
rium position (1.111) and by keeping account of expressions (1.134), this becomes:

Q ¼
@ y

f

@q

( )T

FðtÞ þ Fcðq; _qÞ
� �

�
@ y

f

@q

( )T

o

þ
@2 y

f

@q2

( )T

o

q

8<
:

9=
; FðtÞ þ @ Fc

@q

� �
o
qþ @ Fc

@ _q

� �
o

_q

� �
ð1:135Þ

i.e., by reorganizing the relation and eliminating the higher order terms:

Q �
@ y

f

@q

( )T

o

�FðtÞ þ
@2 y

f

@q2

( )T

o

FðtÞqþ
@ y

f

@q

( )T

o

@ Fc

@q

� �
o
qþ

@ y
f

@q

( )T

o

@ Fc

@ _q

� �
o
_q

¼ QðtÞ þ k0FqoðtÞqþ kFqoq þ rFqo _q ð1:136Þ

being:

QðtÞ ¼
@ y

f

@q

( )T

o

FðtÞ

k0FoðtÞ ¼
@2 y

f

@q2

( )T

o

FðtÞ

kFqo ¼
@ y

f

@q

( )T

o

@ Fc

@q

� �
o

rFqo ¼
@ y

f

@q

( )T

o

@ Fc

@ _q

� �
o

ð1:137Þ

By keeping account of (1.114), (1.119), (1.127) and (1.136), the equations of
motion of the system with 1 degree of freedom linearized in the neighbourhood of
the static equilibrium position thus become:
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moq
:: þ ro _qþ koq ¼ QðtÞ þ k0FoðtÞ q þ kFqoq þ rFqo _q

moq
:: þ ro � rFqo


 �
_qþ ko � k0FoðtÞ � kFqo


 �
q ¼ QðtÞ

ð1:138Þ

We notice that also keeping account of the second term of expansion (1.136) once
again a linear equation in q is obtained but with coefficients that are functions of
time k0FoðtÞ; this term gives rise to a variable stiffness in time ktot which makes the
system itself parametric:

moq
:: þ rtoto _qþ ktotðtÞ q ¼ QðtÞ ð1:139Þ

In the event of our wishing to obtain an equation with constant coefficients, it is not
necessary to consider the linear term of the series expansion for the forces that are
functions of time. In this case, the writing of the linearized equation with constant
coefficients is as follows:

moq
:: þ rtoto _qþ ktotoq ¼ QðtÞ ð1:140Þ

where:

ktoto ¼ ko � kFqo ð1:141Þ

As can be seen (1.141), in the equilibrium equations linearized in the neighbour-
hood of the static equilibrium position (rest), only the Lagrangian component of the
dynamic part (i.e. variable in time) of the non-conservative forces QðtÞ is present. It
has been obtained by multiplying the physical forces by the Jacobian of the
application points of the excitation forces, evaluated in the same static equilibrium
position: for this reason, this term proves to be a function of time only.

By returning to the slider-crank example (Fig. 1.6), the virtual work (1.102) is
defined by linearizing the equations of motions as:

d�L ¼ FðtÞ r sin qð Þd � q ffi FðtÞ r sin qo � FðtÞ r cos qoð Þ qð Þd � q
¼ FðtÞ � k0FoðtÞ q
� 

d � q ð1:142Þ

from which the Lagrangian component becomes:

QðtÞ ¼ FðtÞr sin qo � FðtÞr cos qoð Þq ¼ FðtÞ � k0FoðtÞq ð1:143Þ

By keeping account of (1.115), (1.118), (1.133) and (1.143), the linearized equation
of motion of the slider-crank in Fig. 1.6 (see 1.139), is the following:

Jo þ mr2 sin2 qo
� 

q
:: þ Rxr2 sin2 qo

� 
_qþ KT þ Kxr2 cos qs cos qo � Kxr2 cos 2qo

� 
q

¼ FðtÞ r sin qo � FðtÞ r cos qoð Þ q Jo þ mr2 sin2 qo
� 

q
:: þ Rxr2 sin2 qo

� 
_q

þ KT þ Kxr2 cos qs cos qo � Kxr2 cos 2qo þ FðtÞ r cos qoð Þ� 
q ¼ FðtÞ r sin qo ð1:144Þ
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which, by neglecting the parametric stiffness term, which is a function of time, is
reduced to:

Jo þ mr2 sin2 qo
� 

q
:: þ Rxr

2 sin2 qo
� 

_q

þ KT þ Kxr
2 cos qs cos qo � Kxr

2 cos 2qo
� 

q ¼ FðtÞ r sin qo
ð1:145Þ

that is:

mo q
:: þ ro _qþ koq ¼ QðtÞ ð1:146Þ

i.e. a differential equation in q with constant coefficients.

1.5 Nonlinear Systems with 2 Degrees of Freedom

As an example of a nonlinear system with 2 degrees of freedom, let us consider the
system in Fig. 1.8 consisting of a mass m (weight P = mg) with 2 degrees of
freedom, associated with the horizontal and vertical translation. Let us now define
the horizontal and vertical displacements x and y of the centre of gravity of the body
as independent variables, whereby the position of the unloaded vertical and hori-
zontal spring corresponds to x ¼ 0; y ¼ 0.

The equations of motion of the system can be obtained by using Lagrange’s
equations: the relative forms of energy of the system being examined are:

Ec ¼ 1
2
m _x2 þ 1

2
m _y2

V ¼ 1
2
KhDl

2
h þ

1
2
Kv

2
Dl2v þ

1
2
Kv

2
Dl2v þ Ph ¼ 1

2
KhDl

2
h þ

1
2
KvDl

2
v þ Ph

D ¼ 1
2
Rh

_Dl2h þ
1
2
Rv

2
_Dl2v þ

1
2
Rv

2
_Dl2v

d � L ¼ 0

ð1:147Þ

where Dlh and Dlv are respectively the elongations of the horizontal and vertical
spring.

As is customary, for reasons of convenience, these energy forms are expressed
as a function of the physical variables by means of which it is possible to define the
expressions themselves. These physical variables (elongation of the vertical Dlv and
lateral Dlh elastic elements and elevation of the centre of gravity of body h) are
functions of the independent variables x and y assumed to describe the motion of
the system by means of the following expressions (also see Fig. 1.9)11:

11Spring Kh is constrained to the ground by a sliding block meaning that its elongation coincides
with the value associated with coordinate x.
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Dlh ¼ x

Dlv ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ ls þ yð Þ2

q
� ls ¼ l� ls

h ¼ y

_Dlh ¼ _x

_Dlv ¼ @Dlv
@x

_xþ @Dlv
@y

_y

ð1:148Þ

in which the length of the vertical springs in undeformed configuration has been
indicated by ls and the corresponding Jacobians by @Dlv

@x and @Dlv
@y :

@Dlv
@x

¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ ls þ yð Þ2

q x ¼ x
l

@Dlv
@y

¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ ls þ yð Þ2

q ls þ yð Þ ¼ ls þ yð Þ
l

ð1:149Þ

Fig. 1.8 Vibrating system
with two d.o.f

Fig. 1.9 Elongation of the
vertical elastic element
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By keeping account of expressions (1.147) the various forms of energy (1.146)
become:

Ec ¼ 1
2
m _x2 þ 1

2
m _y2

V ¼ 1
2
Khx

2 þ 1
2
Kv

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ ls þ yð Þ2

q
� ls

� 	2

þPy

D ¼ 1
2
Rh _x

2 þ 1
2
Rv

@Dlv
@x

� 	
_xþ @Dlv

@y

� 	
_y

� 	2

d � L ¼ 0

ð1:150Þ

By keeping account of (1.150) and (1.149), by means of equation:

d
dt

@Ec

@ _qi

� 	
� @Ec

@qi
þ @D
@ _qi

þ @V
@qi

¼ Qi ði ¼ 1; 2Þ ð1:151Þ

where ðqi ¼ x; yÞ, it is possible to obtain the nonlinear equations of motion of the
system:

mx
::þRh _xþ Rv

@Dlv
@x

� 	2

_xþ Rv
@Dlv
@x

� 	
@Dlv
@y

� 	
_yþ Khxþ KvDlv

@Dlv
@x

¼ 0

my
::þRv

@Dlv
@x

� 	
@Dlv
@y

� 	
_xþ Rv

@Dlv
@y

� 	2

_yþ KvDlv
@Dlv
@y

¼ �P

8>>><
>>>:

ð1:152Þ

namely, by keeping account of (1.149):

mx
::þRh _xþ Rv

x
l

� �2
_xþ Rv

x ls þ yð Þ
l2

� 	
_yþ Khxþ Kv

l � ls
l

x ¼ 0

m y
::þRv

x ls þ yð Þ
l2

� 	
_xþ Rv

ls þ yð Þ
l

� 	2

_yþ Kv
l� ls
l

ls þ yð Þ ¼ �P

8>>><
>>>: ð1:153Þ

By keeping account of expressions (1.148), these equations enable us to describe
the motion in the large of the system, they are differential to the total nonlinear
derivatives and, for this reason, must be integrated using step-by-step numerical
methods [1, 19].

In order to obtain the static equilibrium equations of the system in question, it is
necessary to solve the expressions:

Khxþ Kv
l � ls
l

x ¼ 0

Kv
l� ls
l

ls þ yð Þ ¼ �P

8>><
>>: ¼

Kh þ Kv
l � ls
l

� 	
x ¼ 0

Kv
y
l
l� lsð Þ þ Kv

ls
l
l� lsð Þ ¼ �P

8>><
>>: ð1:154Þ
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As is generally the case, these algebraic equations are nonlinear, meaning that they
can thus be solved by using iterative numerical methods of the Newton-Raphson
type [1, 19]. In the case in question, they are simple and linear with solution:

xo ¼ 0

Kv
yo

ls þ yo
ls þ yo � lsð Þ þ Kv

ls
ls þ yo

ls þ yo � lsð Þ ¼ �P

8><
>: )

xo ¼ 0

y2o þ lsyo þ P
Kv

ls þ yoð Þ ¼ 0

8><
>:

xo ¼ 0

y2o þ yo ls þ P
Kv

� 	
þ P
Kv

ls ¼ 0

8><
>: )

xo ¼ 0

yo ¼ � P
Kv

8><
>:

ð1:155Þ

The length of the vertical springs in the static equilibrium position are therefore:

lo ¼ ls þ yo ¼ ls � P
Kv

ð1:156Þ

In order to obtain linearized equations of motion in the neighbourhood of the static
equilibrium position defined by expressions (1.155), it is necessary to expand the
various forms of energy (1.150) in the neighbourhood of this position up to the
second derivatives:

Ec ¼ 1
2
m _x2 þ 1

2
m _y2

V ¼ Vo þ @V
@x

� 	
o
x� xoð Þ þ @V

@y

� 	
o
y� yoð Þ

þ 1
2

@2V
@x2

� 	
o
x� xoð Þ2 þ 1

2
@2V
@y2

� 	
o
y� yoð Þ2 þ @2V

@y@x

� 	
o
y� yoð Þ x� xoð Þ

D ¼ 1
2
Rh

@Dlh
@x

� 	
o

_xþ @Dlh
@y

� 	
o

_y

� 	2

þ 1
2
Rv

@Dlv
@x

� 	
o

_xþ @Dlv
@y

� 	
o

_y

� 	2

d � L ¼ 0

ð1:157Þ

By introducing the independent variables x and y which define the perturbed motion
in the neighbourhood of the static equilibrium position:

x ¼ xo þ x

y ¼ yo þ y
ð1:158Þ
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these expressions (1.157) become:

Ec ¼ 1
2
m _x

2 þ 1
2
m _y

2

V ¼ Vo þ @V
@x

� 	
o
xþ @V

@y

� 	
o
yþ 1

2
@2V
@x2

� 	
o
x2 þ 1

2
@2V
@y2

� 	
o
y2 þ @2V

@y@x

� 	
o
yx

D ¼ 1
2

Rh
@Dlh
@x

� 	2

o
þRv

@Dlv
@x

� 	2

o

 !
_x
2 þ 1

2
Rh

@Dlh
@y

� 	2

o
þRv

@Dlv
@y

� 	2

o

 !
_y
2

þ Rh
@Dlh
@x

� 	
o

@Dlh
@y

� 	
o
þRv

@Dlv
@x

� 	
o

@Dlv
@y

� 	
o

� 	
_x _y

d � L ¼ 0 ð1:159Þ

To evaluate these quadratic expressions, it is necessary to calculate the Jacobians
and the Hessians of the physical variables as a function of the independent vari-
ables: by keeping account of expressions (1.148) and (1.149) we obtain:

@Dlh
@x

¼ 1;
@Dlh
@y

¼ 0

@Dlv
@x

¼ xffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ ls þ yð Þ2

q ¼ x
l
;

@Dlv
@y

¼ ls þ yð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ ls þ yð Þ2

q ¼ ls þ yð Þ
l

@h
@x

¼ 0;
@h
@y

¼ 1

ð1:160Þ

@2Dlh
@x2

¼ @2Dlh
@y@x

¼ @2Dlh
@y2

¼ 0

@2Dlv
@x2

¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ ls þ yð Þ2

q � 1
2

1

x2 þ ls þ yð Þ2
� �3

2
2x2

@2Dlv
@y@x

¼ @2Dlv
@x@y

¼ � 1
2

1

x2 þ ls þ yð Þ2
� �3

2
2x ls þ yð Þ

@2Dlv
@y2

¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ ls þ yð Þ2

q � 1
2

1

x2 þ ls þ yð Þ2
� �3

2
2 ls þ yð Þ2

@2h
@x2

¼ @2h
@y@x

¼ @2h
@y2

0
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These functions, calculated in the neighbourhood of the static equilibrium position
(keeping account of expressions (1.155)), become:

@Dlh
@x

� 	
o
¼ 1;

@Dlh
@y

� 	
o
¼ 0

@Dlv
@x

� 	
o
¼ 0;

@Dlv
@y

� 	
o
¼ ls þ yoð Þ

lo
¼ lo

lo
¼ 1

@h
@x

� 	
o
¼ 0;

@h
@y

� 	
o
¼ 1

ð1:161Þ

@2Dlh
@x2

� 	
o
¼ @2Dlh

@y@x

� 	
o
¼ @2Dlh

@y2

� 	
o
¼ 0

@2Dlv
@x2

� 	
o
¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ls þ yoð Þ2
q ¼ 1

lo
;

@2Dlv
@y@x

� 	
o
¼ @2Dlv

@x@y

� 	
o
¼ 0

@2Dlv
@y2

� 	
o
¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ls þ yoð Þ2
q � 1

2
1

ls þ yoð Þ2
� �3

2
2 ls þ yoð Þ2 ¼ 1

lo
� 1
l3o
l2o ¼ 0

@2h
@x2

� 	
o
¼ @2h

@y@x

� 	
o
¼ @2h

@y2

� 	
o
¼ 0

ð1:162Þ

The quadratic expression of potential energy (1.157) can be expressed as:

@V
@x

� 	
o
¼ @V

@Dlh

� 	
o

@Dlh
@x

� 	
o
þ @V

@Dlv

� 	
o

@Dlv
@x

� 	
o
þ @V

@h

� 	
o

@h
@x

� 	
o
¼ KhDlhð Þo

@Dlh
@x

� 	
o
þ KvDlvð Þo

@Dlv
@x

� 	
o

@V
@y

� 	
o
¼ @V

@Dlh

� 	
o

@Dlh
@y

� 	
o
þ @V

@Dlv

� 	
o

@Dlv
@y

� 	
o
þ @V

@h

� 	
o

@h
@y

� 	
o
¼ KhDlhð Þo

@Dlh
@y

� 	
o
þ KvDlvð Þo

@Dlv
@y

� 	
o
þP

@2V
@x2

� 	
o
¼ Kh

@Dlh
@x

� 	2

o
þ KhDlhð Þo

@2Dlh
@x2

� 	
o
þKv

@Dlv
@x

� 	2

o
þ KvDlvð Þo

@2Dlv
@x2

� 	
o

@2V
@y2

� 	
o
¼ Kh

@Dlh
@y

� 	2

o
þ KhDlhð Þo

@2Dlh
@y2

� 	
o
þKv

@Dlv
@y

� 	2

o
þ KvDlvð Þo

@2Dlv
@y2

� 	
o

@2V
@x@y

� 	
o
¼ @2V

@y@x

� 	
o
¼ Kh

@Dlh
@y

� 	
o

@Dlh
@x

� 	
o
þ KhDlhð Þo

@2Dlh
@x@y

� 	
o
þKv

@Dlv
@y

� 	
o

@Dlv
@x

� 	
o
þ KvDlvð Þo

@2Dlv
@x@y

� 	
o

ð1:163Þ

By keeping account of expressions (1.161) and (1.162), the various terms of (1.163)
are reduced to the expressions:

@V
@x

� 	
o
¼ KhDlh;

@V
@y

� 	
o
¼ KvDlvð ÞoþP

@2V
@x2

� 	
o
¼ Kh þ KvDlvð Þo

1
lo
¼ Kh � P

lo
;

@2V
@y2

� 	
o
¼ Kv;

@2V
@x@y

� 	
o
¼ @2V

@y@x

� 	
o
¼ 0

ð1:164Þ
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where P:

P ¼ � KvDlvð Þo ð1:165Þ

is the static preload of the vertical springs
By keeping account of expressions (1.163), (1.164) and (1.147), expressions

(1.159) can be rewritten as:

Ec ¼ 1
2
m _x

2 þ 1
2
m _y

2

V ¼ KhDlhð Þo xþ KvDlv þ Pð Þo yþ
1
2

Kh � P
lo

� 	
o
x2 þ 1

2
Kv y

2

D ¼ 1
2
Rh _x

2 þ 1
2
Rh _y

2

d � L ¼ 0

ð1:166Þ

By applying Lagrange’s equations to the energy forms that have been reduced in
quadratic forms, the following equations of motion are obtained:

mx
:: þ Rh _xþ Kh � P

lo

� 	
x ¼ 0

my
:: þ Rv _yþ Kvy ¼ 0

ð1:167Þ

where � P
lo

� �
represents the negative elastic restoring force due to the preload of the

vertical spring (generally defined as KjDlj
� 

o
@2Dlji
@q2i

� �
o
(1.127) which, as already

mentioned, is different from zero in the case in which the link between Dlj and
generic coordinate qi is nonlinear. In the case analysed, spring Kv preloaded with P,
for a displacement x, generates a horizontal force P

lo
x, where x

lo
is the angle formed

with the vertical.12

By analysing the equivalent stiffness Kh � P
lo

� �
in the horizontal direction of the

system shown in Fig. 1.8, linearized in the neighbourhood of the static equilibrium
position, it is possible to observe how the negative term tends to reduce the natural
frequency of the system or even justify it, in the case in which:

Kh � P
lo

� 	
\0 ) Kh\

P
lo

ð1:168Þ

12If they were taken as independent variables, the elongations of the springs, “the gravitational
term” would be derived from the potential energy associated with gravitational force, being in this
case a non-linear relationship between the displacement of the center of gravity and the inde-
pendent variables.

1.5 Nonlinear Systems with 2 Degrees of Freedom 43



www.manaraa.com

is a static instability, typically of a divergence type, as will be explained in detail in
Chap. 2.

The analysis of systems with several degrees of freedom will be dealt with in the
next chapter.

1.6 Multi-Body Systems

A more general approach to analyse these systems is traditionally referred to as
Multibody System Dynamics, [1, 2, 20]. These methods were created for the non-
linear analysis of complex mechanical systems in space (land vehicles, aeroplanes,
helicopters, space structures and robots) and were developed from a mathematical
point of view for the use on modern digital computers in order to provide accurate
analyses of the structures undergoing dynamic loads. These methods are based on
the concept of substituting the real system with an equivalent model consisting of a
series of rigid or flexible bodies, which are generally subjected to motion in the
large, connected by linear and nonlinear elastic and dissipation elements. The
equations (of the order of hundreds or thousands) governing the motion of these
systems are obviously differential and highly nonlinear. For this reason, in almost
all cases, they cannot be solved in a closed analytical form but need to be solved
numerically, using step-by-step integration methods. In this text it is not possible to
give an in-depth explanation of this methodology (reference to the above can be
found in the widespread specialist bibliography available on this subject [1, 2, 5, 9,
7, 13]: for this reason, only a few references, based on several consolidated tech-
niques, will be made, in order to allow readers to have a better understanding of the
logic underlying this approach.

As an example, Fig. 1.10 shows several mechanical systems that can be mod-
elled as multi-body systems. In general, a multi-body system can be defined as a set
of sub-systems termed bodies, components or substructures. The motion of these
sub-systems is generally constrained and, as previously mentioned, each sub-sys-
tem may be subjected to translations and rotations in the large. The configuration of
a multi-body system can be described in terms of displacements, velocity and
accelerations: these kinematic quantities can be defined with respect to a system of
coordinates, usually right handed, with orthogonal axes Xk � Yk � Zk and an origin
Ok. These systems can be:

• inertial, meaning that it is possible, for example, to define the absolute trajectory
of the various bodies composing the system;

• embedded in the generic rigid body;
• connected to a specific point of the generic rigid body, with axes oriented in

such a way as to permit the simple, immediate introduction of the applied forces.
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Among the many possibilities, the following are often used as independent
variables:

• the displacement of the centre of gravity of each rigid body Gk (often made to
coincide with the Ok ¼ Gk of a reference frame connected to the body itself,
with axes parallel to the principal axes of inertia), referred to an absolute ref-
erence frame, unique for the entire mechanical system;

• displacement of the origin of a moveable reference frame with reference to
another generic reference frame, in turn, in motion;

• absolute or relative rotations of a reference fame that is connected to the generic
body referred to an inertial/moveable reference frame etc.

The equations of motion [1, 2] can be obtained either by using the cardinal
equations of Dynamics or energy approaches such as, for example, Lagrange’s
equations. When writing the equations of motion, various calculation methodolo-
gies, based on matrix algorithms, have been developed.

In the explanation that follows, to simplify matters and bearing in mind the
objectives of the text itself, reference will be made to the following work
hypotheses (to learn more about the various methodologies and calculation strat-
egies developed and differentiated by various authors, please refer to the bibliog-
raphy at the end of this chapter):

• analysis of multi-body systems with rigid bodies;
• rh cartesian reference frames;
• use of an absolute reference frame and one that is connected to each body;
• writing of equations using the Lagrangian approach.

Fig. 1.10 Examples of multi-body systems
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In order to define the equations of motion of a generic multi-body system, it is
necessary to make some references based on matrix algebra algorithms, which are
extremely convenient and efficient for setting up the equations of motion of the
system.

1.6.1 Vector Analysis

First and foremost, let us analyse how it is possible to use a vector representation of
the quantities in play (displacements, velocity, accelerations, forces etc.) using a
matrix approach.

Let us consider (see Fig. 1.11) the generic reference system of the axes Xk �
Yk � Zk and origin Ok: with regard to this system, as is known, it is possible to
define a generic geometric vector (P–O) as:

P� Oð Þ ¼ PO
�! ¼~ik xPO;k þ~jk yPO;k þ~kk zPO;k ð1:169Þ

Further on in this text, in order to ensure a better understanding, reference will be
made to a displacement vector. However, it goes without saying that this expla-
nation can and will be extended to any other vector quantity. By introducing a
column matrix ~hk which contains the three unit vectors of the reference frame to
which reference is made and a column matrix XPO;k which contains the components
of the same geometric vector:

~hk ¼
~ik
~jk
~kk

8<
:

9=
;; XPO;k ¼

xPO;k
yPO;k
zPO;k

8<
:

9=
; ð1:170Þ

Fig. 1.11 Vectorial
representation in space
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the same vector can be defined in matrix form as:

P� Oð Þ ¼~h
T

k
XPO;k ð1:171Þ

The meaning of the subscripts is of fundamental importance to understand the next
part of the text and to clarify, unequivocally, the meaning of single quantities. To be
more specific we will use:

• Z to indicate a vector, i.e. a column matrix;
• ½A� to indicate a matrix;
• ~ik to indicate the generic versor, unit vector that defines the direction of the

generic axis of a generic reference system Ok � Xk � Yk � Zkð Þ;
• xPO;k to indicate the generic component of the generic vector ðP� OÞ, defined in

the generic reference system Ok � Xk � Yk � Zkð Þ.
By keeping account of the above, the generic vector ðP� OÞ can be defined in

two different reference systems Oi � Xi � Yi � Zið Þ and Oj � Xj � Yj � Zj
� 

as:

P� Oð Þ ¼~ii xPO;i þ~ji yPO;i þ~ki zPO;i

P� Oð Þ ¼~ij xPO;j þ~jj yPO;j þ~kj zPO;j
ð1:172Þ

or in matrix form as:

P� Oð Þ ¼~h
T

i
XPO;i ¼~h

T
j XPO;j ð1:173Þ

By pre-multiplying13 the two terms of Eq. (1.173) in scalar form for the column

matrix h
!

i
which contains the unit vectors of the nth triad:

~h
i
� ~h

T

i
XPO;i ¼~h

i
� ~h

T
j XPO;j ) XPO;i ¼ Kji


 �
XPO;j ð1:174Þ

it is possible to calculate the relation that correlates the components of the same
vector with respect to the two systems of different coordinates.

Relation (1.174) represents a transformation of coordinates and matrix Kji

 �

is
the transformation matrix of same or the matrix of the direction cosines matrix:

Kji

 � ¼~h

i
�~h

T
j ¼

~ii �~ij ~ii �~jj ~ii �~kj
~ji �~ij ~ji �~jj ~ji �~kj
~ki �~ij ~ki �~jj ~ki �~kj

2
64

3
75 ð1:175Þ

13In the text we will use × to indicate the scalar product between the two vectors and K to indicate
the vectorial product.
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The columns of this matrix contain the projections of the unit vectors of the jth
reference frame on the ith reference frame, while the rows contain projections of the
third i on the j reference frame. If the two reference systems are equal, this matrix
obviously become the identity matrix:

~h
i
�~h

T
i ¼ I½ � ð1:176Þ

By collecting the terms of this matrix by columns:

Kji

 � ¼ nji bji tji


 � ð1:177Þ

and by bearing in mind that this contains the unit vectors of the ith and jth cartesian
reference frames, it is possible to keep account of the following properties:

nTji � tji ¼ tTji � bji ¼ bTji � nji ¼ 0

nTji � nji ¼ tTji � tji ¼ bTji � bji ¼ 1
ð1:178Þ

By keeping account of the 6 relations (1.178), the transformation matrix of the
coordinates, which contains 9 terms (1.175), can therefore be expressed by only 3
independent coordinates: in terms of independent coordinates, it is possible to
assume the 3 Cardan angles, the Euler 3 angles, etc. [1, 2]. This direction cosines
matrix is orthogonal, i.e. its inverse coincides with the transposed matrix, meaning
that

XPO;i ¼ Kji

 �

XPO;j ) Kji

 ��1

XPO;i ¼ Kji

 ��1

Kji

 �

XPO;j

XPO;j ¼ Kji

 ��1

XPO;i ¼ Kij

 �

XPO;i

Kij

 � ¼ Kji


 ��1 ¼ Kji

 �T

XPO;j ¼ Kji

 �T

XPO;i

ð1:179Þ

We will now go on to explain how it is possible to describe the kinematics of a
generic rigid body, using the matrix approach that has just been introduced.

1.6.2 Kinematic Analysis of the Rigid Body

For reasons of simplicity, let us consider a generic rigid body which composes the
overall multi-body system (Fig. 1.12): let us consider an inertial (absolute) refer-
ence frame O� Xo � Yo � Zoð Þ and a moveable reference frame which is con-
nected to the body considered, with origin O� Xo � Yo � Zoð Þ coinciding with
centre of gravity G1 of the body itself and axes parallel to the principal axes of
same. Let us consider a generic point P of the body in question. The absolute
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position of generic point P can be expressed, as previously described, by the
following relation:

P� Oð Þ ¼ P� O1ð Þ þ O1 � Oð Þ ¼~h
T
1 XPO1;1 þ~h

T
o XO1O;O ð1:180Þ

Where the column matrices that respectively contain the unit vectors of the inertial

reference frame and the moveable reference frame have been defined by h
!

o and

h
!

1:

~ho ¼
~io
~jo
~ko

8<
:

9=
; ~h1 ¼

~i1
~j1
~k1

8<
:

9=
; ð1:181Þ

and by XPO1;O and XO1O;1:

XPO1;O ¼
xPO1;O

yPO1;O

zPO1;O

8<
:

9=
;XO1O;1 ¼

xO1O;1

yO1O;1

zO1O;1

8<
:

9=
; ð1:182Þ

the components that respectively describe the position of the centre of gravity of the
body (i.e. of the origin of the moveable reference frame) with respect to the absolute
reference system and the position of point P with respect to the centre of gravity of
the body. The two vectors are defined with respect to the absolute reference system
and with respect to the moveable reference system: by using this approach, com-
ponents XPO1;1 (i.e. the components of vector ðP� O1Þ defined in the moveable
reference system) are easily definable and coincide with the coordinates of point
P (constants) with respect to the centre of gravity of the same body. The two
components of vector ðP� OÞ of (1.182) cannot obviously be added up directly on

Fig. 1.12 Kinematic analysis of the generic rigid body
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account of being defined in two different reference systems: by keeping account of
expressions (1.179), it is possible to project the components of the overall vector
ðP� OÞ onto the absolute reference system (it is important to note how the use of
suitable conventions is essential in the definition of the subscripts): for example,
vector XPO;1 is the column matrix that contains the components of vector (P� OÞ in
the reference system O1 � X1 � Y1 � Z1ð Þ, while vector XPO;O contains the com-
ponents of the same vector, described, however in the reference system
O� X0 � Y0 � Z0ð Þ. From (1.179) it is possible to note how, in matrix terms, it is
possible to represent the components of a generic vector in the absolute reference
system as:

P� Oð Þ ¼~h
T
1 XPO1;1 þ~h

T
o XO1O;O ¼~h

T
o K1o½ �XPO1;1 þ~h

T
o XO1O;O

¼~h
T
o XPO1;O þ~h

T
o XO1O;O ¼~h

T
o XPO1;o þXO1O;O

� � ¼~h
T
o XPO;O

ð1:183Þ

where:

XPO;O ¼ K1O½ �XPO1;1 þXO1O;O ð1:184Þ

By keeping account of expressions (1.180) and (1.179) in the moveable reference
system, the same vector can be defined by means of the following relations:

P� Oð Þ ¼~h
T
1 XPO1;1 þ~h

T
o XO1O;O ¼~h

T
1 XPO1;1 þ~h

T
1 K1O½ �T XO1O;O

¼~h
T
1 XPO1;1 þ~h

T
1 XO1O;1 ¼~h

T
1 XPO1;1 þXO1O;1

� � ¼ h
!T

1 XPO;1

ð1:185Þ

where

XPO;1 ¼ XPO1;1 þ K1O½ �T XO1O;O ð1:186Þ

Starting from the definition of the vector expressed in matrix form by means of
(1.183), i.e. with its components projected on the absolute reference system, it is
possible, by deriving the velocity and acceleration vector with respect to time, to
symbolically obtain:

P� Oð Þ ¼~h
T
o XPO;O ¼~h

T
o K1O½ �XPO1;1 þXO1O;O

� �
~VP ¼ d P� Oð Þ

dt
¼~h

T
o

_K1O

h i
XPO1;1 þ _XO1O;O

n o
~AP ¼ d~VP

dt
¼~h

T
o K

::

1O

h i
XPO1;1 þX

::

O1O;O

n o ð1:187Þ

By considering the classic approach of Applied Mechanics, these terms represent
the absolute velocity and acceleration of point P, which is assumed to be rigidly
fixed to the relative coordinate system. This approach is easy to understand and
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imitates, in space, the method generally adopted in the basic courses of Applied
Mechanics [8, 16, 17].

With the idea of using kinematic with a view to writing the equations of motion
of a complex system in space, we will now introduce an alternative approach to
obtain the velocity (and, consequently, the accelerations) of a generic point. We
would like to underline that, compared to the classic approach described above, this
approach only has the advantage of permitting a more immediate and simple
writing of the equations of motion of a generic body in space.

When using this alternative method, velocity is evaluated by deriving the dis-
placement with respect to time, defined by relation

P� Oð Þ ¼~h
T
1 XPO1;1 þ~h

T
o XO1O;O ð1:188Þ

before projecting all vectors onto one single reference system. Thus:

~VP ¼ d P� Oð Þ
dt

¼ d~h
T
1

dt
XPO1;1 þ~h

T
o
_XO1O;O ð1:189Þ

In this case, the first term of velocity is connected to the fact that the column
matrix that contains the unit vectors of the moveable reference frame must be
derived with respect to time, in that the unit vectors themselves, while obviously

maintaining a constant (unitary) module, change direction. The matrix term d~h
T
1

dt of
(1.188) can be divided up into three components:

d~h
T
1

dt
XPO1;1 ¼

d~i1
dt

xPO1;1 þ
d~j1
dt

yPO1;1 þ
d~k1
dt

zPO1;1 ð1:190Þ

By recalling the Poisson formulae [3, 10], the generic term of expressions (1.189)
can be rewritten as:

d~i1
dt

xPO1;1 ¼ ~x1 K~i1 xPO1;1 ¼ ~i1 xx1;1 þ~j1 xy1;1 þ~k1 xz1;1

� �
K~i1 xPO1;1

¼ �~k1 xy1;1xPO1;1 þ~j1 xz1;1xPO1;1

ð1:191Þ

having used ~x1 to indicate the vector of angular velocity to which the body is
subjected, i.e. the angular velocity of the moveable reference frame. Based on the
matrix approach used, this geometric vector can be represented as:

~x1 ¼~h
T
1 x1;1 ¼~h

T
1

xx1;1

xy1;1

xz1;1

8<
:

9=
; ð1:192Þ
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Aswill be shown in Sect. 1.7.5, having usedxx1;1,xy1;1 andxz1;1 to indicate the three
components of the angular velocity of the body projected onto the moveable refer-
ence frame (as previously mentioned, with an origin coinciding with the centre of
gravity of the body and axes parallel to the principal axes of inertia) this choice
simplifies the writing of the kinetic energy associated with the generic body, thus
allowing for the introduction of the constant and diagonal inertia tensor, regardless of
the position that the body gradually assumes in its motion in the large in space [3, 10].
This will be demonstrated in Sect. 1.7.5.

Steps similar to (1.190) can also be performed for the other two components,
from which we obtain14

d~h
T
1

dt
XPO1;1 ¼~i1 �xz1;1yPO1;1 þ xy1;1zPO1;1

� þ~j1 xz1;1xPO1;1 � xx1;1zPO1;1
� 

þ~k1 �xy1;1xPO1;1 þ xx1;1yPO1;1
�  ¼~h

T
1

�xz1;1yPO1;1 þ xy1;1zPO1;1

xz1;1xPO1;1 � xx1;1zPO1;1

�xy1;1xPO1;1 þ xx1;1yPO1;1

8><
>:

9>=
>;

¼~h
T
1 x1;1

 �

XPO1;1 ¼~h
T
1 XPO1;1

 �

x1;1 ð1:193Þ

Having used x1;1

 �

to indicate the matrix

x1;1

 � ¼ 0 �xz1;1 xy1;1

xz1;1 0 �xx1;1

�xy1;1 xx1;1 0

2
4

3
5 ð1:194Þ

And XPO1;1

 �

to indicate the matrix:

XPO1;1

 � ¼ 0 zPO1;1 �yPO1;1

�zPO1;1 0 xPO1;1

yPO1;1 �xPO1;1 0

2
4

3
5 ð1:195Þ

The two different formulations of Eq. (1.192) are obviously totally equivalent: in the
event of our wishing to use the kinematics calculation to facilitate automatic writing
of the equations of motion, as will be explained further on, the second expression is

14The same relation can be obtained directly in matrix form by means of:

d~h
T
1

dt
xPO1 ;1 ¼ ~xl1K~h

T
1 xPO1 ;1 ¼~h

T
1x1;1K~h

T
1 xPO1 ;1 ¼ xT

1;1
~h1K~h

T
1 xPO1 ;1

¼ xT
1;1

0 ~k1 � j
*

1

�k
*

1 0 i
*

1

j
*

1 � i
*

1 0

2
664

3
775xPO1 ;1 ¼~h

T
1 x1;1

 �

XPO1 ;1 ¼~h
T
1 XPO1 ;1

 �

x1;1

ð1:14:1Þ
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preferable. In fact, this approach will make it easier to isolate the velocity terms of
the independent variables in the kinetic energy expression and, in particular, in the
velocity expression. By now keeping account of Eq. (1.192) in the form:

d~h
T
1

dt
XPO1;1 ¼~h

T
1 XPO1;1

 �

x1;1 ð1:196Þ

the velocity of generic point P becomes:

~VP ¼~h
T
1 XPO1;1

 �

x1;1 þ~h
T
o
_XO1O;O ¼~h

T
o K1O½ � XPO1;1


 �
x1;1 þ~h

T
o
_XO1O;O

¼~h
T
o

_XO1O;O þ K1O½ � XPO1;1

 �

x1;1

� � ð1:197Þ

By comparing Eq. (1.197) with Eq. (1.187) and by keeping account of Eq. (1.193),
we obtain:

_K1O

h i
¼ K1O½ � x1;1


 �
: ð1:198Þ

1.6.3 Rotations and Angular Velocity of the Rigid Body

As is known, the rotations cannot be represented as vectors [1, 3, 12]. Hence, it is
necessary not only to choose specific angles as independent variables but also to
establish, right from the very beginning, the sequence of same. Among the many
options available in the bibliography to describe the rotation of the generic rigid
body of the mechanical system schematized by means of multi-body techniques, in
this particular text, we will adopt the Cardan angles:

q
#ij

¼
qij
bij
rij

8<
:

9=
; ¼

q
b
r

8<
:

9=
; ð1:199Þ

These angles represent the rotations, in the order around axis Z, axis X and axis
Y belonging to different intermediate reference frames as shown in Fig. 1.13.

To introduce these angles, for reasons of convenience, we will refer to the two
reference frames ðO� Xi � Yi � ZiÞ and ðO� Xj � Yj � ZjÞ in relative motion one
with respect to the other on account of having the same origin. The order defined is
as follows:

• snaking (or yaw) rotation around axis Zi: a first intermediate reference frame
ðO� XI � YI � ZIÞ subjected to this rotation has axis ZI in common with the
previous reference frame, while unit vectors XI and YI are rotated by rij with
respect to the initial reference frame;
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• roll rotation around axis XI of the first intermediate reference frame: a second
intermediate reference frame ðO� XII � YII � ZIIÞ, subjected to this rotation has
axis XII in common with the previous reference frame, while unit vectors~kI and
~jI are rotated by qij r with respect to the previous reference frame;

• pitch rotation around axis YII of the second intermediate reference frame: the
final reference frame ðO� Xj � Yj � ZjÞ, subjected to this rotation, has axis Yj in
common with the previous reference frame, while unit vectors ~kI and ~iI are
rotated by bij with respect to the previous reference frame.

By using the matrix algorithm, the corresponding angular velocities:

_q
#ij

¼
_qij
_bij
_rij

8<
:

9=
; ¼

_q
_b
_r

8<
:

9=
; ð1:200Þ

given the definition of the Cardan angles assumed and given the order established
for these rotations, can be expressed as:

~_r ¼~ki _r ¼~kI _r ¼
~iI
~jI
~kI

8><
>:

9>=
>;

T 0

0

_r

8><
>:

9>=
>; ¼~h

T
I _rI

~_q ¼~iI _q ¼~iiII _q ¼
~iII
~jII
~kII

8><
>:

9>=
>;

T
_q

0

0

8><
>:

9>=
>; ¼~h

T
II _qII

~_b ¼~jII _b ¼~jj _b ¼
~ij
~jj
~kj

8><
>:

9>=
>;

T
0
_b

0

8><
>:

9>=
>; ¼~h

T
j
_b
j

ð1:201Þ

Xi
XI

Yi

YI

ZI= Zi

ijσ

ijσ
Oi=OI

ijσ

XI =XII

YI

YIZI

ijρ ijρ

ZII

OI=OII

XII

YII=YjZj

ijβ

ijβ

ZII

Xj

OII=Oj

Fig. 1.13 Definition of the cardan angles
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The relative angular velocity vector of reference frame “j” with respect to reference
frame “i” can thus be defined as:

~xij ¼~_rþ~_qþ~_b ¼~h
T
I _rI þ~h

T
II _qII þ~h

T
j
_b
j
¼~h

T
j xij

~xij ¼~h
T
j Kj;II

 �T

KII;I

 �T

_rI þ Kj;II

 �T

_q
II
þ _b

j

n o ð1:202Þ

1.6.4 The Transformation Matrix of the Coordinates
in Terms of Cardan Angles

Let us now define the transformation matrix of the coordinates as a function of the
type of independent variables assumed to define the rotation of the bodies in space
(Cardan angles) and of the sequence adopted for same (yaw, roll and pitch). Let us
consider a generic vector (in this specific case, for reasons of convenience, we will
continue to make reference to a displacement vector) and let us consider two
generic reference frames Oi � Xi � Yi � Zið Þ and Oj � Xj � Yj � Zj

� 
with a com-

mon origin Oi ¼ Oj (Fig. 1.13). The generic vector can be defined with respect to
reference frame Oi � Xi � Yi � Zið Þ or reference frame OI � XI � YI � ZIð Þ which
has been subjected to a yawing rotation with respect to the initial one:

P� Oð Þ ¼~h
T

i
XPO;i ¼~h

T
I XPO;I ð1:203Þ

By keeping account of the explanation given in the previous paragraph we obtain:

~h
i
�~h

T

i
XPO;i ¼~h

i
�~h

T
I XPO;I ) XPO;i ¼ KI;i


 �
XPO;I ð1:204Þ

This relation enables us to correlate the components of the same vector in two different
reference systems: in this case, the transformation matrix of coordinates KI;i


 �
is:

KI;i

 � ¼~h

i
�~h

T
I ¼

~ii �~iI ~ii �~jI ~ii �~kI
~ji �~iI ~ji �~jI ~ji �~kI
~ki �~iI ~ki �~jI ~ki �~kI

2
4

3
5 ¼

cos r � sin r 0
sin r cos r 0
0 0 1

2
4

3
5 ð1:205Þ

The same vector P� Oð Þ can be expressed once again also in relation to the
intermediate reference system OII � XII � YII � ZIIð Þ which has been subjected to a
roll rotation with respect to system OI � XI � YI � ZIð Þ:

P� Oð Þ ¼~h
T
I XPO;I ¼~h

T
II XPO;II

~h
I
�~h

T

I
XPO;I ¼~h

I
�~h

T
II XPO;II ) XPO;I ¼ KII;I


 �
XPO;II

ð1:206Þ
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where KII;I

 �

is the transformation matrix of the coordinates between the two
reference systems:

KII;I

 � ¼~hI � ~h

T
II ¼

~iI �~iII ~iI �~jII ~iI �~kII
~jI �~iII ~jI �~jII ~jI �~kII
~kI �~iII ~kI �~jII ~kI �~kII

2
4

3
5 ð1:207Þ

The same considerations and steps can be developed by considering the second
intermediate reference frame and the final reference frame Oj � Xj � Yj � Zj

� 
,

from which:

P� Oð Þ ¼~h
T
II XPO;II ¼~h

T
J XPO;j

~hII �~h
T
II XPO;II ¼~hII �~h

T
j XPO;j ) XPO;II ¼ Kj;II


 �
XPO;j

Kj;II

 � ¼~h

T
II � ~h

T
j ¼

~iII x~ij ~iII �~jj ~iII �~kj
~jII x~ij ~jII �~jj ~jII �~kj
~kII x~ij ~kII �~jj ~kII �~kj

2
664

3
775 ¼

cos b 0 sin b

0 1 0

� sin b 0 cos b

2
64

3
75

ð1:208Þ

By keeping account of Eqs. (1.204), (1.206) and (1.207), at this point, Eq. (1.203)
can be rewritten as:

XPO;i ¼ KI;i

 �

XPO;I ¼ KI;i

 �

KII;I

 �

XPO;II

¼ KI;i

 �

KII;I

 �

Kj;II

 �

XPO;j ¼ Kj;i

 �

XPO;j

ð1:209Þ

where Kj;i

 �

is the transformation matrix between the two reference systems
Oi � Xi � Yi � Zið Þ and Oj � Xj � Yj � Zj

� 
, defined as:

Kj;i

 � ¼ KI;i


 �
KII;I

 �

Kj;II

 �

¼
cos r cos b� sin b sin r sin q � sin r cos q cos r sin bþ sin r sin q cos b

sin r cos bþ cos r sin q sin b cos q cosr sin b sin r� cos r sin q cos b

� sin b cos q sin q cos q cos b

2
64

3
75

ð1:210Þ

This matrix thus proves to be a nonlinear function of the same independent vari-
ables used to describe the angular position of one reference frame with respect to
another, in other words, in the case proposed, as a function of the Cardan angles,
bearing in mind the sequence order foreseen.
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1.6.5 Relationship Between the Angular Velocities
and the Velocities in Terms of Cardan Angles

At this point it is possible to explain the link between the components of the angular
velocity geometric vector of the generic rigid body (Eq. 1.195) and the independent
variables assumed to define the angular position of same, i.e. the Cardan angles in
space. This link was previously introduced as:

~xij ¼~h
T
j Kj;II

 �T

KII;I

 �T

_rþ Kj;II

 �T

_qþ _b
n o

ð1:211Þ

which, by keeping account of Eqs. (1.205), (1.207) and (1.208), becomes:

xji;j ¼
cos b _q� sin b cos q _r

sin q _r þ _b
sin b _qþ cos b cos q _r

8<
:

9=
; ð1:212Þ

This relation can be rewritten in a more compact matrix form as:

xji;j ¼ A#ij

 �

_q
#ij

ð1:213Þ

Where the matrix is also a nonlinear function of the same Cardan angles:

A#ij

 � ¼ cos b 0 � sin b cos q

0 1 sin q
sinb 0 cos b cos q

2
4

3
5: ð1:214Þ

1.7 The Dynamics of a Rigid Body

Let us consider a generic multi-body system with rigid bodies in space. The
independent variables necessary to describe motion are 6 x nc which can be for-
mally grouped in a vector q defined as:

qT ¼ qT
1

qT
2

. . . qT
nc�1

qT
nc

n o
ð1:215Þ

on account of there being 6 independent coordinates q
i
which allow for the

description of motion of each body:

qT
i
¼ x0i0;0 y0i0;0 z0i0;0 qi bi rif g ¼ qT

xi
qT

#i

n o
ð1:216Þ
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The equations of motion of the system can be obtained by means of Lagrange’s
equations:

d
dt

@Ec

@ _q

( )T

� @Ec

@q

( )T

þ @D
@ _q

( )T

þ @V
@q

( )T

¼ Q ð1:217Þ

where Ec, D and V are respectively the overall kinetic energy of the system, the
dissipation function and the potential energy. In Eq. (1.217), Q is the vector of the
generalized forces acting on the system which can be defined by the virtual work of
same by means of the known relation:

d�L ¼ QT d�q ð1:218Þ

Ec, D, V and d � L must be expressed as a function of the independent variables q:
these energies are generally defined as a function of the physical variables (i.e. of
those variables which are the more convenient to define the same energy functions)
and it is, thus, necessary to find and impose the link between the physical variables
and those of q themselves.

In this explanation, generally only of an introductory nature as with the multi-
body techniques, our objective is not to give a detailed definition of all the com-
putational and operative aspects of this approach: in fact, to simplify matters,
without losing sight of the main objectives, we will make reference to the single
body, to the single force and to the single connecting element. For a broader
overview of the subject, readers should refer to the widespread bibliography
available on the subject [1, 2, 5, 9, 13, 21, 22].

Let us now analyse the motion of a generic rigid body in space (Fig. 1.14), in
general motion (translation and rotation) with respect to an absolute reference frame
ðO� Zo � Yo � XoÞ of unit vectors~io,~jo and~ko (grouped in the column matrix~h

o
):

we will associate a moveable reference frame,ðOi � Zi � Yi � XiÞ with origin Oi

O1 = G1 

O

x 

yOiO,o

zOiO,o 

kO

k1 

j 1 

i 1 

iO

OiO,o 

yO

Fig. 1.14 Analysis of the rigid body in space

58 1 Nonlinear Systems with 1-n Degrees of Freedom



www.manaraa.com

coinciding with the centre of gravity of body Gi and unit vectors~ii,~ji and~ki (base
~hi) which define three axes that are parallel to the main axes of inertia.

It goes without saying that the body in space has 6 d.o.f.: as previously men-
tioned, let us assume the displacement components ðOi � OÞ of the centre of
gravity of the body as independent variables defined with respect to the absolute
reference system and the Cardan angles, previously defined, to distinguish the
spatial angular position (Fig. 1.13, Eq. 1.200).

Let us now analyse separately the single inertial, elastic and dissipative contri-
butions and the work of the external forces.

1.7.1 Inertial Terms

To calculate the inertial terms according to Lagrange, it is necessary to calculate the
overall kinetic energy Ec of the system:

Ec ¼
Xnc
i¼1

Eci ð1:219Þ

where Eci is the kinetic energy associated with the generic i-nth body, which can be
expressed as a function of the physical variables _Ymi which respectively define:

• the components, with respect to the fixed reference frame, _X0i0;0 of the centre of

gravity velocity ~VOi;
• the components xi;i of the vector of the absolute velocity of body ~xi projected

onto the reference frame ðOi � Zi � Yi � XiÞ which is connected to the body and
has axes parallel to the principal inertia axes, or rather:

Z

Y

X

Gc 

oio,o 

Voi 

xoio,o 

oio,o 

˙ 

X

Z

Y

Zc 
Yc 

Xc 

Gc 

xi,i 

yi,i 
zi,i 

Ω

ω ω

ω

Fig. 1.15 Analysis of a rigid body in space
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_Y
T
mi ¼ _x0i0;0 _y0i0;0 _z0i0;0 xxi;i xyi;i xzi;i

� � ¼ _X
T
0i0;0 xT

i;i

n o
ð1:220Þ

where _x0i0;0, _y0i0;0 and _z0i0;0 are thus the components of the vector of absolute

velocity ~VOi of centre of gravity Gi ¼ Oi of the body with respect to the absolute
reference frame (Fig. 1.15) and xxi;i, xyi;i and xzi;i the components of the vector of
absolute angular velocity ~xi related to the body considered, projected onto a ref-
erence frame ðOi � Zi � Yi � XiÞ which is connected to the body itself and has axes
parallel to the principal axes of inertia.

The kinetic energy can be expressed as a function of the physical variables [3,
10, 23]:

Eci ¼ 1
2
_Y
T
mi mi½ � _Ymi ð1:221Þ

where mi½ � is thus a diagonal matrix containing, in an orderly way, mass m of the
body and the principal inertia moments Jxi, Jyi and Jzi:

mi½ � ¼

mi 0 0 0 0 0
0 mi 0 0 0 0
0 0 mi 0 0 0
0 0 0 Ixi 0 0
0 0 0 0 Iyi 0
0 0 0 0 0 Izi

2
6666664

3
7777775 ¼ mmi½ � 0½ �

0½ � Jmi½ �
� �

ð1:222Þ

By keeping account of the link between the physical variables Ymi and the inde-
pendent variables q

i
:

Ymi ¼ Ymi q
i

� �
ð1:223Þ

Equation (1.221) becomes:

Eci ¼ 1
2
_qT
i
Kmi½ �T mi½ � Kmi½ � _q

i
¼ 1

2
_qT
i
Mi½ � _q

i
ð1:224Þ

where:

Kmi½ � ¼ @ Ymi

@ q
i

" #
ð1:225Þ

is the matrix, i.e. the Jacobian, obtained as a derivative of a column matrix Ymi
which contains the generic physical variables, as opposed to another column matrix
q which contains the independent variables: this matrix has 6 rows, i.e. as many as
the physical variables considered, and 6 columns, i.e. as many as the independent
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variables qi assumed. It is now necessary to define the kinematics of the body in
order to clarify the aforementioned Jacobian matrix. The position of the centre of
gravity of body ðOi � OÞ (Fig. 1.15) is defined by the following vectorial
expression, in the usual matrix formulation:

Oi � Oð Þ ¼~h
T
0 X0i0;0 ¼~h

T
0

x0i0;0
y0i0;0
z0i0;0

8<
:

9=
; ð1:226Þ

The velocity of the centre of gravity is thus given by:

~V0i ¼ d Oi � Oð Þ
dt

¼~h
T
0
_X0i0;0 ¼~h

T
0

_x0i0;0
_y0i0;0
_z0i0;0

8<
:

9=
; ð1:227Þ

from which it is possible to note how, in this case, the physical variables _X0i0;0

coincide with the independent variables _q
xi
:

_X0i0;0 ¼
@ X0i0;0

@ q
xi

" #
_q
xi
¼ I½ � _q

xi
¼ _q

xi

~V0i ¼~h
T
0 _q

xi

ð1:228Þ

Having grouped Eq. (1.216) in vector q
#i
the independent variables Cardan angles

which define the absolute angular position in the space assumed by the reference
frame ðOi � Zi � Yi � XiÞ which is connected to the body, the link between the
physical variables components x1;1 of the absolute angular velocity ~x1 projected
onto the reference frame that is connected to the body (see Sect. 1.6.5, Eq. 1.213)
and the independent variables q

#1
, is given by:

xi;i ¼ A#i½ � _q
#i
¼

cos bi 0 � sin bi cos qi
0 1 sin qi

sin bi 0 cos bi cos qi

2
4

3
5 _qi

_bi
_ri

8<
:

9=
; ð1:229Þ

By using this notation, matrix A#i½ � ¼ A#i q
#i

� �h i
is the Jacobian matrix that per-

mits us to express the physical variables x1;1 as a function of the independent
variables _q

#i
.

By keeping account of Eqs. (1.228) and (1.229), Eq. (1.223) can be rewritten as:

_Ymi ¼
_X0i0;0
xi;i

� �
¼ Kmi½ � _q

i
¼ I½ �

A#i½ �
� �

_q
i

ð1:230Þ
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By imposing Eq. (1.230) in Eq. (1.224), it is possible to calculate the mass matrix of
the generic i-nth rigid body as a function of the independent variables assumed:

Mi½ � ¼ Kmi½ �T mi½ � Kmi½ � ¼ mmi½ � 0½ �
0½ � A#i½ �T Ji½ � A#i½ �

� �
ð1:231Þ

By suitably assembling the matrices of each single body constituting the multi-body
system, it is possible to evaluate the expression of kinetic energy in the independent
coordinates:

Ec ¼
Xnc
i¼1

Eci ¼ 1
2
_qT M½ � _q ð1:232Þ

and to apply Lagrange’s Equation (1.217) to this expression.

1.7.2 External Excitation Forces

To introduce the external forces applied to the multi-body system, it is necessary to
calculate the work of same:

d�L ¼
Xnf
i¼1

d�Li ð1:233Þ

where d�Li is the work performed by the generic i-nth force.
Let us now analyse, always as an example, how it is possible to define the

Lagrangian components of a generic excitation force ~Fi applied to a generic point Pi

which is connected to the body considered (Fig. 1.16).

Oi 

Pi 

O

xOiO,O

zOiO,O

yOiO,O

zPOi,i

xPOi,i

yPOi,i

Fig. 1.16 Generic excitation force
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The virtual work performed by the generic force ~Fi is defined by:

d�Li ¼ F
*

i � d�X
*

fi ð1:234Þ

By rewriting the two vectors in matrix form:

~Fi ¼ hT0 Fi;0

~Xfi ¼ hT0 Xfi;0

ð1:235Þ

where Fi;0 is the column matrix that contains the components of the vector F
*

i and

Xfi;0 the column matrix that contains the components of vector ~Xfi, both referring to
the absolute reference system, we obtain:

d�Li ¼ FT
i;0 d

� Xfi;0 ð1:236Þ

By remembering the dependence between the physical variables Xfi;0 and the
independent variables q

i
:

Xfi;0 ¼ Xfi;0 q
i

� �
ð1:237Þ

Equation (1.236) can be rewritten as:

d � Li ¼ FT
i;0

@ Xfi;0

@ q
i

" #
d � q

i
¼ FT

i;0 Kfi

 �

d � q
i
¼ QT

i
d � q

i
ð1:238Þ

where:

QT
i
¼ Kfi

 �T

Fi;0 ð1:239Þ

In order to evaluate the generalized force Q
i
it is, thus, necessary to evaluate the

Jacobian Kfi

 �

: for this purpose, it is convenient to start once again from vector
ðPi � OÞ which defines the position of point Pi, the application point of the exci-
tation force considered:

Pi � Oð Þ ¼ Pi � Oið Þ þ Oi � Oð Þ ¼ hTi Xfi;i þ hT0 X0i0;0

¼ hT0 Ki0½ �Xfi;i þX0i0;0

� � ¼ hT0 Xfi;0

ð1:240Þ

The absolute velocity of point P is the first total derivative, with respect to time,
of the displacement vector, which, by keeping account of Eqs. (1.193) and (1.213),
can be expressed as:
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~Vfi ¼ d Pi � Oð Þ
dt

¼ hTi Xfi;i

 �

xi;i þ hT0 _X0i0;0 ¼ hTi Xfi;i

 �

A#i½ � _q
#i
þhT0 _X0i0;0

¼ hT0 Ki0½ � Xfi;i

 �

A#i½ � _q
#i
þ _q

xi

n o
¼ hT0 _Xfi;0

ð1:241Þ

where:

_Xfi;0 ¼
@ Xfi;0

@ q
i

" #
_q
i
¼ Kfi

 �

_q
i

ð1:242Þ

By recalling Eq. (1.193) it is possible to obtain the Jacobian Kfi

 �

(1.241) necessary
to evaluate the Lagrangian components of the force applied to the body:

@ Xfi;0

@ q
i

" #
¼ Kfi

 � ¼ I½ �j Ki0½ � Xfi;i


 �
A#i½ �
 �

3x6 ð1:243Þ

where

½Xfi;i� ¼
0 zfi;i �yfi;i

�zfi;i 0 xfi;i
yfi;i �xfi;i 0

2
4

3
5 ð1:244Þ

The vector of the Lagrangian components of the generic force applied to a point P
of a body of a generic multi-body system can, for this reason, be evaluated by
means of the following relation

QT
i
¼ FT

i;0 Kfi

 � ) Q

i
¼ I½ �

A#i½ �T Xfi;i

 �T

Ki0½ �T
� �

6x3

Fi;0 ð1:245Þ

By suitably assembling the generic vector of the Lagrangian components Q
i
on

each body constituting the multi-body system, it is possible to evaluate the
expression of the overall work of the external forces in the independent coordinates,
formally speaking:

d � L ¼ QT d � q ð1:246Þ

and to apply the Lagrange Equation (1.217) to this expression.

1.7.3 Elastic and Gravitational Forces

The introduction of the field of elastic and gravitational forces is performed
according to Lagrange’s equations by means of potential energy V:
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V ¼
Xnv
i¼1

Vi ¼
Xnk
i¼1

Vki þ
Xng
i¼1

Vgi ð1:247Þ

associated with the elastic elements present in the system, with the same gravita-
tional field15

Vki ¼ 1
2
DlTi ki Dli

Vgi ¼ mi g hi
ð1:248Þ

where ki is the stiffness of the generic k-nth elastic element, Dli the elongation of the
ends of the spring itself, mig the weight of the generic body and hi the elevation of
the corresponding centre of gravity.

In order to calculate the terms associated with the elastic field according to the
Lagrange equation (1.217), it is convenient to calculate the potential energy Vki

(1.248) associated with the generic elastic element as a function of the most con-
venient physical variable, in this case, elongation Dli of same. Since the elongation
depends on the motion of the two attachment points P and Q of the spring
(Fig. 1.17) and these on the independent variables q

ipq
which define the motion of

the connected bodies:

Dli ¼ Dli q
ipq

� �
ð1:249Þ

Fig. 1.17 Generic elastic and
dissipative element

15Consider here also the gravitational field.
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where vector q
ipq

is the vector that contains the 12 independent coordinates that

allow us to define the motion in space of the two bodies connected by the elastic
element considered:

q
ipq

¼ q
p

q
q

� �
ð1:250Þ

It is now necessary to clearly explain this dependency in Eq. (1.249) in order to
subsequently obtain, by applying Lagrange, the generalized forces associated with
this element.

Elongation Dli of the spring depends on the relative position assumed by the two
connection points li and by the initial length of the rundown spring lsi:

Dli ¼ li � lsi ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xP0;0 � xQ0;0
� 2 þ yP0;0 � yQ0;0

� 2 þ zP0;0 � zQ0;0
� 2q

� lsi

ð1:251Þ

By defining the column matrices that respectively contain the components of the
displacement vector of points P and Q in the absolute reference system with XP0;0

and XQ0;0:

XP0;0 ¼
xP0;0
yP0;0
zP0;0

8<
:

9=
;; XQ0;0 ¼

xQ0;0
yQ0;0
zQ0;0

8<
:

9=
; ð1:252Þ

vector XPQ;0, which contains the relative displacement components between points
P and Q in the absolute reference system, can be defined as:

XPQ;0 ¼ XP0;0 �XQ0;0 ð1:253Þ

The elongation of the spring can thus be evaluated as:

Dli ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
XT
PQ;0 XPQ;0

q
� lsi ð1:254Þ

The displacements of the ends of spring XPQ;0 depend on the independent variables
which, in turn, define the motion of the two bodies. In the hypothesis of a reference
frame that is connected to each body and only one absolute reference frame, these
independent variables are:

q
i
¼

q
xj

q
#j

q
xjþ1

q
#jþ1

8>><
>>:

9>>=
>>; ð1:255Þ
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Vector q
i
contains:

• components q
xj
of the displacement vector of the centre of gravity Oj of body

j with respect to the absolute reference frame (vector ðOj � OÞ) expressed in the
absolute reference system;

• components q
xjþ1

of the displacement vector of centre of gravity Ojþ1 of body

jþ 1 with respect to the absolute reference frame (vector ðOjþ1 � OÞ) expressed
in the absolute reference system;

• the Cardan angles q
#j
which define the angular position of body j with respect to

the absolute reference frame;
• the Cardan angles q

#jþ1
which define the angular position of body jþ 1 with

respect to the absolute reference frame.

In this case, vector XPQ;0, which defines the components of the relative dis-
placement of the ends of the elastic element (1.253) can easily be defined by
keeping account of equations:

P� Oð Þ ¼ hTp XP0p;p þ hT0 X0p0;0 ¼ hT0 Kp0

 �

XP0p;p þX0p0;0

� � ¼ hT0 XP0;0

P� Oð Þ ¼ hTq XQ0q;q þ hT0 X0q0;0 ¼ hT0 Kq0

 �

XQ0q;q þX0q0;0

� � ¼ hT0 XQ0;0

ð1:256Þ

from which:

XPQ;0 ¼ XP0;0 �XQ0;0 ¼ Kp0 q
#j

� �h i
XP0p;p þ q

xj
� Kq0 q

#jþ1

� �h i
XQ0q;q � q

xjþ1

n o
ð1:257Þ

By substituting this relation in Eqs. (1.254) and (1.248), it is, thus, possible to
define the term of potential energy associated with the generic elastic element as a
function of the independent variables.

To calculate the terms associated with the gravitational field according to
Lagrange, it is necessary to express the potential energy Vgi associated with the
generic rigid body:

Vgi ¼ mighi ð1:258Þ

as a function of the most convenient physical variable, in this case, elevation hi of
the centre of gravity of same (Fig. 1.20): this elevation depends on the independent
variables q

i
which define the motion of same:

hi ¼ hi q
i

� �
ð1:259Þ
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In this case too, it is necessary to clearly express this dependency in Eq. (1.259) in
order to subsequently apply Lagrange’s equations. Using the conventions shown in
Fig. 1.18, the elevation of the centre of gravity can be defined as:

hi ¼ uT q
i

ð1:260Þ

where q
i
is the vector that contains the 6 independent coordinates that describe the

motion of the body considered and:

uT ¼ 0 0 1 0 0 0f g ð1:261Þ

from which:

Vgi ¼ mi g u
T q

i
ð1:262Þ

1.7.4 Dissipation Forces

To calculate the terms associated with the dissipation field according to Lagrange, it
is necessary to introduce the dissipation function of the system analysed:

D ¼
Xns
i¼1

Di ð1:263Þ

Fig. 1.18 Introduction of the
gravitational field
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where Di is the dissipation function associated with the generic damping element of
constant ri (Fig. 1.18):

Di ¼ 1
2
_DlTi ri _Dli ð1:264Þ

as a function of the elongation velocity _Dli of same. Owing to the fact that the
elongation (Fig. 1.17) depends on the motion of the two attachment points P and
Q and the latter on the independent variables q

i
:

q
i
¼

q
xj

q
#j

q
xjþ1

q
#jþ1

8>><
>>:

9>>=
>>; ð1:265Þ

which define the motion of the connected bodies, it is necessary to clearly explain
this dependency in Eq. (1.264):

_Dli ¼ @Dli
@ q

iPQ

" #
_q
i
¼ @Dli

@ XPQ;0

" #
@ XPQ;0

@ q
i

" #
_q
i
¼ @Dli

@ XPQ;0

" #
Kri½ � _q

i
ð1:266Þ

in order to subsequently apply Lagrange. The Jacobian

Kri½ � ¼ @ XPQ;0

@ q
i

" #
ð1:267Þ

present in Eq. (1.267) can be expressed, by keeping account of Eq. (1.257), starting
from the expression of the velocities of the two connection points:

~VP ¼ hTp XP0p;p

 �

xp;p þ hT0 _X0p0;0 ¼ hT0 K10 q
#j

� �h i
½XP0p;p� A#j q

#j

� �h i
_q
#j
þ _q

xj

n o
¼ hT0 _XP0;0

~VQ ¼ hTq XQ0q;q

 �

xq;q þ hT0 _X0q0;0 ¼ hT0 K20 q
#jþ1

� �h i
½XQ0q;q� A#jþ1 q

#jþ1

� �h i
_q
#jþ1

þ _q
xjþ1

n o
¼ hT0 _XQ0;0 ð1:268Þ

The link between the relative velocities of the two points and the independent
variables that describe the motion of same becomes:

_XPQ;0 ¼ _XP0;0 � _XQ0;0 ¼ Kj0 q
#j

� �h i
XP0p;p

 �

A#j q
#j

� �h i
_q
#j
þ _q

xj

n
� Kjþ10 q

#jþ1

� �h i
XQ0q;q

 �

A#jþ1 q
#jþ1

� �h i
_q
#jþ1

� _q
xjþ1

o
¼ @ XPQ;0

@ q
i

" #
_q
i

ð1:269Þ
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from which it is possible to calculate the Jacobian of Eq. (1.267):

Kri½ � ¼ @ XPQ;0

@ q
i

" #
¼ I½ � Kj0 q

#j

� �h i
XP0p;p

 �

A#j q
#j

� �h ih i
� I½ �

h
� Kjþ10 q

#jþ1

� �h i
XQ0q;q

 �

A#jþ1 q
#jþ1

� �h ih i ð1:270Þ

On the contrary, the partial derivative of elongation @Dli
@ XPQ;0

h i
with respect to dis-

placements (1.266) is simple:

@Dli
@ XPQ;0

" #
¼ @li

@ XPQ;0

" #
¼ @li

@xPQ;0
@li

@yPQ;0
@li

@zPQ;0

h i
¼ 1

li
xPQ;0 1

li
yPQ;0 1

li
zPQ;0

h i
¼ 1

li
XT
PQ;0

ð1:271Þ

Thus, by keeping account of Eqs. (1.270) and (1.271), the dissipation function of
the generic interconnection element of the multi-body system (1.264) can thus be
expressed as a function of the independent variables assumed as:

Di ¼ 1
2
_qT
i

Kri½ �T XPQ;0
1
li
ri
1
li
XT
PQ;0 Kri½ �

� �
_q
i
¼ 1

2
_qT
i
Ri½ � _q

i
ð1:272Þ

having used:

Ri½ � ¼ Kri½ �T XPQ;0
1
li
ri
1
li
XT
PQ;0 Kri½ �

� �
ð1:273Þ

to indicate the generalized damping matrix in the independent coordinates _q
i
of the

system. In this way, it is possible to apply Lagrange and to obtain the generalized
forces caused by the dissipation terms.

1.7.5 Definition of Kinetic Energy

In Sect. 1.7.1 we introduced the kinetic energy expression of a body in space by
introducing the tensor of diagonal inertia. By using the multi-body systems
approach it is possible to demonstrate its expression by using the matrix method-
ology proposed.
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Let us consider the generic i-nth rigid body (Fig. 1.19) in space whose kinetic
energy we wish to evaluate. The kinetic energy of the infinitesimal element
(point P) belonging to the rigid body [1, 3, 10, 23]16:

dEci ¼ 1
2
V2
Pdm ¼ 1

2
~VT
P x ~VPdm ð1:274Þ

where dm ¼ qdVol is the infinitesimal mass, q the mass per unit of volume and
finally, ~VP the velocity of the same point. The kinetic energy of the rigid body will
be the integral extended to the volume of the body itself of Eq. (1.274).

To define the velocity of the point, it is necessary to derive vector position (P–O)
with respect to time, in order to obtain, through use of the methodology proposed,
the following expressions:

ðP� OÞ ¼ ðGi � OÞ þ ðP� GiÞ ¼~h
T
oXGiO;O þ~h

T
i XPiGi;i ¼~h

T
oXGiO;O þ~h

T
i XPiGi;i

~VP ¼ dðP� OÞ
dt

¼~h
T
o
_XGiO;O þ d~h

T
1

dt
XPiGi;i ¼~h

T
o
_XGiO;O þ~h

T
i Xp

 �

xi;i

ð1:275Þ

in which we recall that:

Xp

 � ¼ XPiGi;i


 � ¼ 0 zPiGi;i �yPiGi;i
�zPiGi;i 0 xPiGi;i
yPiGi;i �xPiGi;i 0

2
4

3
5 ¼

0 zp �yp
�zp 0 xp
yp �xp 0

2
4

3
5 ð1:276Þ

P

Fig. 1.19 Kinematic analysis of the generic i-nth rigid body

16The two relations in Eq. (1.274) are totally similar: in this section we prefer the second
expression which allows for an easier matrix formulation of the kinetic energy.
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is the matrix that contains the coordinates xPiGi;i ¼ xp; yPiGi;i ¼ yp; zPiGi;i ¼ zp of the
generic point considered expressed in the local reference system connected to the
body and that vector xi;i:

xi;i ¼
xxi;i

xyi;i

xzi;i

8<
:

9=
; ð1:277Þ

contains the components of the angular velocity vector of the body projected onto
the local reference system (see Fig. 1.20).

The kinetic energy of the generic infinitesimal small element thus becomes:

dEci ¼ 1
2
~VP

T �~VPdm ¼ 1
2

xT
i;i Xp

 �T~hi þ _X

T
GiO;O

~ho
� �

� ~h
T
o
_XGiO;O þ~h

T
i Xp

 �

xi;i

� �
dm

¼ 1
2
xT

i;i
Xp

 �T~hi �~h

T
o
_XGiO;O dmþ 1

2
xT

i;i
Xp

 �T~hi �~h

T
i Xp

 �

xi;idm

þ 1
2
_X
T

Gi;o
~ho �~h

T
o
_XGiO;O dmþ 1

2
_X
T

GiO;O
~ho �~h

T
i Xp

 �

xi;idm

ð1:278Þ

keeping account of equations:

~h
T
o
_XGiO;O ¼~h

T
i KOi½ � _XGiO;O

~hi �~h
T
i ¼ I½ �

ð1:279Þ

X

Z

Y

Zc 
Yc 

Xc 

Gc 

xi,i 

yi,i 
zi,i 

Z

Y

X

Gc 

oio,o 

xoio,o 

oio,o 

˙ 

ω ω

ω

Fig. 1.20 Definition of the velocity components ~Vi and ~xi for a generic rigid body
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and keeping account that the kinetic energy is a scalar term, (1.278) can be reduced
to the following expression:

dEci ¼ xT
i;i Xp

 �T

Koi½ � _XGiO;Odmþ 1
2
xT

i;i
Xp

 �T

Xp

 �

xi;i dmþ 1
2
_X
T
GiO;O I½ � _XGiO;Odm ð1:280Þ

The kinetic energy associated with the entire rigid body considered can, at this
point, be calculated as:

Eci ¼
Z
Vol

dEci ¼ xT
i;i

Z
Vol

Xp

 �T

q dVol

2
4

3
5 Koi½ � _XGiO;O

þ 1
2
xT

i;i

Z
Vol

Xp

 �T

Xp

 �

q dVol

2
4

3
5xi;i þ

1
2
_X
T
GiO;O

Z
Vol

I½ �qdVol

2
4

3
5 _XGiO;O

ð1:281Þ

the term:

Z
Vol

I½ �q dVol

2
4

3
5 ¼

mi

mi

mi

2
4

3
5 ¼ mmi½ � ð1:282Þ

is the portion of the mass matrix associated with the translation terms. Having
considered the reduction pole corresponding to the centre of gravity of the body
itself, the term:

Z
Vol

Xp

 �T

qdVol

2
4

3
5 ¼

0
R
Vol

zpqdVol � R
Vol

ypqdVol

� R
Vol

zpq dVol 0
R
Vol

xpqdVolR
Vol

ypq dVol � R
Vol

xpqdVol 0

2
66664

3
77775 ¼ 0½ � ð1:283Þ

is null and, finally, it is possible to evaluate the inertia tensor defined in the ref-
erence system connected to body [Ji] and, thus, for this reason, constant in time:

Ji½ � ¼
Z
Vol

Xp

 �T

Xp

 �

qdVol

2
4

3
5 ¼

Z
Vol

0 �zp yp
zp 0 �xp
�yp xp 0

2
64

3
75 0 zp �yp

�zp 0 xp
yp �xp 0

2
64

3
75qdVol

2
64

3
75

¼

R
Vol

z2
p
þ y2

p

� �
q dVol � R

Vol
y
p
x
p
q dVol � R

Vol
z
p
x
p
q dVol

� R
Vol

x
p
y
p
q dVol

R
Vol

z2
p
þ x2

p

� �
q dVol � R

Vol
z
p
y
p
q dVol

� R
Vol

z
p
x
p
q dVol � R

Vol
y
p
z
p
q dVol

R
Vol

y2
p
þ x2

p

� �
q dVol

2
6666664

3
7777775 ¼

Jxi �Jxyi �Jxzi
�Jxyi Jyi �Jyzi
�Jxzi �Jyzi Jzi

2
64

3
75

ð1:284Þ

If the reference system, connected to the body, proves to have axes that are parallel
to the main axes of inertia, the same tensor becomes diagonal [3, 4, 10]:
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Ji½ � ¼
Jxi 0 0
0 Jyi 0
0 0 Jzi

2
4

3
5 ð1:285Þ

By keeping account of Eqs. (1.282), (1.283) and (1.284), the kinetic energy of the
generic rigid body (1.281) thus becomes:

Eci ¼ 1
2
xT

i;i Ji½ �xi;i þ
1
2
_X
T
GiO;O mmi½ � _XGiO;O ð1:286Þ

Having reunited the two vectors:

_Ymi ¼
_XGiO;O
xi;i

� �
ð1:287Þ

the kinetic energy can, thus, be defined in compact matrix form as:

Eci ¼ 1
2
_Y
T
mi mi½ � _Ymi ¼

1
2
_Y
T
mi

mmi½ � ½0�
½0� Ji½ �

� �
_Ymi ð1:288Þ

Finally, by keeping account of the link between the physical variables and the
independent variables (centre of gravity displacements and Cardan angles),
Eqs. (1.228) and (1.229):

_XGiO;O ¼ _q
xi

xi;i ¼ A q
hi

� �h i
_q
hi

ð1:289Þ

we obtain:

_Ymi ¼ Kmi½ � _q
xi
_q
hi

� �
¼

½I� ½0�
½0� A q

hi

� �h i" #
_q
xi
_q
hi

� �
¼ Kmi½ � _q

i
ð1:290Þ

from which:

Eci ¼ 1
2
_qT
i
Kmi½ �T mi½ � Kmi½ � _q

i
¼ 1

2
_qT
i
Mi½ � _q

i
ð1:291Þ

where:

Mi½ � ¼ Kmi½ �T mi½ � Kmi½ � ¼
½mi� ½0�
½0� A q

hi

� �h iT
Ji½ � A q

hi

� �h i" #
ð1:292Þ

The mass matrix in independent coordinates of the generic rigid body.

74 1 Nonlinear Systems with 1-n Degrees of Freedom



www.manaraa.com

1.7.6 Writing the Equations of Motion

By keeping account of the expressions of the various forms of kinetic energy Ec

(1.232), potential V (1.247) and (1.248), of the dissipation function D (1.272) and,
finally, of the work of the active external forces d � L (1.246), explained in the
independent variables, it is possible to apply Lagrange’s Equation (1.217).

The equations obtained are formally of the type:

½MðqÞ�q:: ¼ �½ _Mðq; _qÞ� _qþ Q
c
ðq; _qÞ � Q

p
ðqÞ � ½RðqÞ� _q ð1:293Þ

where ½MðqÞ� has been used to indicate the mass matrix of the system which is

dependent on the position assumed by same, terms �½ _Mðq; _qÞ� _qþ Q
c
ðq; _qÞ contain

the gyroscopic effects and the Coriolis components, term Q
c
ðq; _qÞ derives, in par-

ticular, from term � @Ec
@q

n oT
, ½RðqÞ� _q represents the contribution of the dissipation

elements and Q
p
ðqÞ contains the elastic terms.

In order to obtain a more detailed description of the methodology used for the
automatic definition of the equations of motion, starting from Lagrange’s equations,
the reader should refer to specialized texts [1, 2, 24].

In general, Eq. (1.293) should be numerically integrated, using suitable numeric
step-by-step integration methods, more widely described in [1, 9, 14, 18, 19].

More often than not, in engineering problems, it is sufficient to evaluate the
response of the mechanical system being examined, linearized in the neighbour-
hood of a certain static equilibrium position (idle or steady state): in these cases, it is
possible to linearize the Eqs. (1.293) in the neighbourhood of this position (as
previously seen for systems with 1 or 2 d.o.f. and as widely described [2, 4, 23] for
systems that generically have n d.o.f.., thus obtaining the following equation:

½M�oq
:: þ ½R�o _qþ ½K�oq ¼ QðtÞ ð1:294Þ

in which q represents the vector of the degrees of freedom of the linearized system
in the neighbourhood of the equilibrium position considered, ½M�o; ½R�o and ½K�o
are the relative matrices of mass, damping and stiffness and, finally, QðtÞ is the
vector of the Lagrangian components.

The next Chap. 2 will be entirely dedicated to the analysis of these linear or
linearized system and to the description of the methodologies necessary to evaluate
the dynamic response either in the presence or absence of external excitation forces.
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1.7.7 The Cardinal Equations of Dynamics

As previously mentioned, writing of the equations of motion can also be done by
using the cardinal equations of dynamics [1, 2, 5]. Let us consider a generic ith rigid
body in space (see Figs. 1.19 and 1.20) subjected to “nf” forces ~Fk and “nm”
applied moments: the Newton-Euler equations [1, 2] are:

Xnf
k¼1

~Fk ¼
d ~Qi
� 
dt

Xnm
k¼1

~Mgk ¼
d ~Ci

� �
dt

ð1:295Þ

Having used ~Qi and ~Ci to respectively indicate the momentum and the angular
momentum [3, 10]. These amplitudes associated with a generic infinitesimal small
element of the body considered can be written as (see Fig. 1.21)17:

17By generally considering the vectorial product between the two generic vectors ~a and ~b
expressed in just as a generic reference system; this product can be expressed in matrix form as:

~c ¼~aK~b ¼ ~iax þ~jay þ~kaz
� �

K ~ibx þ~jby þ~kbz
� �

¼~kaxby �~jaxbz �~kaybx þ~iaybz þ~jazbx �~iazby

¼ þ~i aybz � azby
� þ~j azbx � axbzð Þ þ~k axby � aybx

� 
¼ h

*T
aybz � azby
azbx � axbz
axby � aybx

8><
>:

9>=
>; ¼ h

*T
a½ �b ¼ h

*T
b½ �a

ð1:17:1Þ

where

a½ � ¼
0 �az ay
az 0 �ax
�ay ax 0

2
4

3
5; b½ � ¼

0 bz �by
�bz 0 bx
by �bx 0

2
4

3
5; a ¼

ax
ay
az

8<
:

9=
;; b ¼

bx
by
bz

8<
:

9=
; ð1:17:2Þ

By directly introducing the matrix approach proposed to define the vectors:

~a ¼ h
*T

a; ~b ¼ h
*T

b; ~c ¼ h
*T

c ð1:17:3Þ

The same vectorial product (1.16.1) can also be defined as:

~c ¼~aK~b ¼~aTK~b ¼ aTh
*

Kh
*T

b ¼ aT
0 ~k � j

*

�k
*

0 i
*

j
* � i

*

0

2
64

3
75b ¼ h

*T
a½ �b ¼ h

*T
b½ �a ð1:17:4Þ
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d~Qi ¼ ~VP dm

d~Ci ¼ ðP� GÞK~VP dm ¼ ðP� GÞTK~VP dm
ð1:296Þ

As usual, the velocity of point P can be calculated by means of the following
expression:

ðP� OÞ ¼ ðP� GÞ þ ðG� PÞ ¼~hToXGiO;O þ~hTi XPiGi;i

~VP ¼ d P� Oð Þ
dt

¼~hTo _XGiO;O þ~hTi XP½ �xi;i

ð1:297Þ

where (1.276):

Xp

 � ¼ 0 zp �yp

�zp 0 xp
yp �xp 0

2
4

3
5 ð1:298Þ

is the matrix that contains the coordinates of the generic point considered, expressed
in the local reference system connected to the body and vector xi;i (1.277):

xi;i ¼
xxi;i

xyi;i

xzi;i

8<
:

9=
; ð1:299Þ

contains the components of the angular velocity vector of the body projected onto
the local reference system (see Fig. 1.20).

Fig. 1.21 Kinematic analysis of the generic ith rigid body
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The momentum associated with the generic infinitesimal small element thus
becomes:

d~Qi ¼ ~hTo _XGiO;O þ~hTi XP½ �xi;i

� �
dm ð1:300Þ

The momentum of the rigid body is thus:

~Qi ¼
Z
Vol

~hTo _XGiO;O q dVol þ
Z
Vol

~hTi XP½ �xi;iqdVol ¼~hTo

Z
Vol

½I� q dVol

2
4

3
5 _XGiO;O

þ~hTi

Z
Vol

XP½ �qdVol

2
4

3
5xi;i ¼~hTo m½ � _XGiO;O þ ~hTi

Z
Vol

XP½ � q dVol

2
4

3
5xi;i

ð1:301Þ

Having considered the reduction pole corresponding to the centre of gravity of the
body itself, the term

Z
Vol

XP½ �qdVol

2
4

3
5 ¼

0
R
Vol

zpqdVol � R
Vol

ypqdVol

� R
Vol

zpqdVol 0
R
Vol

xpqdVolR
Vol

ypqdVol � R
Vol

xpqdVol 0

2
66664

3
77775 ¼ 0½ � ð1:302Þ

is null, and, by keeping account of Eqs. (1.302), (1.301) becomes:

~Qi ¼~hTo mmi½ � _XGiO;O ð1:303Þ

from which Eq. (1.295) becomes:

Xnf
k¼1

~Fk ¼
d ~Qi
� 
dt

)~hToFo ¼
d ~Qi
� 
dt

¼~hTo mmi½ �X::GiO;O ) Fo ¼ mmi½ �X:: GiO;O

ð1:304Þ

Similarly, the angular momentum of the infinitesimal small element can be defined
as:

d~C ¼ ðP� GÞ TK ~V dm ¼ XT
p
~hiK ~hTo _XGiO;O þ~hTi XP½ �xi;i

� �
dm

¼ XT
p
~hiK~h

T
o
_XGiO;O dmþ XT

p
~hiK~h

T
i XP½ �xi;i dm

¼ XT
p
~hiK~h

T
i KOi½ � _XGiO;Odmþ XT

p
~hiK~h

T
i XP½ �xi;idm

ð1:305Þ

78 1 Nonlinear Systems with 1-n Degrees of Freedom



www.manaraa.com

By keeping account of the following relations:

XT
p
~hiK~h

T
i ¼ XT

p

~ii
~ji
~ki

8><
>:

9>=
>; ~ii ~ji ~ki
� �

¼ xp yp zp
� � 0 ~ki �~ji

�~ki 0 ~ii
~ji �~ii 0

2
64

3
75

¼ �~kiyp þ~jizp ~kixp �~iizp �~jixp þ~iiyp
� � ¼~hTi XP½ �T

ð1:306Þ

the angular momentum (1.10) becomes:

d~C ¼~hTi XP½ �T KOi½ � _XGiO;O dmþ~hTi XP½ � XP½ �Txi;idm ð1:307Þ

and for the entire rigid body:

~C ¼
Z
Vol

d~C ¼~hTi

Z
Vol

XP½ �TqdVol

2
4

3
5 KO1½ � _XGiO;O þ~hTi

Z
Vol

XP½ � XP½ �Tq dVol

2
4

3
5xi;i

ð1:308Þ

Since relation (1.302) is valid, and by indicating the inertia tensor (1.284) by Ji½ �,
the relation which defines the angular momentum (1.308) can be rewritten as:

~C ¼~hTi Ji½ �xi;i ð1:309Þ

from which:

Xnm
k¼1

~Mgk ¼~hTi Mi ¼
d ~C
� �
dt

¼
d ~hTi Ji½ �xi;i

� �
dt

¼~hTi xi;i

 �

Ji½ �xi;i þ~hTi Ji½ � _xi;i ð1:310Þ

having used matrix xi;i

 �

to indicate:

xi;i

 � ¼ 0 �xzi;i xyi;i

xzi;i 0 �xxi;i

�xyi;i xxi;i 0

2
4

3
5 ð1:311Þ
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In short, we have18:

Fo ¼ m½ � X
::

GiO;O

Mi ¼ xi;i

 �

Ji½ �xi;i þ Ji½ � _xi;i

8<
: ð1:312Þ

A relation in which it is then possible to substitute the relationship between the
physical variables and the independent variables:

X
::

GiO;O ¼ q
::

x

xi;i ¼ Aðq
h
Þ

h i
_q
h

8<
: ð1:313Þ

Summary This chapter of the book describes the large motion non-linear
dynamics of multi-body discrete 1, 2 and “n” degree-of-freedom systems using
scalar and matrix methodologies (Lagrange’s equations) to write the related
equations of motion. Concepts regarding the degrees of freedom of mechanical
systems (associated with constraints and their schematization), physical variables
and independent coordinates are introduced. The equations of “motion in large” and
their linearization in the neighborhood of the equilibrium position (static or steady
state) are introduced and described. For 3D motions, the basic concepts of multi-
body methods are shown. Several examples are shown in the text.
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Chapter 2
The Dynamic Behaviour of Discrete
Linear Systems

2.1 Introduction

After describing the methodology to define the equations of motion of a generic
nonlinear discrete system in Chap. 1, generally n-degree-of-freedom (d.o.f.) sys-
tems, in this chapter the case of linear or linearized systems about the static equi-
librium position will be analysed. From a strictly engineering point of view, this
procedure not only permits the simplified modelling of machinery and structures
but also, more specifically, the resolution of dynamic problems related to
mechanical vibrations, or rather to the small oscillations to which the latter might be
subjected during standard operating procedures. In this chapter, a rigorous, rapid
methodology, based on matrix notation, will be used in order to enable us to
directly write the linearized equations of motion. Subsequently, an analytical-
numerical procedure will also be provided in order to allow us to calculate the
solution of these equations not only in the case of free motion (response of the
system to an initial disturbance starting from the static equilibrium position) but
also in the case of forced motion.

2.2 Writing Equations of Motion

The methodology used to write the equations of motion for discrete systems con-
sisting of rigid bodies, with several linear or linearized d.o.f. about the static
equilibrium position (static position) may be generalized, as shown in the Chap. 1,
by adopting a matrix method that is particularly suitable for implementation on
computers.

This approach allows us to obtain the equations of motion of the system using
both Euler’s (cardinal equations of dynamics) and Lagrange’s equations (a meth-
odology that will also be used when expounding on this particular procedure).

© Springer International Publishing Switzerland 2015
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Let us consider a generic n d.o.f. system (Fig. 2.1), consisting of nc rigid bodies,
mutually interconnected either by means of ideal kinematic constraints or elastic
and damping elements, subjected to external forces.

Let us use:

• x to define the vector of n independent coordinates that define the generic
motion of the system where:

n ¼ 6nc � nv ð2:1Þ

and nv is the number of the constraint equations;
• x to define the vector of n independent coordinates that define the perturbed

motion

x ¼ x� x0 ð2:2Þ

about the static equilibrium position:

x ¼ x0 ð2:3Þ

• Y to define the vector of the physical coordinates that are useful to define the
various forms of energy that appear in the Lagrange’s equations. As seen in
Chap. 1, in terms of physical coordinates Y , it is possible to assume, for
example, the absolute displacements of the centres of gravity of the single
bodies and the absolute rotations of the bodies themselves (variables that are
convenient in terms of defining the kinetic energy Ec of the system), the relative
displacements of the extremities of the elastic and damping elements (ampli-
tudes that are suitable to define potential energy V and dissipation function D)
and the displacements of the application points of the external forces in order to
evaluate their virtual work d�L.

Fig. 2.1 Typical multi-body
system
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As already widely described in the Chap. 1, the equations of motion of the
system can be obtained from Lagrange’s equations which, in matrix form, assume
the following expression:

d
dt

@EC

@ _x

� �� �T

� @EC

@x

� �T

þ @D

@ _x

� �T

þ @V
@x

� �T

¼ Q ð2:4Þ

in which Ec, D and V respectively indicate the kinetic energy, the dissipation
function and the potential energy of the system, while the term Q represents a
column vector whose generic ith element Qi coincides with the ratio between the
virtual work d�Li performed by the active forces due to the sole generic virtual
displacement d�xi and the displacement itself:

Qi ¼ d�Li
d�xi

ði ¼ 1; 2; . . .; nÞ ð2:5Þ

To obtain the linearized equations of motion about the static equilibrium posi-
tion, it is necessary to make the various forms of energy quadratic.

For this purpose, it is necessary:

• to define as a function of physical coordinates Y and, in matrix form, kinetic
energy Ec, potential V, dissipative D and virtual work d�L of the active external
forces;

• to define the links between physical coordinates Y and independent coordinates
x through functions of the type Y ¼ YðxÞ;

• to replace these links and to make the various forms of energy quadratic, by
evaluating the Jacobian and Hessian matrices that link the physical variables to
the independent variables in the static equilibrium position considered.

2.2.1 Kinetic Energy

To express kinetic energy Ec, in view of the fact that we are here dealing with rigid
bodies, the simplest approach, as previously mentioned, is to refer to their centre of
gravity, by writing (see Fig. 2.2):

• their contribution to translation as a function of components _xj; _yj; _zj of the
absolute velocity of the centre of gravity v!j expressed in the absolute reference
system;

• their contribution to rotation by expressing the absolute velocity vector of
rotation ~xj of the body as a function of the 3 components _hj1; _hj2; _hj3 expressed
in a Cartesian reference system nj1 � nj2 � nj3 connected to the body itself of
origin Oj in the centre of gravity of body Gj and axes parallel to the main axes of
inertia; in this way, the inertia tensor is diagonal [13, 18].
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Using this approach, the total kinetic energy Ec of the system is given by the sum
of contributions Ecj of nc rigid bodies constituting the system itself:

Ec ¼
Xnc
j¼1

Ecj ¼
Xnc
j¼1

1
2
mjv

2
j þ

1
2

Jj1 _h
2
j1 þ Jj2 _h

2
j2 þ Jj3 _h

2
j3

� �
ð2:6Þ

which, having used Mjk to generically indicate both the real mass of each body mj,
and the generic moment of inertia Jjk with respect to a main axis, can be expressed,
in a more general formulation, as:

Ec ¼
Xnc
j¼1

X6
k¼1

1
2
Mjk _y

2
jk ð2:7Þ

And then, in a more compact matrix form, as:

Ec ¼ 1
2
_Y
T
m My
� 	

_Ym ð2:8Þ

having used:

_Ym ¼

_y11
_y12
:
:

_ync6

8>>>><>>>>:

9>>>>=>>>>; ð2:9Þ

to generically define the vector of physical variables (generally a vector composed
of 6 × nc elements) and My

� 	
the mass matrix as a function of the same physical

coordinates which, by taking into account (2.7), is diagonal:

Z

X

Y

Gj

xJ

ξJ3

ξJ2

ξJ1

θJ3

θJ1

zJ

Vj

ωj ωj

Vj
ξJ3

ξJ2

ξJ1

Z

X

Y

Fig. 2.2 Definition of velocity components for the generic rigid body
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My
� 	 ¼

M11 0 . . . 0 . . . 0
0 M12 . . . 0 . . . 0
..
. ..

.
. . . ..

.
. . . ..

.

0 0 . . . 0 . . . Mnc6

26664
37775 ¼ diag M11 M12 . . .Mnc6f g ð2:10Þ

Generally speaking, the physical coordinates yjk do not coincide with the free
coordinates xi of the entire system: the link between the physical coordinates and
the free coordinates, which represent holonomic constraint conditions, of the type:

yjk ¼ yjkðx1; x2; . . .; xnÞ ¼ yjk xð Þ ðj ¼ 1; . . .;m; k ¼ 1; . . .; 6Þ ð2:11Þ

are generally nonlinear, having collected the independent variables xi in the vector
x. Equation (2.11) can briefly be rewritten in matrix form as:

Ym ¼ Ym xð Þ ð2:12Þ

Each component of the velocity vector can be calculated by the time derivative
of (2.11) in scalar form, as:

_yjk ¼ @yjk
@x1

_x1 þ @yjk
@x2

_x2þ � � � þ @yjk
@xn

_xn ðj ¼ 1; . . .; nc; k ¼ 1; . . .; 6Þ ð2:13Þ

i.e. by vector:

_yjk ¼ @yjk
@x

� �
_x ð2:14Þ

It is then possible to define vector Ym of the velocity components in matrix form,
by taking into account that:

_Ym ¼ @Ym

@x


 �
_x ¼ @Ym

@x


 �
_x ð2:15Þ

and remembering that the derivative of a vector with respect to another vector is a
matrix, we have:

_Ym ¼ @Ym

@x


 �
�_x ¼

@y11
@x1

@y11
@x2

. . . @y11
@xn

. . . . . . . . . . . .
@yjk
@x1

@yjk
@x2

. . .
@yjk
@xn

. . . . . . . . . . . .
@ync6
@x1

@ync6
@x2

. . . @ync6
@xn1

266666664

377777775
�_x ¼ K xð Þ½ �m�_x ð2:16Þ

Matrix K xð Þ½ �m is termed Jacobian and, for nonlinear systems, depends on the
same independent variables x. For perturbed systems about the static equilibrium
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position, in order to obtain linear equations of motion it is necessary, as previously
mentioned, to make the various forms of energy quadratic: as regards kinetic
energy, this can be reduced to a quadratic form by evaluating the Jacobian K xð Þ½ �m
in correspondence to the equilibrium position, or rather for xi ¼ 0 i ¼ 1; nð Þ:

K xð Þ½ �m¼
@Ym

@x


 �
0
¼ Km½ � ¼ const: ð2:17Þ

By now introducing the link between the physical variables and the independent
variables (2.15) and (2.17) into (2.8), for the generic linear or linearized system, we
obtain:

Ec ¼ 1
2
_x
T @Ym

@x


 �T
0
My
� 	 @Ym

@x


 �
0
_x

¼ 1
2
_x
T
Km½ �T My

� 	
Km½ � _x ¼ 1

2
_x
T
M0½ � _x

ð2:18Þ

The product:

½M0� ¼ Km½ �T My
� 	

Km½ � ð2:19Þ

is a square matrix of n × n order and is the mass matrix of the system, generalized
with the d.o.f. of vector x.

2.2.2 Dissipation Function

In the event of only considering concentrated viscous dampers with a constant rj (all
types of damping are attributable, either directly or approximately, to this type of
damping), dissipative function D of the entire system is expressed in a formal
manner similar to that of potential energy:

D ¼ 1
2

Xnr
j¼1

rj _Dl
2
j ¼

1
2
_Dl

T
r r½ � _Dlr ð2:20Þ

where [r] is a diagonal matrix which contains the damping constants rj of the
individual dampers:

½r� ¼
r1 0 . . . 0 . . . 0
0 r2 . . . 0 . . . 0
. . . . . . . . . . . . . . . . . .
0 0 . . . 0 . . . rnr

2664
3775 ð2:21Þ
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while vector _Dlr contains the corresponding elongation speeds _Dlj:

_Dl
T
r ¼ _Dl1 _Dl2 . . . . . . _Dlnr

�  ð2:22Þ

Constants rj (2.20) can be obtained from the hysteresis curve of the elastic
dissipative element or from the characteristic curves that simulate the link between
the force transmitted by the damping element and the relative speed _Dlj of its
extremities. The values obtained from rj can thus be constant or functions of
variables x and _x themselves: in the pages that follow we will analyse the case of
constant values of rj. Elongations _Dlj are generally expressed as a nonlinear
function of independent coordinates xi:

Dlr ¼ Dlr xð Þ ¼
Dl1 x1; x2; . . .; xnð Þ
Dl2 x1; x2; . . .; xnð Þ

. . .
Dlnr x1; x2; . . .; xnð Þ

8>><>>:
9>>=>>; ð2:23Þ

The time derivatives of the elongations, or rather the relative speeds between the
damper extremities, are:

_Dlr ¼
@Dlr
@x


 �
_x ¼ K xð Þ½ �d _x ¼ K xð Þ½ �d _x ð2:24Þ

If the links between the physical variables Dlr and the independent variables x
are linear or if the same equations are linearized about the static equilibrium
position, then

KðxÞ½ �d¼
@Dlr
@x


 �
¼

@Dl1
@x1

@Dl1
@x2

. . . @Dl1
@xn

. . . . . . . . . . . .
@Dlj
@x1

@Dlj
@x2

. . .
@Dlj
@xn

. . . . . . . . . . . .
@Dlnr
@x1

@Dlnr
@x2

. . . @Dlnr
@xn

266666664

377777775
ð2:25Þ

becomes a constant matrix:

K xð Þ½ �d¼
@Dl

@x


 �
0
¼ Kd½ � ¼ const: ð2:26Þ

For linear or linearized systems about the static equilibrium position, dissipation
function D can thus be expressed as:

D ¼ 1
2
_Dl

T
r r½ � _Dlr ¼

1
2
_x
T
Kd½ �T r½ � Kd½ � _x ¼ 1

2
_x
T
R0½ � _x ð2:27Þ

where [R] is the generalized damping matrix of the overall system.
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2.2.3 Potential Energy

Let us now consider, on a general basis, the contribution made not only by the
elastic elements kj that connect the various bodies, either to each other or to the
outside world, but also the gravitational field to the potential energy. By using Dlj to
define the elongations of the generic jth elastic element, starting from the position of
the unloaded spring, where pj and hj are respectively the weight and elevation of the
centre of gravity of the general body that constitutes the mechanical system under
consideration, potential energy V of the system can be so expressed as:

V ¼ 1
2

Xnk
j¼1

kjDl2j þ
XnP
j¼1

pjhj ¼ 1
2
DlTk k½ �Dlk þ pTh ð2:28Þ

having collected the elongations Dlj of the nk system elements in vector Dlk:

DlTk ¼ Dl1 Dl2 . . . . . . Dlnkf g ð2:29Þ

with [k] thus being a diagonal matrix containing stiffnesses kj of the individual
springs:

½k� ¼
k1 0 . . . 0 . . . 0
0 k2 . . . 0 . . . 0
. . . . . . . . . . . . . . . . . .
0 0 . . . 0 . . . knk

2664
3775 ð2:30Þ

In (2.28) we also collected the weight and elevations of the centres of gravity in
the following vectors

pT ¼ p1 p2 . . . . . . pnp
� 

hT ¼ h1 h2 . . . . . . hnp
�  ð2:31Þ

Spring constants kj are obtained from the linearization of the curve—generally
nonlinear—which correlates the displacement impressed on the extremities of the
generic elastic jth element and the force that is transmitted as a consequence.
Elongations Dlj and the elevations of the centres of gravity hj (2.28) are generally
expressed as a function of the independent coordinates xi in scalar form as:

Dlj ¼ Dljðx1; x2; . . .; xnÞ ¼ Dlj xð Þ
hj ¼ hjðx1; x2; . . .; xnÞ ¼ hj xð Þ

�
ð2:32Þ

or rather, by collecting spring elongations Dlj in the sole vector Dlk and the ele-
vation of the centres of gravity hj in the single vector h,

90 2 The Dynamic Behaviour of Discrete Linear Systems



www.manaraa.com

Dlk ¼ Dlk xð Þ ¼

Dl1 x1; x2; . . .; xnð Þ
Dl2 x1; x2; . . .; xnð Þ

. . .

Dlnk x1; x2; . . .; xnð Þ

8>>><>>>:
9>>>=>>>;

h ¼ h xð Þ ¼

h1 x1; x2; . . .; xnð Þ
h2 x1; x2; . . .; xnð Þ

. . .

hnp x1; x2; . . .; xnð Þ

8>>><>>>:
9>>>=>>>;

ð2:33Þ

the potential energy V associated with the elastic elements is:

V ¼ 1
2
Dlk xð ÞT ½k�Dlk xð Þ þ pTh xð Þ ð2:34Þ

It is necessary to underline the fact that in this chapter we hypothesized a linear
behaviour of the elastic elements ([k] = constant). Only the link between the
elongations of the extremities and the independent variables (geometrical nonlin-
earity) might possibly prove to be nonlinear.

In the event of our wishing to linearize the equations of motion, it is necessary to
first make the potential energy expression quadratic:

V ¼ V x0ð Þ þ @V
@x

� �
x¼x0

xþ 1
2
xT

@

@x
@V
@x

� �
 �
x¼x0

x ¼ V x0ð Þ þ @V
@x

� �
0
xþ 1

2
xT K0½ �x

ð2:35Þ

where ½K0� is the stiffness matrix of the overall system, expressed as a function of
the independent variables x.

The first derivative of potential energy evaluated in the static equilibrium
position can be rewritten in matrix form as:

@V
@x

� �
0
¼ Dlkf gT0 k½ � @Dlk

@x


 �
0
þpT

@h
@x


 �
0

ð2:36Þ

and, as a consequence, the second derivative, always evaluated about this position, is:

@

@x
@V
@x

� �
 �
0
¼ K0½ � ¼ @Dlk

@x


 �T
0
k½ � @Dlk

@x


 �
0
þ @

@x
@Dlk
@x


 �T" #" #
0

k½ � Dlkf g0þ
@

@x
@h
@x


 �T" #" #
0

p

ð2:37Þ
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where @
@x

@Dlk
@x

h ih ih i
0
and @

@x
@h
@x

h ih ih i
0
are three-dimensional matrices.1

In the case in which the physical variables Dlj and hj are linearly dependent on
independent coordinates x, Eq. (2.37) reduces to:

@

@x
@V
@x

� �� �
0
¼ K0½ � ¼ @Dlk

@x


 �T
0
k½ � @Dlk

@x


 �
0

ð2:38Þ

In (2.35) V x0ð Þ is a constant, Q
0
¼ @V

@x

n o
0
is null by definition of the static

equilibrium position, while the second derivative of potential energy V with respect
to vector x represents the stiffness matrix K0½ �: this matrix is symmetric because, by
definition of conservative system, the rotor of the forces that admit a potential
[13, 18] is null and the second mixed derivatives of the potential energy are equal.

In the case in which the perturbations about the static equilibrium position are
analysed, and the static equilibrium position is stable, K0½ � is also positive definite
(V calculated in x ¼ x0 has a relative minimum).

The aforementioned approach which refers to the use of three-dimensional
matrices can be replaced with a method that uses planar matrices: for this purpose
(2.36) can be rewritten as:

@V
@x

� �
0
¼

Xnk
j¼1

kjDlj
@Dlj
@x

� �
þ
XnP
j¼1

pj
@hj
@x

� �( )
0

ð2:39Þ

and (2.37) as:

@

@x
@V
@x

� �
 �
0
¼

Xnk
j¼1

@Dlj
@x

� �T

kj
@Dlj
@x

� �" #
0

"

þ
Xnk
j¼1

kjDlj
@

@x
@Dlj
@x

� �
 �
0
þ
XnP
j¼1

pj
@

@x
@hj
@x

� �
 �
0

# ð2:40Þ

1The two aforementioned matrices are three-dimensional (m × n × n), where m is the number of
physical variables (number of elastic elements of the system or number of bodies that compose it)

and n is the number of d.o.f. in x. In this way, the generic term of this matrix is k̂ði; j; lÞ ¼ @2Dli
@xj@xl

or

k̂ði; j; lÞ ¼ @2hi
@xj@xl

.
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where:

kjDlj
@

@x
@Dlj
@x

� �
 �
0
¼ kjDlj

@2Dlj
@x1@x1

. . .
@2Dlj
@x1@xi

. . .
@2Dlj
@x1@xn

. . . . . . . . . . . . . . .
@2Dlj
@xi@x1

. . .
@2Dlj
@xi@xi

. . .
@2Dlj
@xi@xn

. . . . . . . . . . . . . . .
@2Dlj
@xn@x1

. . .
@2Dlj
@xn@xi

. . .
@2Dlj
@xn@xn

266666664

377777775
0

¼ KjII
� 	

pj
@

@x
@hj
@x

� �
 �
0
¼ pj

@2hj
@x1@x1

. . .
@2hj
@x1@xi

. . .
@2hj

@x1@xn

. . . . . . . . . . . . . . .
@2hj
@xi@x1

. . .
@2hj
@xi@xi

. . .
@2hj
@xi@xn

. . . . . . . . . . . . . . .
@2hj

@xn@x1
. . .

@2hj
@xn@xi

. . .
@2hj

@xn@xn

266666664

377777775
0

¼ KjIII
� 	

ð2:41Þ

Taking into account (2.40) and (2.41), (2.37) can be rewritten as:

K0½ � ¼ @Dlk
@x


 �T
0
k½ � @Dlk

@x


 �
0
þ
Xnk
j¼1

KjII
� 	

0 þ
XnP
j¼1

KjIII
� 	

0

" #

¼ @Dlk
@x


 �T
0
k½ � @Dlk

@x


 �
0

" #
þ

Xnk
j¼1

KjII
� 	

0 þ
XnP
j¼1

KjIII
� 	

0

" #

¼ @Dlk
@x


 �T
0
k½ � @Dlk

@x


 �
0

" #
þ Kg
� 	

0

ð2:42Þ

where Kg
� 	

0¼
Pnk
j¼1

KjII
� 	

0 þ
PnP
j¼1

KjIII
� 	

0

" #
is the stiffness-gravitational reference

matrix of the system.

2.2.4 Virtual Work of Active Forces

For the calculation of the Lagrangian component of the active forces, not con-
templated in terms of kinetic, potential energy or the dissipation function previously
defined, we use fj to denote the component of the external generic force (or torque)
and yfj the respective displacement (or rotation) component of the relative point of
application of the force. We group the nf components of the fj forces applied to the
system in vector f :
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f T ¼ f1 f2 . . . fi . . . fnf
�  ð2:43Þ

and with d�Yf the vector that contains the nf virtual displacement components d�yfj
of the force application points in the direction of the force themselves:

d�YT
f ¼ d�yf 1 d�yf 2 . . . d�yfj . . . d�yfnf

�  ð2:44Þ

The displacement (or rotation) of the generic application point of the forces (or
torques) is generally a nonlinear function of the independent coordinates x:

Yf ¼ Yf xð Þ ð2:45Þ

The virtual work can thus be expressed in scalar and matrix form as:

d�L ¼
Xnf
j¼1

fjd
�yfj ¼ f Td�Yf ð2:46Þ

The virtual variation d�Yf as a consequence of a virtual variation of the free
coordinates d�x can be evaluated as:

d�Yf ¼
@Yf

@x


 �
d�x ¼ KðxÞ½ �f d�x ð2:47Þ

where KðxÞ½ �f is the Jacobian matrix:

KðxÞ½ �f¼

@yf 1
@x1

@yf 1
@x2

. . .
@yf 1
@xn

. . . . . . . . . . . .
@yfj
@x1

@yfj
@x2

. . .
@yfj
@xn

. . . . . . . . . . . .
@yfnf
@x1

@yfnf
@x2

. . .
@yfnf
@xn

2666666664

3777777775
ð2:48Þ

If the dependence of d�Yf from x is linear, this matrix is constant, while if
nonlinear (similarly to what was seen in the previous sections) this matrix still
proves to be a function of the same independent variables x.

To define the response of the vibrating system about the static equilibrium
position it is possible, as usual, to linearize this relationship about the same
position:

K xð Þ½ �f¼
@Yf

@x


 �
0
¼ Kf
� 	 ¼ const: ð2:49Þ
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Based on this hypothesis the Jacobian Kf
� 	

calculated for x ¼ x0 becomes a
constant matrix. In the case of linear or linearized systems about the static equi-
librium position, the virtual work of forces thus becomes:

d�L ¼ f Td�Yf ¼ f T ½Kf �d�x ¼ QTd�x ð2:50Þ

where Q is the vector of the generalized force defined as:

Q ¼ ½Kf �T f ð2:51Þ

2.2.5 Equations of Motion

Having now defined all the forms of energy:

• kinetic Ec (2.18);
• dissipation function D (2.27);
• potential V (2.35);

in quadratic form and having reduced the virtual work of the external active
forces d�L as shown in (2.50), it is possible, for a linear or linearized system about
the static equilibrium position, to define, by applying Lagrange’s equations (2.4),
the individual terms appearing in the equation of motion of the system itself. In
particular, for kinetic energy, the term:

d
dt

@EC

@ _xi

� �� �
� @EC

@xi

� �
ð2:52Þ

is reduced, in linear systems, to the first term only, where term @EC
@xi

n o
is different

from zero only for nonlinear systems on account of the fact that, in this case, the
Jacobian K xð Þ½ �m (2.16) is a function of the same independent variables x. In linear
or linearized systems, the mass matrix ½M� of the system is symmetric and constant.
Therefore, based on (2.19) the derivation according to Lagrange [22, 34] leads to
the inertia term:

d
dt

@EC

@ _x

� �� �T

¼ d
dt

1
2
_x
T
M½ � þ 1

2
_x
T
M½ �T

� �� �T

¼ M½ �x:: ¼ Km½ �T m½ � Km½ �x::
ð2:53Þ
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The terms due to forces that allow potential (2.35) can be obtained by means of:

@V
@x

� �T

¼ 1
2
xT ½K� þ 1

2
xT ½K�T

� �T

¼ ½K�x ¼ Kk½ �T ½k� Kk½ �x ð2:54Þ

which are valid in the linear case, and with the same applying to the dissipation
function (2.27):

@D

@ _x

� �T

¼ 1
2
_x
T ½R� þ 1

2
_x
T ½R�T

� �T

¼ ½R� _x ¼ Kr½ �T ½r� Kr½ � _x ð2:55Þ

Finally, the Lagrangian components Q of the active forces along the d.o.f. x can
be obtained by means of the definition (2.50) shown below:

Q ¼ ½Kf �T f ð2:56Þ

The final form of the equation of motion is thus:

½M�x:: þ ½R� _xþ ½K�x ¼ Q ð2:57Þ

As already demonstrated, the correct methodology to linearize the nonlinear
equations of motion of a system about an equilibrium position is the one outlined in
Sects. 2.2.1–2.2.4: more specifically, as regards the potential energy associated with
elastic and gravitational terms (Sect. 2.2.3), the static preloads of the springs and the
presence of the weight force are taken in account in the linearization through the
stiffness-gravitational matrix

Kg
� 	

0¼
Xnk
j¼1

KjII
� 	

0 þ
XnP
j¼1

KjIII
� 	

0

" #
ð2:57aÞ

If the system is linear, if the Hessians present in (2.42) are null or if these
contributions (due to the preload of the springs and gravitational effects) are neg-
ligible and therefore need not to be considered, the potential energy (Eq. 2.34) can
be defined as:

V ¼ 1
2
Dlk xð ÞT ½k�Dlk xð Þ ð2:58Þ

In this instance it is possible, as in the case of the kinetic energy [Eqs. (2.15)–
(2.18)] and the dissipative function [Eqs. (2.24)–(2.27)], to linearize the link
between the physical variables and the independent variables:
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Dlk ¼
@Dlk
@x


 �
x ¼ K½ �0x ð2:59Þ

which, when substituted in (2.34) gives:

V ¼ 1
2
xT K½ �T0 ½k� K½ �0x ð2:60Þ

In this case, the equations of motion of the linearized system thus always prove
to be (2.57):

½M�x:: þ ½R� _xþ ½K�x ¼ Q ð2:61Þ

on account of simply being [Eqs. (2.47)–(2.50), (2.23)–(2.27), (2.15)–(2.19) and
(2.34)]:

½K� ¼ K½ �T0 ½k� K½ �0
½R� ¼ Kd½ �T r½ � Kd½ �
½M� ¼ Km½ �T My

� 	
Km½ �

Q ¼ ½Kf �T f

ð2:62Þ

2.3 Some Application Examples

2.3.1 One-Degree-of-Freedom Systems

Let us now consider the system of Fig. 2.3. constituted by a roller which rolls
without sliding on a smooth surface, constrained by a spring of constant k and a
viscous damper of constant r. We will use m to indicate disc mass and JG to indicate
the mass moment of inertia of the same and finally R to indicate its radius.

By only considering planar motion and the pure rolling condition, the system has
only 1 d.o.f. n ¼ 3xnc � nv ¼ 3x1� 2 ¼ 1. As an independent variable, let us
consider the displacement x of the centre of gravity of the disc and, as a

k

r

R

x f(t)
m,JG

θ

Fig. 2.3 Vibrating 1 d.o.f. system
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consequence, rotation h, elongation Dl of the spring (conventionally considered
positive in extension) and the relative speed _Dl between the extremities of the
damper as physical variables. The expression of kinetic energy, as a function of the
physical variables, is the following:

Ec ¼ 1
2
m _x2 þ 1

2
JG _h

2 ð2:63Þ

Potential Energy is due to the only spring of stiffness k:

V ¼ 1
2
k Dl2 ð2:64Þ

due to the fact that the centre of gravity h of the disc does not perform any vertical
movement. Dissipative energy is due to the presence of the damper and is equal to
half of the power developed by the viscous force, changed in sign or rather:

D ¼ 1
2
r _Dl2 ð2:65Þ

The virtual work performed by external force f(t) is:

d�L ¼ f ðtÞd� � x ð2:66Þ

By now introducing the links between the physical variables and the indepen-
dent variable x into the various forms of energy:

h ¼ x
R

Dl ¼ x
ð2:67Þ

it is possible to rewrite the same expressions as a function of x alone:

Ec ¼ 1
2
m€x2 þ 1

2
JG
R2

_x2 ð2:68Þ

V ¼ 1
2
kx2 ð2:69Þ

D ¼ 1
2
r _x2 ð2:70Þ

d�L ¼ f ðtÞd�x ð2:71Þ
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By means of Lagrange’s equation (2.4) and by keeping account of (2.68)–(2.71),
we obtain:

mþ JG
R2

� �
x
::þr _xþ kx ¼ f ðtÞ ð2:72Þ

The term ðmþ JG
R2Þ is defined as a generalized mass according to the independent

Lagrangian coordinate x, r the generalized damper and finally k the generalized
stiffness: these generalized amplitudes may coincide (as in the case analysed for k
and r) with physical terms or represent equivalent amplitudes from a point of view
of energy.

2.3.2 Two-Degree-of-Freedom Systems

From a didactic point of view, before proceeding with a generalized approach to
dissipative n d.o.f. systems, perturbed about the static equilibrium position, it would
be advisable to first discuss 2 d.o.f. systems. The diagram of a 2 d.o.f. system can
assume a number of different forms depending on the specific problem that one
wishes to simulate. By following the same outline already shown for 1 d.o.f.
systems, we will analyse an extremely simple system like the one illustrated in
Fig. 2.4, writing the equations of motion both with dynamic equilibriums
(Sect. 2.2.1), and Lagrange’s equations (Sect. 2.2.2). More specifically, we will
consider linear systems in which the physical coordinates (elevations of centres of
gravity, relative elongations of the extremities of the elastic and damping elements
etc.) are linked to the free coordinates, regardless of their linear relationships.

Later on (Sect. 2.4), we will demonstrate a systematic approach, based on
Lagrange’s equations, to express the equations of motion in matrix form for systems
consisting of mutually coupled rigid bodies: more specifically, we will address the
problem regarding the definition of the various forms of energy as a function of the
physical coordinates of the system and, subsequently, the definition of the link
between the physical and independent coordinates chosen to describe the system
itself. Finally we will resort (Sect. 2.4.2) to the methodology required to linearize
the equations of motion of the system in the case of nonlinear links between
physical and independent variables.

2.3.2.1 Dynamic Equilibrium Equation

As a first example, let us consider a vibrating two d.o.f. system (see Fig. 2.4) which
is linear and subjected to two generic external forces f1 ¼ f1ðtÞ and f2 ¼ f2ðtÞ.

2.3 Some Application Examples 99



www.manaraa.com

As independent variables, we will choose the absolute displacements x1 and x2
evaluated starting from the static equilibrium position (defined by x1 ¼ x2 ¼ 0): x1
and x2 thus represent the perturbed motion about this position and, for this reason,
the weight forces2 will not appear in the equations of motion. Furthermore, for the
sake of convention, let us assume that the forces are positive in the same directions
of the displacements. The two equations of motion of the system can be obtained by
expressing dynamic equilibrium equations [1, 13, 18, 33] at translation of the two
masses, considered as isolated bodies and highlighting the forces that the outside
world exerts on same (free body diagram of Fig. 2.5). The forces acting on the first
mass are:

• external force f1;
• inertia force fin1;
• elastic forces fk1 and fk2 due to the presence of the elastic elements of constants

k1 and k2;
• viscous forces fr1 and fr2 due to the dampers of constants r1 and r2:

fin1 ¼ �m1x
::
1

fr1 ¼ �r1 _x1
fr2 ¼ �r2ð _x1 � _x2Þ
fk1 ¼ �k1x1
fk2 ¼ �k2ðx1 � x2Þ

8>>>><>>>>: ð2:73Þ

f
2

r 
2

m2

f
1

x
2

k
2

r 
1

k
1

x
1

m1

Fig. 2.4 Linear two d.o.f.
system

2As seen in Chap. 1, Sect. 1.5, the effect of the weight force and of the static preload of the springs
does not appear in the equations of motion because, in this particular case, the link between the
elevation of the centre of gravity of the single masses, the spring elongations and the independent
variables is linear.
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Similarly, the following forces:

fin2 ¼ �m2x
::
2

fr2 ¼ �r2ð _x2 � _x1Þ
fk2 ¼ �k2ðx2 � x1Þ

8<: ð2:74Þ

will act on the second mass, considered isolated.
By expressing the balance of the forces on the individual masses and by bringing

the applied forces to the right hand side, a 2 equation system is obtained (Fig. 2.6):

m1 x
::
1 þðr1 þ r2Þ _x1 �r2 _x2 þðk1 þ k2Þx1 � k2x2 ¼ f1

m2 x
::
2 �r2 _x1 þr2 _x2 �k2x1 þ k2x2 ¼ f2

�
ð2:75Þ

It is possible to rewrite the equations of motion (2.75) in matrix form as:

½M�x:: þ ½R� _xþ ½K�x ¼ f ð2:76Þ

corresponding, for a generic system with 2 d.o.f., to the following generic
expression in scalar form:

m11 x
::
1 þm12 x

::
2 þr11 _x1 þr12 _x2 þk11x1 þ k12x2 ¼ f1

m21 x
::
1 þm22 x

::
2 þr21 _x1 þr22 _x2 þk21x1 þ k22x2 ¼ f2

�
ð2:77Þ

In this case the subscripts associated with the different amplitudes define the
location occupied by same in the corresponding matrices (respectively rows and
columns). As previously seen, expression in matrix form (2.76) is convenient for a
synthetic approach to the n d.o.f. systems because we are reduced to the expression
of only one matrix equation, corresponding to n scalar equations. As will be seen
later on, matrices ½M�, ½R� and ½K� of Eq. (2.76) can also be directly obtained thanks
to the application of Lagrange’s equations defined in matrix form. Given the
hypothesis of a dissipative system perturbed about its static and stable equilibrium
position, matrices ½M�, ½R� and ½K� are symmetrical and positive definite. In fact,

f 2

m2x m1x

m2

f 1

r2(x1 − x2)   

r1x1k2(x1 − x2)   k1x1

r2(x1 − x2)   k2(x1 − x2)   

m1

Fig. 2.5 Linear two d.o.f.
system (Fig. 2.4): expression
of the equations of motion
using dynamic equilibriums:
forces acting on the single
masses
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they are associated with energy forms (kinetic energy Ec, dissipation function D and
potential energy V) represented by quadratic forms which are positive definite. A
positive definite symmetrical matrix is associated with a quadratic form which is
also positive definite: this is always true if the matrices are obtained using an energy
approach, while the same might not apply when using dynamic equilibriums
approach, due to specific choices of independent coordinates. Finally we note that:

• ½M� is the matrix which, when multiplied by acceleration vector x
::
, defines the

inertia forces acting on the system according to the various d.o.f. Due to the
specific choice of coordinates (absolute) adopted in the example, the system is
inertially uncoupled and the mass matrix therefore proves to be diagonal. The
generic term mij represents the inertia force, changed in sign, acting on the
generic ith d.o.f. for a unitary acceleration assigned to the generic jth d.o.f;

• ½R�, multiplied by the velocity vector _x, represents the viscous forces acting on
the system;

• ½K�, multiplied by the displacement vector, provides the elastic forces which
always refer to the system’s x d.o.f.

r2x1

r2x1

k2x1

x1 = 0  x2 ≠ 0

x1 ≠ 0  x2 = 0

m1x r1x1 k1x1

k2x1

m2

f 2 f 1

m1

r2x2m2x2 k2x2
r2x2 k2x2

m2

f 2 f 1

m1

Fig. 2.6 Linear two d.o.f.
system: superposition of
effects
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As previously mentioned, a precise physical meaning corresponds to each ele-
ment of the generic matrix: for example, generic element kij of the stiffness matrix
represents the elastic force (changed in sign) acting on the ith d.o.f. for an unitary
displacement of the jth d.o.f., on account of the fact that the other displacements are
null. Terms kij are denoted as stiffness constants of the vibrating system.

2.3.2.2 Lagrange’s Equations

The same equations of motion (2.77) can obviously be obtained by adopting a
Lagrangian approach in scalar form [8, 13, 18], i.e. by using the following
expression:

d
dt

@Ec

@ _xi

� �
� @Ec

@xi
þ @D
@ _xi

þ @V
@xi

¼ d�L
d�xi

¼ Qi ði ¼ 1; nÞ ð2:78Þ

after expressing kinetic energy Ec, potential energy V , dissipation function D and
virtual work d�L of the non-conservative forces from which it is possible to evaluate
the generic Lagrangian component Qi. In the case of the example in Fig. 2.5, the
various energy forms can be directly expressed as a function of the independent
coordinates (having conventionally assumed the elongations of the elastic and
damping elements as positive):

Ec ¼ 1
2
m1x

2
1 þ

1
2
m2x

2
2 ð2:79Þ

V ¼ 1
2
k2ðx2 � x1Þ2 þ 1

2
k1x

2
1 ð2:80Þ

D ¼ 1
2
r2ð _x2 � _x1Þ2 þ 1

2
r1 _x

2
1 ð2:81Þ

d�L ¼ d�L1 þ d�L2 ¼ f1d
�x1 þ f2d

�x2 ð2:82Þ

To express the 2 equations of motion, the various energy forms (2.79)–(2.82) are
derived according to Lagrange (2.4) with respect to coordinate x1:

d
dt

@Ec

@ _x1

� �
¼ m1 x

::

1
ð2:83Þ

@Ec

@x1
¼ 0

@V
@x1

¼ �k2ðx2 � x1Þ þ k1x1 ð2:84Þ
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@D
@ _x1

¼ �r2ð _x2 � _x1Þ þ r1 _x1

Q1 ¼ d�L1
d�x1

¼ f1

and to coordinate x2:

d
dt

@Ec

@ _x2

� �
¼ m2 x

::
2

@Ec

@x2
¼ 0 ð2:85Þ

@V
@x2

¼ k2ðx2 � x1Þ
@D
@ _x2

¼ r2ð _x2 � _x1Þ

Q2 ¼ d�L2
d�x2

¼ f2

assumed as Lagrangian coordinates. By bearing in mind Eqs. (2.83)–(2.85), it is
once again possible to obtain the same system (2.77) of two equations in coordi-
nates x1 and x2 which, as previously seen, can be rewritten in matrix form as:

½M�€xþ ½R� _xþ ½K�x ¼ f ð2:86Þ

or rather:

m1 0

0 m2

� �
 �
€x1
€x2

� �
þ r1 þ r2 �r2

�r2 r2

� �
 �
_x1
_x2

� �
þ k1 þ k2 �k2

�k2 k2

� �
 �
x1
x2

� �
¼ f1

f2

� � ð2:87Þ

Given that the system is dissipative and perturbed about the stable equilibrium
position, matrices ½M�, ½R� and ½K� are symmetrical and defined as positive.
Additionally, the associated energy forms (quadratic forms defined as positive) can
be expressed in matrix form as:

Ec ¼ 1
2
_xT ½M� _x
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D ¼ 1
2
_xT ½R� _x ð2:88Þ

V ¼ 1
2
xT ½K�x

d�L ¼ f T d�x

However, it is necessary to remember that the equations of motion expressed in
terms of dynamic equilibriums are not always the same as those obtained when
using a Lagrangian approach.

2.3.3 An Additional Example of Two-Degree-of-Freedom
Systems

In order to express the equations of motion, we will now apply the methods out-
lined in the previous sections, using not only dynamic equilibriums but also
Lagrange’s equations for the vibrating system shown in the Fig. 2.7 which repre-
sents a simplified model designed to study the vertical motion of a vehicle excited,
for example, by the unbalanced inertia forces of the engine. We will subsequently
resort to the same example to illustrate the general method of expressing equations
of motions for systems with n d.o.f

The system - considering only motion in the vertical plane - is schematized by
means of a two d.o.f. model: we will use m to define body mass and JG to define the
inertia moment with respect to centre of gravity G. The elastic elements, of con-
stants k1 and k2, and the dampers, of constants r1 and r2, connect the system to the
ground and are respectively placed at distances l1 and l2 from the centre of gravity
G of same.

The system is finally subjected to an applied force f ¼ f ðtÞ applied in point
B and positioned at distance b from the centre of gravity G (as conventions for
displacements, rotations and forces, we assume those shown in Fig. 2.7).

Fig. 2.7 Linear two d.o.f.
system: simplified vehicle
model
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The independent coordinates chosen to describe the system are the absolute
vertical displacement of the centre of gravity x1 and the absolute rotation x2 of the
rigid body defined with respect to the horizontal reference line: both variables are
defined starting from the static equilibrium position, i.e. they only define the
variations due to perturbed motion (this means that the effect of the weight and
static deformations of the springs will not appear in the equations of the dynamic
equilibrium or in the Lagrange’s equations—see the Sect. 1.5 of Chap. 1).

It is therefore necessary, given the initial conditions, to determine the differential
equations which, once integrated, allow us to define system motion.

2.3.3.1 Expression Through Dynamic Equilibrium Equations

By considering the body as an isolated system - highlighting the forces that the
outside world exerts on same - it is possible to write the equations of motion:

Mx
::
1 þ ðr1 þ r2Þ _x1 þðr2l2 � r1l1Þ _x2 þðk1 þ k2Þx1 þ ðk2l2 � k1l1Þx2 ¼ f ð2:89Þ

JGx
::
2 þ ðr2l2 � r1l1Þ _x1 þðr1l21 þ r2l22Þ _x2 þðk2l2 � k1l1Þx1 þþðk1l21 þ k2l22Þx2 ¼ fb

Having organized the vector of independent variables x as:

x ¼ x1
x2

� �
ð2:90Þ

Equations (2.89) can be rewritten in the usual matrix form:

½M�x:: þ ½R� _xþ ½K�x ¼ f ð2:91Þ

which, in this case, is:

M½ � ¼ m 0
0 JG


 �

R½ � ¼ ðr1 þ r2Þ ðr2l2 � r1l1Þ
ðr2l2 � r1l1Þ ðr2l22 þ r1l21Þ

 �

ð2:92Þ

K½ � ¼ ðk1 þ k2Þ ðk2l2 � k1l1Þ
ðk2l2 � k1l1Þ ðk2l22 þ k1l21Þ

 �

f ¼ f
f b

� �
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As can be noted:

• Stiffness matrix ½K� and mass matrix ½M� are symmetrical (analytical evidence
corresponding to the conservative field of the elastic and inertia forces);

• The damping matrix ½R�, which is symmetrical and defined as positive, corre-
sponds to a force field depending on the dissipative speed;

• Matrix ½K� is symmetrical and defined as positive, i.e. its equilibrium position is
stable.

2.3.3.2 Using Lagrange’s Equations in Scalar Form

The same equations of motion (2.89) or (2.91) can obviously be obtained adopting a
Lagrangian approach in scalar form. In the case of the example shown in Fig. 2.7,
the various energy forms can be expressed directly, as a function of the physical
coordinates, as:

Ec ¼ 1
2
m _x21 þ

1
2
JG _x22

V ¼ 1
2
k2Dl

2
2 þ

1
2
k1Dl

2
1 ð2:93Þ

D ¼ 1
2
r2 Dl

2
2 þ

1
2
r1 Dl

2
1

d�L ¼ f d�xf

where Dl1 and Dl2 are the relative elongations to which the two springs (positive
according to the conventions of Fig. 2.7) are subjected and xf is the displacement of
the point of application of the applied force in the direction of the force itself: these
amplitudes are the physical variables adopted in this example. The link between the
physical variables and the independent variables can easily be expressed by:

Dl1 ¼ x1 � x2l1
Dl2 ¼ x1 þ x2l2

xf ¼ x1 þ x2b ! d�xf ¼ @xf
@x1

d�x1 þ @xf
@x2

d�x2 ¼ d�x1 þ d�x2b

ð2:94Þ

By substituting these links (2.94) in (2.93) the various energy forms can be
expressed as a function of the only independent coordinates:

Ec ¼ 1
2
m _x21 þ

1
2
JG _x22
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V ¼ 1
2
k2ðx1 þ x2 l2Þ2 þ 1

2
k1ðx1 � x2 l1Þ2 ð2:95Þ

D ¼ 1
2
r2ð _x1 þ _x2 l2Þ2 þ 1

2
r1ð _x1 � _x2 l1Þ2

d�L ¼ f d�x1 þ f b d�x2

By applying Lagrange’s equations (2.78) and subsequently considering i ¼ 1
and i ¼ 2, we once again obtain the equations of motion of system (2.93) which can
also be rewritten in matrix form (2.91).

In Sect. 2.3.5, an alternative methodology will be described in order to define—
directly in matrix form—Eq. (2.91) of a linear vibrating system with n d.o.f.
without using the scalar notation shown here.

As a form of exercise, we will now describe the same vibrating system shown in
Fig. 2.7. However, in this case, we will use another set of independent coordinates,
for example, vertical displacement q1 of a point O lying at a distance of a from the
centre of gravity of the body and rotation q2 around the same pole O, see Fig. 2.8.
The various energy forms, as a function of the physical variables, vertical dis-
placement of the centre of gravity x1 and rotation x2, are the same as those shown in
(2.79)–(2.82): the link between the physical and independent variables now
becomes:

x1 ¼ q1 þ q2 a ! _x1 ¼ _q1 þ _q2 a

x2 ¼ q2 ! _x2 ¼ _q2
Dl1 ¼ q1 � q2ðl1 � aÞ ¼ q1 � q2 l1

Dl2 ¼ q1 þ q2ðl2 þ aÞ ¼ q1 þ q2 l2

xf ¼ q1 þ q2 ðbþ aÞ ! d�xf ¼ @xf
@q1

d�q1 þ @xf
@q2

d�q2 ¼ d�q1 þ d�q2 ðbþ aÞ ð2:96Þ

*

q2

k1 r1

l1 l2

q1 f (t )

O

a

G

k2

b
r2

Fig. 2.8 Linear two d.o.f.
system (of Fig. 2.7) and a
different set of free
coordinates
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By substituting these links (2.96) in (2.79)–(2.82) it is possible to express
the various energy forms as a function of the only new independent coordinates
q1 and q2:

Ec ¼ 1
2
m _q1 þa _q2ð Þ2 þ 1

2
JG _q22

V ¼ 1
2
k2ðq1 þ q2 l2Þ2 þ 1

2
k1ðq1 � q2 l1Þ2

D ¼ 1
2
r2ð _q1 þ _q2 l2Þ2 þ 1

2
r1ð _q1 � _q2 l1Þ2

d�L ¼ f d�q1 þ f ðbþ aÞd�q2

ð2:97Þ

By applying Lagrange’s equations (2.78) and subsequently considering i = 1 and
i ¼ 2, we obtain the equations of motion in the new independent variables:

m€q1 þ ma€q2 þ ðr1 þ r2Þ _q1 � ðr1�l1 � r2�l2Þ _q2
þ ðk1 þ k2Þq1 � ðk1�l1 � k2�l2Þq2 ¼ f

ð2:98Þ

ma€q1 þ ðJG þ ma2Þ€q2 � ðr1�l1 � r2�l2Þ _q1 þ ðr1�l21 þ r2�l
2
2Þ _q2

� ðk1�l1 � k2�l2Þq1 þ ðk1�l21 þ k2�l
2
2Þq2 ¼ f ðbþ aÞ

Having used q to define the vector of the new independent variables:

q ¼ q1
q2

� �
ð2:99Þ

Equation (2.98) can be rewritten in matrix form as:

½Mq�q
:: þ ½Rq� _qþ ½Kq�q ¼ f

q
ð2:100Þ

where:

½Mq� ¼ m ðmaÞ
ðmaÞ ðma2 þ JGÞ

 �

½Rq� ¼ ðr1 þ r2Þ ðr2 l2 �r1 l1Þ
ðr2 l2 �r1 l1Þ ðr2 l

2
2 þr1 l

2
1Þ


 �
ð2:101Þ

½Kq� ¼ ðk1 þ k2Þ ðk2 l2 �k1 l1Þ
ðk2 l2 �k1 l1Þ ðk2 l22 þk1 l

2
1Þ


 �
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f
q
¼ f

f ðbþ aÞ
� �

Unlike the previous case, mass matrix ½Mq� is no longer a diagonal matrix,
meaning that, in this case, the equations are also inertially coupled.

2.3.3.3 Expressing Lagrange’s Equations in Matrix Form

We will once again analyse the example of a linear vibrating two d.o.f. system
shown in Fig. 2.7: as was the case in Sect. 2.3.3.1, here too we will consider the
displacement of the centre of gravity and rotation (2.76) as variables x1 and x2. In
this case, total kinetic energy Ec (2.97) can be expressed as:

Ec ¼ 1
2
_Y
T
m ½My� _Ym ð2:102Þ

where Ym is the vector containing the displacement of the centre of gravity and
body rotation:

Ym ¼ x1
x2

� �
ð2:103Þ

meaning, therefore, that, in this case, ½My� is:

½My� ¼ m 0
0 JG


 �
ð2:104Þ

The vector of physical variables Ym (2.103), used to define the kinetic energy of
the body, coincides with the vector of independent variables x so that, from (2.91),
the Jacobian matrix Km½ � proves not only to be constant but also unitary:

Ym ¼ ½I� x ð2:105Þ

Kinetic energy (2.102) thus becomes:

Ec ¼ 1
2
_Y
T
m ½My� _Ym ¼ 1

2
_xT I½ �T ½My� I½ � _x ¼ 1

2
_xT ½M� _x ð2:106Þ

and the relative mass matrix, defined in the independent coordinates, is:

M½ � ¼ My
� 	 ¼ m 0

0 JG


 �
ð2:107Þ
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The potential energy associated with the system in question [see general
expression in (2.34)] can be expressed as:

V ¼ 1
2
DlTk ½k�Dlk ð2:108Þ

Having used [k] (see Fig. 2.5), to indicate matrix:

k½ � ¼ k1 0
0 k2


 �
ð2:109Þ

and Dlk to indicate the relative displacement vector of the extremities of its springs,
functions in turn of independent coordinates:

Dlk ¼
Dl1
Dl2

� �
¼ Dlk xð Þ ¼ Dl1 xð Þ

Dl2 xð Þ

� �
¼ x1 � x2 l1

x1 þ x2 l2

� �
¼ Kk½ �x ¼ 1 �l1

1 l2


 �
x

ð2:110Þ

Potential energy is thus:

V ¼ 1
2
DlTk k½ �Dlk ¼

1
2
xT Kk½ �T k½ � Kk½ �x ¼ 1

2
xT K½ �x ð2:111Þ

where ½K� is the total matrix defined by:

K½ � ¼ k1 þ k2 �l1 k1 þ l2 k2
�l1 k1 þ l2 k2 k1 l21 þ k2 l22


 �
ð2:112Þ

By operating in a similar manner, the dissipation function can be expressed as:

D ¼ 1
2
DlTr r½ �Dlr ¼

1
2

_Dl1
_Dl2

� �T
r1 0
0 r2


 �
_Dl1
_Dl2

� �
ð2:113Þ

By bearing in mind Eq. (2.94) we have:

_Dlr ¼ Kd½ � _x ¼ 1 �l1
1 l2


 �
_x ð2:114Þ

and, by substituting Eq. (2.114) in Eq. (2.113), the dissipation function is thus
given by:
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D ¼ 1
2
_xT Kd½ �T r½ � Kd½ � _x ¼ 1

2
_xT R½ � _x

¼ 1
2

_x1
_x2

� �T r1 þ r2 �l1 r1 þ l2 r2
�l1 r1 þ l2 r2 r1 l21 þ r2 l22


 �
_x1
_x2

� � ð2:115Þ

A force f is applied at a point B of the system’s body (Fig. 2.8): yf is denoted as
the displacement of the application point of the force itself (physical variable),
meaning that the virtual work can thus be expressed as:

d�L ¼ f Td�yf ð2:116Þ

yf proves to be correlated to independent variables x by means of a function defined
as:

yf ¼ yf xð Þ ¼ x1 þ bx2 ) d�yf ¼ @yf
@x

� �
d�x

d�yf ¼ Kf
� 

d�x ¼ 1 bf gd�x
ð2:117Þ

that is:

d�L ¼ f T Kf
� 

d�x ¼ f
bf

� �T

d�x ¼ f Td�x ð2:118Þ

The equations of motion of the system thus become:

M½ �x:: þ R½ � _xþ K½ �x ¼ f ð2:119Þ

and are more or less similar to those obtained by other means (scalar method) in
Sect. 2.3.3.1, Eq. (2.91).

Always considering the two d.o.f. example, subjected generically, on the con-
trary, to a set of forces f1, f2,…, fnf (Fig. 2.9), the relationships between physical
variables yfj and independent variables xi, are:

X2

X1

k1 r1

l1 l2

F1 Fnf

O

a

F2

G

k2

b
r2

Fig. 2.9 Vibrating system
with 2 d.o.f. of Fig. 2.7, with
different forces applied
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yf 1 ¼ x1 � a1x2
yf 2 ¼ x1 � a2x2
. . .
yfnf ¼ x1 þ anf x2

8>><>>: ð2:120Þ

In this case, matrix Kf
� 	

proves to be a rectangular matrix having nf rows, i.e.
the same number as the application points of the forces and as many columns as
those of the d.o.f.:

Kf
� 	 ¼ 1 �a1

1 �a2
. . . . . .
1 þanf

2664
3775 ð2:121Þ

As once again shown in Fig. 2.5, we will now analyze the same vibrating
system, by considering vertical displacement z1 and z2 of the spring connection
points as independent variables to describe motion (Fig. 2.10).

z ¼ z1
z2

� �
ð2:122Þ

In this case, unlike the case described in the previous section, the vector of
physical variables Ym, used to define kinetic energy (2.106), does not coincide with
independent variable vector z where:

Ym ¼ Km½ � z ¼
l2

l1þl2
�l1
l1þl2

1
l1þl2

1
l1þl2

" #
z ð2:123Þ

Thus, with the new set of independent variables z, kinetic energy becomes:

Ec ¼ 1
2
_zT Km½ �T My

� 	
Km½ �_z ¼ 1

2
_zT Mz½ �_z ð2:124Þ

Fig. 2.10 Linear system with
2 d.o.f. (also see Fig. 2.7),
with new set of independent
coordinates
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and the relative mass matrix becomes:

Mz½ � ¼ 1

l1 þ l2ð Þ2
ml22 þ JG �ml1l2 þ JG

�ml1l2 þ JG ml21 þ JG


 �
z ð2:125Þ

The potential energy associated with the system in question can be directly
expressed as a function of the independent variables, where Dlk can be directly
expressed by:

Dlk ¼ I½ �z ¼ z ð2:126Þ

from which:

V ¼ 1
2
zT I½ �T k½ � I½ �z ¼ 1

2
zT Kz½ �z ¼ 1

2
z1
z2

� �T
k1 0
0 k2


 �
z1
z2

� �
ð2:127Þ

Working in a similar manner, the damping matrix, expressed as a function of the
new independent variables z, becomes:

Rz½ � ¼ r1 0
0 r2


 �
ð2:128Þ

Finally, by analysing the contribution of applied force f and using yf to indicate
the displacement of the application point of the force itself, in this case we obtain:

yf ¼ yf zð Þ ¼ � l1z1 þ l2z2
l1 þ l2

� b
z1 � z2
l1 þ l2

� �
) d�yf ¼ @yf

@z

� �
d�z ð2:129Þ

d�yf ¼ Kf
� T

d�z ¼ l1�b
l1þl2

l2þb
l1þl2

n o
d�z ð2:130Þ

Virtual work d�L can thus be expressed as:

d�L ¼ f Td�yf ¼ f T
@yf
@z

� �
d�z ¼ f T Kf

� T
d�z ð2:131Þ

d�L ¼ l1�b
l1þl2

l2þb
l1þl2

n o
d�z ¼ f T

z
d�z ð2:132Þ

The equations of motion of the system once again become:

Mz½ �z:: þ Rz½ �_zþ Kz½ �z ¼ f
z
: ð2:133Þ
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2.3.4 A Further Example of a Two-Degree-of-Freedom
Systems

Let us now consider, as another example, the vibrating system consisting of two 2
rigid rods, of mass M and mass moment of inertia J with respect to centre of gravity
J, linked one to another and to ground as shown in Fig. 2.11. The system has two d.
o.f.: as independent variables let us consider the absolute rotation of the first rod θ1
and the absolute rotation θ2 of the second rod:

x ¼ h1
h2

� �
ð2:134Þ

To introduce the terms associated with total kinetic energy Ec, 4 physical
variables, Y1, Y2, θ1, and θ2, which respectively represent the vertical displacements
of the centre of gravity of the first and second rod and the corresponding absolute
rotations are introduced:

Ym ¼
Y1
�
Y2

8<:
9=; ¼

Y1
h1
�
Y2
h2

8>>>><>>>>:

9>>>>=>>>>; ð2:135Þ

In this way, kinetic Energy can be defined as:

Ec ¼ 1
2
_Y
T
m My
� 	

_Ym ð2:136Þ

where, in this case:

My
� 	 ¼ m 0 0 0

0 J 0 0
0 0 m 0
0 0 0 J

2664
3775 ð2:137Þ

l a l a

M, JM, J

K1

K2

θ2θ1

Fig. 2.11 Two d.o.f. system: system for technical multi-body applications
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The link between physical variables and independent variables can be expressed
as:

_Ym ¼ Km½ � _x ¼
la
2 0
1 0
la

la
2

0 1

2664
3775 _x ð2:138Þ

meaning that total kinetic energy becomes:

Ec ¼ 1
2
_xT Km½ �T My

� 	
Km½ � _x ¼ 1

2
_xT M½ � _x ð2:139Þ

and the relative mass matrix is:

M½ � ¼
ml2a
4 þ J þ ml2a

ml2a
2

ml2a
2

ml2a
4 þ J

" #
ð2:140Þ

The potential energy associated with the system in question can be expressed as:

V ¼ 1
2
DlTk k½ �Dlk ¼

1
2

Dl1
DU2

� �T
k1 0
0 k2


 �
Dl1
DU2

� �
ð2:141Þ

Elongations Dlk , considered positive in extension, are functions of the inde-
pendent coordinates by means of functions Dl1 xð Þ and Dl2 xð Þ:

Dlk ¼ Dlk xð Þ ¼ Dl1 xð Þ
DU2 xð Þ

� �
¼ Kk½ � ¼ la 0

�1 1


 �
x ð2:142Þ

Potential energy V is thus:

V ¼ 1
2
xT Kk½ �T k½ � Kk½ �x ¼ 1

2
xT K½ �x

¼ 1
2
xT

la �1

0 1


 �T
k½ � la 0

�1 1


 �
x

¼ 1
2

h1
h2

� �T k2 þ k1l2a �k2
�k2 k2


 �
h1
h2

� � ð2:143Þ
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A force f is applied at point B of the second rod of the system (see Fig. 2.11): to
define the virtual work performed by the same force, let us consider, as physical
variable, the displacement of application point yf correlated to independent variables
x by:

yf ¼ yf xð Þ ¼ h1la þ h2la ¼ la laf g h1
h2

� �
¼ Kf
� T

x ð2:144Þ

The virtual work can thus be expressed as:

d�L ¼ f Td�yf ¼ f T
@yf
@x

� �
d�x ¼ f T Kf

� T
d�x ¼ laf

laf

� �T

d�x ð2:145Þ

2.3.5 n-Degree-of-Freedom Systems

Let us now extend what we have learnt regarding two d.o.f. systems to systems
generically having n d.o.f.: from a didactic point of view it is advisable to use a
defined model in order to make the explanation clearer.

By thus considering a linear system formed by a shaft with n keyed discs
(Fig. 2.12): neglecting the inertia moments of the shaft sections between 2 discs

Jn-2 

Jn 

Jn-1 
kn-1 

kn-2 

xn-2 

xn-1 

xn 

Cn-2 

Cn-1 

Cn 

J2 

J3 

k1 

k2 

J1 

x1

x2

x3 

C1

C2 

C3

Fig. 2.12 Vibrating system with n d.o.f
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with respect to the inertia moments Ji (i = 1, …, n) of the discs themselves, we
obtain a concentrated parameter model of the system. Let:

kj ¼ GJpj
lj

ðj ¼ 1; n� 1Þ ð2:146Þ

be the torsional stiffness of the individual sections of the shaft (of length lj) to which
we associate a proportional viscous damping rj due to the elastic structural hys-
teresis or other dissipation phenomena [35]. We hypothesize that generic torques ci
act on the discs and we assume, as independent variables, the n absolute rotations xi
of the single discs. First and foremost, we express the equations of motion in scalar
form using two different approaches: dynamic equilibriums and Lagrange’s equa-
tions. We subsequently analyse a general systematic approach for the automatic
expression of the equations of motion in vibrating systems with n d.o.f., always
basing our reasoning on the example shown in Fig. 2.12.

2.3.5.1 Dynamic Equilibrium Equations

To express the dynamic equilibrium equations, we isolate the generic ith disc
(Fig. 2.13) by applying all the forces that the outside world exerts on same (the
conventions for rotations and torques are shown in the same figure): more specif-
ically, the following will act on the disc:
the external torque ci
the inertia torque cini ¼ �Ji€xi
the elastic torque cki ¼ �kjðxi � xiþ1Þ � kj�1ðxi � xi�1Þ
the damping torque cri ¼ �rjð _xi � _xiþ1Þ � rj�1ð _xi � _xi�1Þ

Expressing rotation equilibrium for each discs it is obtained, in scalar form, by
adopting a system of n differential equations that define system motion:

Fig. 2.13 Dynamic
equilibrium of a generic ith
disc
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J1x
::
1 þ r1ð _x1 � _x2Þ þ k1ðx1 � x2Þ ¼ c1

J2x2 þ r1ð _x2 � _x1Þ þ r2ð _x2 � _x3Þ þ k1ðx2 � x1Þ þ k2ðx2 � x3Þ ¼ c2
. . .
Jix

::
i þ ri�1ð _xi � _xi�1Þ þ rið _xi � _xiþ1Þ þ ki�1ðxi � xi�1Þ þ kiðxi � xiþ1Þ ¼ ci

. . .
Jnx

::
n þ rn�1ð _xn � _xn�1Þ þ kn�1ðxn � xn�1Þ ¼ cn

8>>>>>><>>>>>>:
ð2:147Þ

2.3.5.2 Lagrange’s Equations—Scalar Approach

As seen in the previous sections, expressing the equations of motion of the same
system by means of Lagrange’s equations requires the definition of the various
energy forms as a function of independent variables xi:

• kinetic energy Ec:

Ec ¼
Xn
i¼1

Eci ¼ 1
2

Xn
i¼1

Ji _x2i ð2:148Þ

• elastic potential energy V:

V ¼
Xn�1

j¼1

Vj ¼ 1
2

Xn�1

j¼1

kj xj � xjþ1
� �2 ð2:149Þ

• dissipation function D:

D ¼
Xn�1

j¼1

Dj ¼ 1
2

Xn�1

j¼1

rj _xj � _xjþ1
� �2 ð2:150Þ

• the virtual work performed by non-conservative forces:

d�L ¼
Xn
i¼1

d�Li ¼
Xn
i¼1

cid
�xi ¼

Xn
i¼1

Qid
�xi ð2:151Þ

On account of the example analysed being particularly simple, these expressions
are already expressed as a function of independent variables Xi and it is therefore
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possible to apply the Lagrange’s equations directly which, in scalar form, we recall
as being:

d
dt

@EC

@ _xi

� �
� @EC

@xi
þ @D

@ _xi
þ @V

@xi
¼ d�L

d�xi
¼ Qi ði ¼ 1; 2; . . .; nÞ ð2:152Þ

By applying (2.152) and taking into account (2.148)–(2.151), we once again
obtain the equations of motion of the system previously shown in (2.147): the same
equations of motion, after grouping the independent variables in vector x:

xT ¼ x1 x2 . . . xi . . . xnf g ð2:153Þ

can subsequently be rewritten in matrix form as:

½M�x:: þ ½R� _xþ ½K�x ¼ f ð2:154Þ

where ½M� is the mass matrix which, in this case, having assumed the absolute
rotations as independent variables, is diagonal (this corresponds to the fact that the
equations are inertially decoupled):

½M� ¼

J1 0 . . . 0 . . . 0
0 J2 . . . 0 . . . 0
0 0 . . . Ji . . . 0
0 0 . . . 0 . . . 0
0 0 . . . 0 . . . Jn

266664
377775 ¼ diag J1 . . . Ji . . . Jnf g ð2:155Þ

In (2.154), ½K� is the stiffness matrix: in this particular case, this matrix is
banded, symmetric and non-negative definite:

½K� ¼

k1 �k1 0 . . . 0 0 0 . . . 0
�k1 k1 þ k2 �k2 . . . 0 0 0 . . . 0
. . . . . . . . . . . . . . . . . . . . . . . . . . .
0 0 0 . . . ki�2 þ ki�1 �ki�1 0 . . . 0
0 0 0 . . . �ki�1 ki�1 þ ki �ki . . . 0
0 0 0 . . . 0 �ki kiþ1 þ ki . . . 0
. . . . . . . . . . . . . . . . . . . . . . . . . . .
0 0 0 . . . 0 0 0 . . . kn

266666666664

377777777775
ð2:156Þ

Similarly, matrix ½R� is:
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½R� ¼

r1 �r1 0 . . . 0 0 0 . . . 0
�r1 r1 þ r2 �r2 . . . 0 0 0 . . . 0
. . . . . . . . . . . . . . . . . . . . . . . . . . .
0 0 0 . . . ri�2 þ ri�1 �ri�1 0 . . . 0
0 0 0 . . . �ri�1 ri�1 þ ri �ri . . . 0
0 0 0 . . . 0 �ri riþ1 þ ri . . . 0
. . . . . . . . . . . . . . . . . . . . . . . . . . .
0 0 0 . . . 0 0 0 . . . rn

266666666664

377777777775
ð2:157Þ

and the vector of the applied forces:

f T ¼ f1 f2 . . . fi . . . fnf g ð2:158Þ

2.3.5.3 Lagrange’s Equations—Matrix Approach

Instead of directly using the matrix approach total kinetic energy Ec can be defined
as:

Ec ¼ 1
2
_Y
T
m My
� 	

_Ym ð2:159Þ

having used

YT
m ¼ x1 x2 . . . xi . . . xnf g ð2:160Þ

to indicate the vector of physical variables that are more convenient to describe this
energy form (the absolute rotations of the single discs) and being:

½My� ¼

J1 0 . . . 0 . . . 0
0 J2 . . . 0 . . . 0
0 0 . . . Ji . . . 0
0 0 . . . 0 . . . 0
0 0 . . . 0 . . . Jn

266664
377775 ð2:161Þ

the mass matrix in physical coordinates.
In this case the transformation between physical and independent variables

results simply to be

_Ym ¼ Km½ � _x ¼ I½ � _x ð2:162Þ
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For which the total kinetic energy becomes:

Ec ¼ 1
2
_xT Km½ �T My

� 	
Km½ � _x ¼ 1

2
_xT M½ � _x ð2:163Þ

The potential energy associated with the system in question can be expressed as:

V ¼ 1
2
DlTk k½ �Dlk ¼

1
2

Dh1
. . .
Dhj
. . .
Dhn�1

8>>>><>>>>:

9>>>>=>>>>;

T k1
. . .:

kj
. . .:

kn�1

266664
377775

Dh1
. . .
Dhj
. . .
Dhn�1

8>>>><>>>>:

9>>>>=>>>>;
ð2:164Þ

Having used Dlk to denote the relative rotation vector Dhj of the extremities of
the single rotor sections and k½ � to denote the stiffness matrix (diagonal) in the
physical coordinates.

The link between physical variables and independent coordinates can be
expressed by means of a compact matrix formula of the type:

Dlk ¼ Dlk xð Þ ¼

Dh1 xð Þ
. . .

Dhj xð Þ
. . .

hn�1 xð Þ

8>>>>>><>>>>>>:

9>>>>>>=>>>>>>;
¼

h1 � h2
. . .

hj�1 � hj
. . .

hn�1 � hn

8>>>>>><>>>>>>:

9>>>>>>=>>>>>>;

¼ Kk½ �x ¼

1 �1

1 �1

. . .

1 �1

1 �1

26666664

37777775x
ð2:165Þ

Potential energy V thus proves to be:
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V ¼ 1
2
xT ½Kk�T ½k�½Kk�x ¼ 1

2
xT ½K�x

¼ 1
2
xT

1 �1

1 �1

. . .

1 �1

1 �1

26666664

37777775

T k1
. . .

kj
. . .

kn�1

26666664

37777775
1 �1

1 �1

. . .

1 �1

1 �1

26666664

37777775x ¼

¼ 1
2

x1 . . . xi . . . xnf g

k1 �k1 0 . . . 0 0 0 . . . 0

�k1 k1 þ k2 �k2 . . . 0 0 0 . . . 0

. . . . . . . . . . . . . . . . . . . . . . . . . . .

0 0 0 . . . ki�2 þ ki�1 �ki�1 0 . . . 0

0 0 0 . . . �ki�1 ki�1 þ ki �ki . . . 0

0 0 0 . . . 0 �ki kiþ1 þ ki . . . 0

. . . . . . . . . . . . . . . . . . . . . . . . . . .

0 0 0 . . . 0 0 0 . . . kn

266666666666664

377777777777775

x1
. . .

xi
. . .

xn

8>>>>>><>>>>>>:

9>>>>>>=>>>>>>;

A similar approach can obviously also be used for the dissipation function,
which can be expressed as:

D ¼ 1
2
_Dl

T
r r½ � _Dlr ¼

1
2

D _h1
. . .
D _hj
. . .
D _hn�1

8>>>><>>>>:

9>>>>=>>>>;

T
r1

. . .:
rj

. . .
rn�1

266664
377775

D _h1
. . .
D _hj
. . .
D _hn�1

8>>>><>>>>:

9>>>>=>>>>;
ð2:166Þ

Having used _Dlk to denote the vector of the relative rotation speeds D _hj of the
extremities of the single rotor sections and r½ � the stiffness matrix (diagonal) in the
physical coordinates.

The link between physical variables and independent coordinates can be
expressed in a compact matrix form of the type:

D
:

lr ¼ D
:

lr _xð Þ ¼

D _h1 _xð Þ
. . .

D _hj _xð Þ
. . .

D _hn�1 _xð Þ

8>>>>>><>>>>>>:

9>>>>>>=>>>>>>;
¼

_h1 � _h2
. . .

_hj�1 � _hj
. . .

_hn�1 � _hn

8>>>>>><>>>>>>:

9>>>>>>=>>>>>>;

¼ Kr½ � _x ¼

1 �1

1 �1

. . .

1 �1

1 �1

26666664

37777775 _x
ð2:167Þ
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Dissipation functions D thus proves to be:

D ¼ 1
2
_xT ½Kr�T ½r�½Kr�_x ¼ 1

2
_xT ½R� _x

¼ 1
2
_xT

1 �1

1 �1

. . .

1 �1

1 �1

26666664

37777775

T r1
. . .

rj
. . .

rn�1

26666664

37777775
1 �1

1 �1

. . .

1 �1

1 �1

26666664

37777775_x

¼ 1
2

_x1 . . . _xi . . . _xnf g

r1 �r1 0 . . . 0 0 0 . . . 0

�r1 r1 þ r2 �r2 . . . 0 0 0 . . . 0

. . . . . . . . . . . . . . . . . . . . . . . . . . .

0 0 0 . . . ri�2 þ ri�1 �ri�1 0 . . . 0

0 0 0 . . . �ri�1 ri�1 þ ri �ri . . . 0

0 0 0 . . . 0 �ri riþ1 þ ri . . . 0

. . . . . . . . . . . . . . . . . . . . . . . . . . .

0 0 0 . . . 0 0 0 . . . rn

266666666666664

377777777777775

_x1
. . .

_xi
. . .

_xn

8>>>>>><>>>>>>:

9>>>>>>=>>>>>>;

ð2:168Þ

The virtual work performed by the torques can be expressed in matrix form
through relation:

d�L ¼ cTd�Yf ¼ c1 . . . c2 . . . c3f g

d�h1
. . .
d�hi
. . .
d�hn

8>>>><>>>>:

9>>>>=>>>>; ð2:169Þ

having used Yf to denote the vector of the most convenient physical variables (the
absolute rotations of the discs) to introduce this term.

Even in this case the transformation between physical and independent variables
is simply:

d�Yf ¼ Kf
� 	

d�x ¼ I½ �d�x ð2:170Þ

so that the virtual work becomes:

d�L ¼ cTd�Yf ¼ cT Kf
� 	

d�x ¼ f Td�x ð2:171Þ

where:

f ¼ Kf
� 	

c ¼ c ð2:172Þ

is the vector of the generalized forces.
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The equations of motion can obviously once again be rewritten in matrix
form as:

½M�x:: þ ½R� _xþ ½K�x ¼ f ð2:173Þ

2.4 Solving the Equations of Motion

2.4.1 One-Degree-of-Freedom System

As seen in Sect. 2.3.1, the equations of motion of a generic 1 d.o.f. system, linear or
linearized about the static equilibrium position is:

mx
::þr _xþ kx ¼ f ðtÞ ð2:175Þ

having used x to indicate the generic independent variable with which the motion of
the system under examination is described, m, r and k to respectively indicate
generalized mass, damping and stiffness and, finally, f(t) to indicate the generalized
generic force.

We will now analyse the methodologies used to evaluate the dynamic response
of the system (2.175) in various situations (free motion and forced motion).

2.4.1.1 Undamped Motion

In the absence of damping and of external applied forces, expression (2.175)
becomes a linear homogeneous differential equation of the second order with
constant coefficients:

mx
::þkx ¼ 0 ð2:176Þ

A particular integral of Eq. (2.176) is of the type [2, 28, 37]:

x ¼ Xekt ð2:177Þ

where k is a parameter, generally complex, that needs to be determined and X
represents the amplitude, also generically complex. By substituting expression
(2.177) in (2.176) we obtain a parametric, homogenous, algebraic equation in k:

ðk2mþ kÞX ¼ 0 ð2:178Þ
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which, as a non-trivial solution, admits that which annuls the characteristic
polynomial:

k2mþ k ¼ 0 ð2:179Þ

The solutions of (2.179) are:

k1;2 ¼
ffiffiffiffiffiffiffiffi
� k
m

r
¼ �i

ffiffiffiffi
k
m

r
¼ �ix0 ð2:180Þ

where i is the imaginary unit (i ¼ ffiffiffiffiffiffiffi�1
p

), while x0 ¼
ffiffiffiffiffiffiffi
k=m

q
is the frequency of the

undamped system.
In view of the fact that (2.179) has two separate solutions, Eq. (2.176) will have

two linearly independent particular integrals X1ek1t and X2ek2t, to which a general
integral corresponds, given by their linear combination:

xðtÞ ¼ xGðtÞ ¼ aX1ek1t þ bX
k2t
2 ¼ X1ek1t þ Xk2t

2 ð2:181Þ

where X1 and X2 are defined up to a constant and having included in same the
coefficients of the linear combination. In the case under examination, by keeping
account of (2.180), the general integral becomes:

xðtÞ ¼ xG ¼ X1eix0t þ X�ix0t
2 ð2:182Þ

x1

ωo

ωo

x2

Imm

Rex(t )

Fig. 2.14 Counter-rotating
vectors
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In (2.182) x(t) is real and, as a consequence, X1 and X2 prove to be complex
conjugate constants whose value depends on initial conditions.3

The general integral, or rather the response of the free system to an initial
disturbance about the equilibrium position, can thus be calculated (in Gauss’s
complex plane) as the vector sum of two complex counter-rotating conjugate
vectors of constant modulus (Fig. 2.14).

By developing (2.182) by means of Euler’s formula [2], the same equation can
also be rewritten in the following form:

xðtÞ ¼ X1 cosx0t þ i sinx0tð Þ þ X2 cosx0t � i sinx0tð Þ ð2:183Þ

or rather, by gathering the terms in sine and cosine:

xðtÞ ¼ X1 þ X2ð Þ cosx0t þ i X1 � X2ð Þ sinx0t ð2:184Þ

By bearing in mind the fact that X1 and X2 are complex conjugates, their sum is a
real number, while their difference is a purely imaginary number; expression
(2.184) thus becomes:

xðtÞ ¼ A cosx0t þ B sinx0t ð2:185Þ

Based on the aforementioned statement, A and B are real constants, that need to
be determined by imposing the initial conditions of displacement and velocity:

3In (2.182) X1 and X2 can be defined by means of the initial conditions. By imposing, at time t = 0:

xð0Þ ¼ x0
_xð0Þ ¼ _x0

ð2:3:1Þ

It is possible to obtain a system of equations of the type:

x0 ¼ X1 þ X2

_x0 ¼ ix0X1 � ix0X2
ð2:3:2Þ

From which:

X1 ¼ x0
2
� i

_x0
2x0

X2 ¼ x0
2
þ i

_x0
2x0

ð2:3:3Þ

As can be noted, X1 and X2 are complex conjugates.
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xð0Þ ¼ x0
_xð0Þ ¼ _x0

ð2:186Þ

Expression (2.185), derived with respect to time, provides the velocity trend:

_xðtÞ ¼ �x0A sinx0t þ x0B cosx0t ð2:187Þ

By imposing the initial conditions in (2.185) and (2.187) we obtain:

xð0Þ ¼ x0 ¼ A ð2:188Þ
_xð0Þ ¼ _x0 ¼ Bx0 ð2:189Þ

The value of constants A and B as a function of the initial displacement and
velocity of the system thus become:

A ¼ x0 ð2:190Þ

B ¼ _x0
x0

ð2:191Þ

The generic expression of vibration of the undamped free system perturbed
about the equilibrium position is thus:

xðtÞ ¼ x0 cosx0t þ _x0
x0

sinx0t ð2:192Þ

Fig. 2.15 System with 1 d.o.
f.: free undamped vibration
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An additional alternative expression to (2.185), can be obtained by performing a
change of variables:

A ¼ jXj cosðuÞ ð2:193Þ
B ¼ �jXj sinðuÞ ð2:194Þ

which, when substituted in (2.185) give:

xðtÞ ¼ jXj cosðuÞ cosx0t � jXj sinðuÞ sinx0t ð2:195Þ

It is possible to note that expression (2.195) is a development of the following
formula:

xðtÞ ¼ jXj cosðx0t þ uÞ ð2:196Þ

This Eq. (2.196) suggests how vibration x(t) can also be considered as the
projection on the real axis of complex vector X, modulus jXj and phase u, rotating
in the complex plane at speed x0:

xðtÞ ¼ Re Xeix0t
� � ¼ Re jXjeiueix0t

� � ¼ jXj cosðx0t þ uÞ ð2:197Þ

as shown in Fig. 2.15. The links between formulations (2.185) and (2.197) are
expressed by:

jXj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A2 þ B2

p
ð2:198Þ

u ¼ arctg �B
A

� �
ð2:199Þ

To summarize, vibration x(t) which defines the undamped free motion in the
absence of external forces (transient conditions) can be expressed in one of the
following three forms (2.182), (2.185) and (2.197). The general integral of an
undamped one d.o.f. system is thus represented by a harmonic oscillation with
frequency x0 (measured in rad/s), characterized (see Fig. 2.15) by a period T0
(expressed in seconds) equal to:

T0 ¼ 2p
x0

ð2:200Þ

Relationship:

f0 ¼ x0

2p
¼ 1

T0
ð2:201Þ

which defines the number of cycles (oscillations) that the system completes in a unit
of time is defined as natural frequency f0 (expressed in Hz).
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2.4.1.2 Damped Free Motion

In real systems, the condition of free motion with an amplitude that is constant in
time is not verified because, in all vibrating systems, there is always a certain amount
of energy dissipation. This dissipation can be attributed to the elastic hysteresis of the
material, to Coulomb friction or to the presence of an actual damper. In analytic
models we keep account of this circumstance by introducing equivalent damping
elements of a viscous type, which exercise a force that is proportional to the speed
and in the opposite direction to same. Even though this type of schematization does
not correspond to the actual dissipation mechanism, it is possible to determine an
equivalent viscous damping coefficient whereby, in each oscillation cycle, we have
the same amount of dissipated energy as in the real system.4

By keeping account of the damping, the equation of motion (2.175) becomes:

mx
::þr _xþ kx ¼ 0 ð2:202Þ

or rather, once again a differential equation of the second order, with total deriv-
atives, having constant coefficients. Given:

x2
0 ¼

k
m

ð2:203Þ

expression (2.202) can be rewritten as:

x
::þ r

m
_xþ x2

0x ¼ 0 ð2:204Þ

By imposing (2.177) in Eq. (2.204), it is possible to obtain non-trivial solutions
by setting the characteristic polynomial to zero:

k2 þ r
m
kþ x2

0 ¼ 0 ð2:205Þ

whose roots are:

k1;2 ¼ � r
2m

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r
2m

� �2
�x2

0

r
ð2:206Þ

In this case, we have two separate roots of the characteristic equation: the general
integral, which defines the perturbed motion of the system, is given by the com-
bination of the two particular integrals of expression (2.202):

4Concerning this we suggest referring both to Sect. 2.4.1.3 and Chap. 8, Sect. 8.2 relative to
Techniques of modal identification, where, by means of the analysis of experimental tests, we will
outline a procedure to identify the various terms of the equation.
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xðtÞ ¼ xGðtÞ ¼ X1ek1t þ X2ek2t ð2:207Þ

where X1 and X2 are constants that need to be determined on the basis of the initial
conditions. The discussion of the solutions given by (2.206) can be traced back to
the discussion of the sign of the discriminant:

D ¼ r
2m

� �2
�x2

0 ð2:208Þ

We define “critical damping” rc of system as that value of damping r which
annuls discriminant (2.208):

rc ¼ 2mx0 ð2:209Þ

By using h to name the relationship between the actual damping r of the system
and critical damping rc:

h ¼ r
rc

ð2:210Þ

and by keeping account of (2.203) and (2.209), the solutions can be expressed as
follows:

k1;2 ¼ � rx0

2mx0
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rx0

2mx0

� �2

�x2
0

s
ð2:211Þ

By keeping account of the definition of critical damping (2.209) and of (2.210),
(2.211) can be redefined, in non-dimensional form, as:

k1;2 ¼ x0 �h�
ffiffiffiffiffiffiffiffiffiffiffiffiffi
h2 � 1

p� �
ð2:212Þ

Fig. 2.16 System with 1 d.o.
f.: free motion of a damped
system with h > 1 for different
initial conditions
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The discussion is thus reduced to the possible relations:

h\1 ) r\rc
h ¼ 1 ) r ¼ rc
h[ 1 ) r[ rc

ð2:213Þ

In the event of the damping being greater than the critical damping (hypercritical
system) h[ 1, roots k1;2 (2.211) are both real and negative seeing that the radicand
is positive and its minor root, in absolute value, is h:

k1 ¼ �a1\0 ð2:214Þ
k2 ¼ �a2\0 ð2:215Þ

with a1 and a2 being real and positive. The general integral (2.207) will be defined
by two decreasing exponentials:

xðtÞ ¼ xGðtÞ ¼ X1ek1t þ X2ek2t ¼ X1e�a1t þ X2e�a2t ð2:216Þ

in which X1 and X2 are determined by imposing the initial conditions. Figure 2.16
shows several examples of transient conditions for different initial conditions: once
perturbed about the equilibrium position, the hypercritical system returns to its
initial position without oscillating.

In the case where damping is equal to the critical damping h ¼ 1, the radicand of
(2.212) is annulled and roots k1;2 ¼ �a ¼ �x0h coincide: the solution of the
differential equation becomes [2, 37]:

Fig. 2.17 System with 1 d.o.
f.: free motion of a damped
system with h = 1
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xðtÞ ¼ xGðtÞ ¼ X1e�at þ X2te�at ð2:217Þ

This solution (Fig. 2.17) is the limit between non-oscillating solutions (h[ 1)
and harmonic oscillating solutions (h\1). A system with damping equal to critical
value (h ¼ 1), disturbed about the rest position, returns to the rest position in less
time both with respect to a hypercritical system (h[ 1) and a system with a lower
damping than the critical one (h\1) [3, 31, 35].

In the case of a system with h\1 (with a lower damping than the critical value),
the radicand of (2.211) is negative and its root is thus a pure imaginary number. For
this reason, the two solutions k1;2 are complex conjugates with a real negative part:

k1;2 ¼ x0 �h� i
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� h2

p� �
¼ �a� ix ð2:218Þ

in which:

x ¼ x0

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� h2

p

a ¼ hx0
ð2:219Þ

where ω is the natural frequency of the damped system. The solution of the
equation of motion (2.207) becomes:

xðtÞ ¼ xGðtÞ ¼ X1e�atþixt þ X2e�at�ixt ð2:220Þ

Fig. 2.18 System with 1 d.o.
f.: free motion of a damped
system with h < 1
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And by gathering the exponential term:

xðtÞ ¼ xGðtÞ ¼ e�at X1eþixt þ X2e�ixt
� � ð2:221Þ

The term in parentheses of (2.221) has the same form as the solution of free
motion in the absence of damping (2.182), meaning that the same transformations
seen in Sect. 2.2 can be applied to it, thus obtaining alternative expressions of the
type:

xðtÞ ¼ xGðtÞ ¼ e�at A cosxt þ B sinxtð Þ ð2:222Þ
xðtÞ ¼ xGðtÞ ¼ e�at jXj cosðxt þ uÞð Þ ð2:223Þ

Expressions (2.222) and (2.223) evidence how, in the presence of a lower
damping than that of the critical damping, motion is represented by an oscillation
with frequency ω and a decreasing amplitude (Fig. 2.18) due to the presence of a
negative exponential. Constants A and B (jXj and u) present in expressions (2.222)
and (2.223) are determined, using the same procedure seen for the free undamped
system, by imposing the initial conditions. In the case of a system with a low
damping value (h � 1), frequency ω of the damped motion and that of the
undamped motion x0 practically coincide:

x ¼ x0

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� h2

p
	 x0 ð2:224Þ

Similarly to what we have seen for the undamped free system, we define the
relationship

σ A

M

corpo telescopico

pistone

valvola

B

C

(a) (b)

Fig. 2.19 Connection elements: a rubber element, b viscous damper
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T ¼ 2p
x

ð2:225Þ

as the natural period of damped motion T, and the relationship:

f ¼ x
2p

¼ 1
T

ð2:226Þ

as the natural frequency f (Hz).

2.4.1.3 Identification of Damping

The problem of identification of the parameters of a system is fundamental for a
correct simulation of the behaviour of the system itself. This subject will be the
object of Chap. 8, dedicated to Identification Techniques. In this instance we wish
to introduce the subject for preparatory purposes through the simple application of
one d.o.f. system, limiting the discussion to the only damping parameter r: as
previously mentioned, term r _x represents the dissipative effects of the system.
Furthermore, let us consider the case in which the dissipative effects are due to only
one element that can be physically isolated from the system itself, such as, for
example, the hysteresis of a spring or a rubber element (Fig. 2.19a) or an actual
viscous damper (Figs. 2.19b and 2.20). In this case, it is possible, thanks to the use
of experimental tests, to trace the dissipation of energy Ed due to the element itself

Fig. 2.20 Motorcar
suspension: we note the
presence of a viscous damper
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and, based on this, the value of the equivalent viscous damping r [5, 8, 15, 21, 22,
31, 35]. By subjecting the element to a harmonically variable elongation x:

x ¼ x0 cosXt ð2:227Þ

by measuring the force f ¼ f ðtÞ necessary to impose this displacement and finally
by plotting this force as a function of displacement x we obtain a diagram of the
type shown in Fig. 2.21 (relative to the case of linear and non linear elastic ele-
ment), in Fig. 2.22 (relative to the case of a purely damping element) or in Fig. 2.23
(relative to the case of a linear elastic element which dissipates energy by hyster-
esis): area A enclosed within the cycle is proportionate to dissipated energy Ed . The
form of the cycle depends on the type of dissipation actually present in the system:

Fig. 2.21 Loading-offloading
cycle for a purely linear and
nonlinear elastic element
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Fig. 2.22 Hysteresis cycle
for a purely damping element
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Fig. 2.23 Hysteresis cycle for a linear elastic element equipped with hysteretic dissipation: the
slope of the dotted line represents the stiffness of the element considered (k), the underlying area is
proportional to the damping introduced by same (r)

Fig. 2.24 Hysteresis cycle
for a nonlinear elastic element
equipped with hysteretic
dissipation
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Fig. 2.25 Hysteresis cycle
for a spring element with
Coloumbian friction
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• If of a purely viscous type with a null elastic restoring force such as, for
example, a linear damper, this cycle will appear as shown in Fig. 2.22;

• if of the hysteretic type as shown in Fig. 2.24;
• if due to Coloumbian friction as shown in Fig. 2.25.

In the case in which the element is perfectly elastic, the underlying area is null:
in Fig. 2.21 we show a hysteresis cycle for a perfectly linear and nonlinear elastic
element.

Area A enclosed by the loading-offloading diagram represents energy Ed dissi-
pated by the element itself: this energy [8, 15] is a function of amplitude x0 of the
imposed displacement and, for constant x0, also of frequency Ω of the imposed
displacement (2.227). Once value Ed of the dissipated energy is known, it is pos-
sible to obtain the equivalent viscous damping constant r: in fact, the energy
dissipated in a cycle by the equivalent viscous element subjected to a generic
elongation x, with velocity _x, is worth:

Ed ¼
ZT
0

r _x2 dt ð2:228Þ

in which the velocity, being a harmonic displacement (2.227), is:

_x ¼ �Xx0 sinXt ð2:229Þ

Dissipated energy Ed thus, assumes the expression:

Ed ¼ rX2x20

ZT
0

sin2 Xtdt ¼ rX2x20
T
2

ð2:230Þ

where T ¼ 2p=Xð Þ is the period of oscillation imposed. Expression (2.230) can
thus be rewritten as:

Ed ¼ rpx20X ð2:231Þ

The value of the equivalent viscous damping r can be obtained by equalizing the
expression of Ed (2.231) with the value of the dissipative energy obtained experi-
mentally by measuring the area A of hysteresis cycle and by placing in the same
(2.231) the same value of x0 and the same frequencyΩ of the test: the value of viscous
damping r obtained in this way is equivalent to the real damping, i.e., it is such that
the same dissipation can be introduced into a mathematical model, in one cycle.

In actual fact, the following cases can be presented:

• if, by varying x0, A varies proportionately to x20 as in (2.231) and if, when Ω
varies, dissipated energy A varies linearly with Ω (2.231), then the dissipative
element is actually linear viscous;
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• conversely, if A depends on x0 with a quadratic law, but is independent from Ω,
then the dissipative element is termed hysteretic and value r obtained from
(2.231) proves once again to depend on frequency Ω: in this case, it is thus
necessary to introduce a constant value of equivalent damping r which is dif-
ferent according to the frequency considered;

• if finally, keeping the same frequency and by only varying x0, dissipated energy
A does not depend quadratically on x0, the damping element is not linear and, as
a consequence, coefficient r is a function of the amplitude: in this case, it would
be necessary to have values that differ from the equivalent viscous damping
depending on the amplitude of oscillation.

Everything stated until now is based on the assumption of using a linear model
to simulate the complex mechanism responsible for the dissipation of energy. This
dissipation, as previously mentioned, is associated, for the most part, with the
elastic hysteresis of the material which does not work in a purely elastic field. In the
event of our wishing to simulate this complex mechanism adequately, it is neces-
sary to resort to nonlinear elements in terms of both velocity and displacement.
Concerning this, models known as “rheological”, capable of simulating various
types of hysteresis cycles [17, 22, 23], exist.

In the event of it not being possible to perform tests of the above mentioned type,
as an alternative to the method previously described, it is possible to adopt a method
known as the logarithmic decrement method [35], which can be applied to vibrating
systems with a damping that is much lower than the critical damping h � 1: this
approach is based on the measurement of the damped free motion (referred to as
decay). Based on the assumptions made, the free motion of a damped system is
described by (2.222):

xðtÞ ¼ jXje�hx0t cosðxt þ uÞ ð2:232Þ

Fig. 2.26 Measurement of
critical damping using the
logarithmic decrement
method

2.4 Solving the Equations of Motion 139



www.manaraa.com

By using δ to denominate the natural logarithm of the relationship between two
successive amplitude peaks xi ¼ x tð Þ and xiþ1 ¼ x t þ Tð Þ (Fig. 2.26), we obtain:

d ¼ ln
xðtÞ

xðt þ TÞ ¼ ln
xi
xiþ1

¼ ln
jXje�hx0t cosðxt þ uÞ

jXje�hx0ðtþTÞ cosðxðt þ TÞ þ uÞ ð2:233Þ

in which T is the period of free damped oscillation. Given the periodicity of the
cosine function:

cosðXt þ uÞ ¼ cosðXðt þ TÞ þ /Þ ð2:234Þ

by keeping account of (2.224) and (2.225), expression (2.233) becomes:

d ¼ ln
e�hx0tÞ

e�hx0ðtþTÞ ¼ ln ehX0T
� � ¼ hX0T ¼ hx0

2p
x

¼ hx0
2p

x0

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� h2

p ð2:235Þ

and by assuming that h � 1:

d ¼ ln
xi
xiþ1

¼ 2ph ð2:236Þ

By obtaining the temporal trend xðtÞ of the vibration and by measuring two
successive peaks xi and xiþ1, it is possible, by means of (2.236), to determine the
logarithmic decrement δ and, from (2.235), the value of the non-dimensional
damping h of the system compared with critical value. By measuring natural period
T (Fig. 2.26) and, therefore, frequency ω of same, once mass m of the system is
known, it is possible to determine the value of damping constant r by means of:

r ¼ h2mx0 ð2:237Þ

This procedure can be repeated between any two pair of peaks: if the system
behaves as a linear system, the value of δ does not change, neither during the course
of the single time history nor by imposing different initial conditions. Conversely, a
change of δ with the amplitude of oscillations is indicative of the nonlinear
behaviour of the system. Damping coefficient r obtained using this methodology
represents an equivalent damping from a point of view of energy, owing to the fact
that, in one cycle, it produces the same dissipation of energy (in the form of a
kinetic energy loss) as the real dissipation present in the system.

2.4.1.4 Forced Motion

In this chapter we will be analysing the dynamic behaviour of linear systems for
which, as is known, the principle of the superposition of effects [13, 18] can be
applied. In this section, in particular, we will deal with excitation forces depending
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solely on time, leaving to Chap. 5 a more general explanation, in which the forces
can also depend on independent variables and where we will deal with force fields.

Forces which are solely explicit functions of time are generally:

• constant forces (such as, for example, those due to gravitational fields);
• sinusoidal forces (e.g. such as those due, in rotors, to unbalances);
• periodic forces [32];
• aperiodic excitation forces (deterministic, but not periodic);
• random excitation forces [12]: the response of dynamic systems to aperiodic or

random excitation forces will be dealt with in Chap. 7.

In the explanation dealing with linear systems, we will only analyse the response
to excitation forces depending explicitly on time, in that the presence of constant
forces only modifies the particular integral of a constant term: later on in the book,
always with regard to linear systems, unless the contrary is expressly requested, we
will analyse the response of the system starting from the static equilibrium position
defined by the presence of these constant forces.5 By analysing linear systems, it is
possible, by using a Fourier analysis [2, 12, 27, 37], to trace the periodic excitation
forces to a linear combination of harmonic functions (trigonometric series or
Fourier series) whose frequencies are integer multiples of a fundamental frequency
X0:

5The equation of motion of a generic 1 d.o.f. linear system subjected to a force as a function of
time f = f(t) and to a constant force, e.g. weight, is generically of the type:

m€xþ r _xþ kx ¼ pþ f ðtÞ ð2:5:1Þ

I.e. a differential linear equation with constant coefficients. The steady state solution (2.3.1) (i.e.
once the transient has been exhausted [see Sect 2.4.1.2)], since the superposition of effects is valid
for the linear system, is given by the sum of the two terms:

• a constant particular integral (static solution of the system subjected, for example, to the
gravitational field) due to the sole weight force x0 ¼ p=k;

• a particular integral xpðtÞ that describes the oscillation about static value x0:

By considering, as seen in Chap. 1, the displacement of system x, starting from the static
equilibrium position x ¼ x0, as a new independent variable:

x ¼ x0 þ x; _x ¼ _x; x ¼ x
:: ð2:5:2Þ

The equation of motion (2.3.1) becomes:

mx
:: þ r _xþ kxþ kx0 ¼ pþ f ðtÞ ) mx

:: þ r _xþ kx ¼ f ðtÞ ð2:5:3Þ

This equation of motion defines the dynamic equilibrium conditions of the vibrating system
analysed starting from the static configuration.

2.4 Solving the Equations of Motion 141

http://dx.doi.org/10.1007/978-3-319-18200-1_5
http://dx.doi.org/10.1007/978-3-319-18200-1_7
http://dx.doi.org/10.1007/978-3-319-18200-1_1


www.manaraa.com

f ðtÞ ¼
X1
n¼0

Fnj j cosðnX0t þ hnÞ ð2:238Þ

where X0 is the natural frequency of the fundamental harmonic (X0 ¼ 2p=T0,
where T0 is the period of the periodic function), Fn is the generic nth harmonic
(coefficient of the series or Fourier coefficient), i.e. the complex generic term of the
development (2.238) of modulus Fno and phase hn:

Fn ¼ FnðnX0Þ ¼ 2
T0

ZT02
�T0

2

f ðtÞe�inX0tdt ¼ Fnj jeihn ð2:239Þ

F0j j in (2.239) represents the average value of f ðtÞ. By using the superposition of
effects principle, the dynamic response xðtÞ of a linear system subjected to a
periodic excitation force can be obtained as the sum of the responses of the same
system to each harmonic FnðtÞ in which the excitation force f ðtÞ has been
decomposed. For these reasons, the study of the response of a linear system sub-
jected to a single harmonic excitation forces proves to be of fundamental impor-
tance: the response to a harmonic excitation force is usually defined as a “harmonic
transfer function” (see Sect. 2.4.1.4.1).

In the case of a aperiodic excitation force f ðtÞ, the period tends towards the
infinity T0 ! 1, the discrete variable nX0 becomes a continuous variable Ω so that
(2.239) becomes:

FðXÞ ¼ 1
2p

Zþ1

�1
f ðtÞe�iXtdt ð2:240Þ

Expression (2.240), which represents a continuous spectrum, generally goes by
the name of a Fourier transform of f ðtÞ. Thanks to this transform, excitation force
f ðtÞ is seen as formally constituted by infinite excitation forces FðXÞdX distributed
with continuity in the domain O\X\1 so that (2.238), in the case of aperiodic
excitation forces [2, 31], is transformed into:

f ðtÞ ¼
Zþ1

�1

1
2p

FðXÞeiXtdX ð2:241Þ

Fig. 2.27 Typical approach of control systems
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defined as an inverse Fourier transform or a Fourier integral. An alternative, always
in the case of aperiodic excitation forces, is to use the so-called convolution integral
[31, 35] which evaluates the response of the system xðtÞ as the sum of the responses
to subsequent impulses with which the method envisages the same function f ðtÞ as
being decomposed. It is possible to demonstrate that the response to the impulse is
nothing else but the inverse transform (or Fourier integral) of the harmonic transfer
function [24].

2.4.1.4.1 Harmonic Transfer Function

The response of a 1 d.o.f. system to a known excitation force can be more generally
contextualized in the response of a system to a generic excitation, through algo-
rithms typical of the control discipline [10, 11, 16, 24, 26].

From this point of view, the excitation force represents the input magnitude and
the response of the system the output magnitude. The problem is thus ascribable to
that represented in Fig. 2.27, where the vibrating system is considered like a box, on
which, as an input magnitude, we can impose a generic applied force f ðtÞ and from
which, as an “output magnitude” we can obtain displacement xðtÞ of the system.

This representation can also easily be adopted for systems, even extremely
complex ones, differing from a 1 d.o.f. system, as long as it is possible to identify an
input and an output. The behaviour of the system in the box can be represented by
the harmonic transfer function (defined in this section) or by the transfer function in
complex variable s, using the Laplace transform (Sect. 2.4.1.4.6). The harmonic
transfer function HðXÞ is used when one wishes to pass from a time domain to a
frequency domain, using the Fourier transform.

Let us now consider a linear vibrating 1 d.o.f. system, excited by an harmonic
applied force of modulus F0, phase θ null and natural frequency Ω:

mx
::þr _xþ kx ¼ f ðtÞ ¼ F0 cosXt ð2:242Þ

Solution xðtÞ of (2.242) is the sum of the general integral xGðtÞ of the associated
homogenous, already analysed in the previous sections, and of the particular
integral xPðtÞ due to the known term, i.e. excitation force f ðtÞ:

xðtÞ ¼ xGðtÞ þ xPðtÞ ð2:243Þ

The general integral xGðtÞ of the associated homogenous which describes the
initial transient, in the case of real damping (r[ 0) defines a damped motion
tending to zero; conversely the steady state solution is described by the particular
integral. The most convenient approach to calculate the steady state response xPðtÞ
of a system with a harmonic excitation is to use a complex vector representation of
the excitation and of the response. Thanks to this method, the actual force F0 cosXt
can be considered as a projection on the real axis of a vector (complex number)
F ¼ F0eiXt rotating in a Gauss plane at angular speed Ω (see Fig. 2.28):
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F0 cosXt ¼ Re F0eiXt
� � ð2:244Þ

The equation of motion (2.242) can be rewritten, in a complex notation, as:

mx
::þr _xþ kx ¼ F0eiXt ð2:245Þ

In a complex field, the solution of (2.245) under steady state conditions, is given
by:

xP ¼ XPeiXt ¼ jXPjeiðXtþwÞ ð2:246Þ

where XP is a complex number of modulus jXPj and phase w. The actual solution
xPðtÞ6 is represented by the projection on the real axis of the complex rotating
vector XPeiXt (2.246):

xPðtÞ ¼ Re XPeiXt
� � ¼ Re jXPjeiðXtþwÞ

� �
¼ jXPj cosðXt þ wÞ ð2:247Þ

F0e
i Ωt

F0cos(Ωt )

Ωt

|Xp| cos(Ωt + ψ)

|X p|
e (iΩt + ψ)

ψ
Im

Re

Fig. 2.28 Vector representation of a harmonic excitation force and a steady state response

6In order to justify using a complex notation, it is possible to rewrite an auxiliary equation in
parallel to the real Eq. (2.242):

m€xþ r _xþ kx ¼ F0 cosðXtÞ
m€yþ r _yþ ky ¼ F0 sinðXtÞ

ð2:6:1Þ

By multiplying the second of the Eq. (2.6.1), by imaginary unit i ¼ ffiffiffiffiffiffiffi�1
p

, adding it up
member by member and assuming a new independent variable z ¼ xþ iy, the system of
Eq. (2.6.1) can be rewritten (always keeping account of Euler’s relation [2] as:

m€zþ r€zþ kz ¼ F0eiXt ð2:6:2Þ

The real solution xðtÞ represents the real part of the complex solution zðtÞ: traditionally,
during the transit from the real Eq. (2.6.1) to the equivalent complex one (2.6.2), formally
speaking we retain the same name of the variable, thus obtaining expression (2.245).
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where jXPj represents the vibration amplitude and w the phase between the vibration
and the applied force. By substituting (2.246) and its derivatives with respect to
time in (2.245) we obtain7:

�mX2 þ iXr þ k
� �

XPeiXt ¼ F0eiXt ð2:248Þ

By using this approach it is possible to eliminate with ease the dependence on
time and to obtain the expression of the complex solution:

XP ¼ F0

ðk � mX2Þ þ iXr
ð2:249Þ

By dividing both terms of (2.249) by F0 and dividing the numerator and the
denominator of the term on the right of the equal sign by k, the same equation can
be rewritten as:

XP

F0
¼ 1=k

ð1� mX2

k Þ þ i Xrk
ð2:250Þ

and, by using:

• x2
0 ¼ k=m to indicate the natural frequency of the undamped system;

• a ¼ X
x0

the non-dimensional ratio of the frequencies;
• h ¼ r

rc
the non-dimensional damping ratio (2.210);

expression (2.249) can be rewritten as follows:

HðXÞ ¼ XP

F0
¼ 1=k

ð1� a2Þ þ i2ah
ð2:251Þ

7In this expression (2.248), the term:

kc ¼ k þ iXrð Þ ð2:7:1Þ

can be considered as a complex stiffness, also inclusive of the dissipative term. Using this for-
mality, in the frequency domain, i.e. by analysing only the steady state response of the system to a
harmonic applied force, the same Eq. (2.248) can be rewritten as:

�X2mþ kc
� �

xp ¼ F0 ð2:7:2Þ

This representation will be convenient to introduce the hysteretic damping, in Sect. 3.7.1.
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where HðXÞ is the so-called harmonic transfer function, i.e. a function that repre-
sents the response of a vibrating system to a harmonic applied force of a unitary
modulus.

To obtain the modulus of (2.251), it is possible to proceed with the rationali-
zation of the expression itself:

H Xð Þ ¼ 1=k
ð1� a2Þ þ i2ah

ð1� a2Þ � i2ah
ð1� a2Þ � i2ah

¼ 1
k

ð1� a2Þ � i2ah

ð1� a2Þ2 þ ð2ahÞ2 ¼ H Xð Þj jeiw
ð2:252Þ

By separating the real part Re H Xð Þð Þ and the imaginary part Im H Xð Þð Þ of this
relationship:

Re H Xð Þð Þ ¼ 1
k

ð1� a2Þ
ð1� a2Þ2 þ ð2ahÞ2 ð2:253Þ

Im H Xð Þð Þ ¼ � 1
k

i2ah

ð1� a2Þ2 þ ð2ahÞ2 ð2:254Þ

we obtain the modulus of the steady state response, as the composition of both the
real and imaginary parts of the response:

jH Xð Þj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ReðH Xð ÞÞ2 þ ImðH Xð ÞÞ2

q
¼ 1=kffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð1� a2Þ2 þ ð2haÞ2
q ð2:255Þ

while the phase is:

tanw ¼ ImðH Xð ÞÞ
ReðH Xð ÞÞ ¼ � 2ha

1� a2
) w ¼ wðXÞ ¼ a tan

�2ha
1� a2

� �
ð2:256Þ

The frequency response of a generic vibrating system is used to define the
diagram showing gain HðXÞj j of the harmonic transfer function (2.255) and phase
diagram wðXÞ (2.256) both as a function of the frequency of excitation force Ω.
This function, which will be analysed in more detail in Chap. 8, Sect. 8.2, relative to
Modal identification techniques, represents the response of the system to a unitary
harmonic excitation force. Conversely, we define the set of curves that, as a
function of frequency Ω (in logarithmic scale) show the gain in decibels
ImðjHðXÞjÞ ¼ 20 log jHðXÞj and the phase angle w as a Bode diagram. The har-
monic transfer function is used to calculate the response of a system with one
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harmonic excitation force (and, as will be seen further on, also a periodic excitation
force that can be developed in a Fourier series).

Diagrams HðXÞj j and wðXÞ are indicative of the dynamic behaviour of each 1 d.
o.f. system. The modulus and phase diagrams can be divided into three areas
depending on the value of relationship a ¼ ðX=x0Þ:
• Quasi-static area with a ¼ X=x0

\1;

• resonance area with a ¼ X=x0
¼ 1;

• seismographic area with a ¼ X=x0
[ 1.

The first area (defined as a quasi-static area), in which a\1 (an area in which
frequency Ω of the excitation force is much smaller than the natural frequency x0 of
the system) is characterized by a harmonic transfer function H Xð Þj j near to the
static value 1=k. In this area, the vibration amplitudes assume values near to those
that would be obtained by applying the excitation force statically. In a quasi-static
area, phase w remains almost null: the force and displacement therefore prove to be
in-phase. For n d.o.f. systems (Sect. 2.4.3), the area in which Ω is much smaller
than the first natural frequency of x1 is considered almost static. To evaluate the
stress state induced by a sinusoidal excitation force with a ≪ 1, static calculations
can be used, even if it is necessary to bear in mind that the stress is alternated
meaning that a material fatigue problem exists.

The resonance area is characterized by a frequency of excitation force Ω near to
the natural frequency of system x0: the harmonic transfer function HðXÞj j for
a ¼ ðX=x0Þ ¼ 1, see (2.252), is given by:

HðXÞj ja¼1¼
1
k
1
2h

ð2:257Þ

The vibration amplitudes in resonance prove to be inversely proportionate to
damping h ¼ ðr=rcÞ and the width of the resonance peak increases with damping.
The harmonic transfer function H Xð Þj j is lower than the value assumed in the quasi-
static zone only in the case of h[ 0:5: this damping value is not easily achieved for
structures or machine elements, where usual values of h are of the order of a few
percent and, as a consequence, the harmonic transfer function in resonance con-
ditions HðXÞa¼1 can show an amplification coefficient of the order of ten. Under
these conditions, phase w is always equal to −90° regardless of the damping value.
For a null damping value h, expression (2.252) shows that the vibration amplitudes
jXPj tend to the infinity. In reality, for various reasons, this type of situation never
occurs:

• while for small amplitudes it is possible to neglect the damping effect, this is no
longer allowable if the amplitudes become high, because, under these condi-
tions, generally speaking, nonlinear effects introduce an increased dissipation of
energy;
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• to reach infinite vibration amplitudes, an infinite time is required: it can, in fact,
be shown [3, 27, 36] that when there is a state of resonance and a lack of
damping, the vibration follows the law:

xPðtÞ ¼ F0

2mx
t sinXt ð2:258Þ

Therefore, under resonance conditions, the dynamic effect on the deformation
state can no longer be neglected: the stress state proves to be considerably amplified
with respect to the value calculated statically.

In the third area, termed seismographic, characterized by a ¼ X=x0 [ 1, the
harmonic transfer function HðXÞj j decreases with the increase of ratio ðX=x0Þ
itself: the dynamic effect therefore reduces the oscillation amplitude. Phase w
between vibration XP and force F tends to −180°.

The harmonic transfer function HðXÞ, defined as:

HðXÞ ¼ XPðXÞ
F0ðXÞ ð2:259Þ

is thus, as previously mentioned, a complex function that allows us to calculate the
response of the system in the frequency domain, once the excitation force in
complex form F ¼ FðXÞ is known. The response is obtained as a product of
excitation force FðXÞ by HðXÞ, a function of frequency Ω of the excitation force
itself:

Fig. 2.29 Input and output variables: transfer function

Ωt

ϑ

Im

f (t ) Re

|F0|

Fig. 2.30 Vector representation of a harmonic excitation force
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XPðXÞ ¼ HðXÞFðXÞ ð2:260Þ

From this viewpoint (see Fig. 2.29), the system is seen as a block having one
input, excitation force FðXÞ, and one output, excitation response XPðXÞ: based on
the response in complex form, it is then possible to evaluate the real part XPR and
the imaginary part XPI and thus calculate modulus XPj j and phase w. In conclusion,
the particular integral xPðtÞ, i.e. the steady state solution for a system subjected to a
harmonic excitation force is the projection on the real axis of vector XPeiðXtþwÞ i.e.:

xPðtÞ ¼ XPj j cosðXt þ wÞ ð2:261Þ

In (2.261) jXPj represents the amplitude of sinusoidal harmonic motion xPðtÞ
displaced by w with respect to the excitation force: thus, at steady state the system
vibrates at the same frequency as the excitation force.

Let us now generically consider (Fig. 2.30) a harmonic excitation force of
modulus F0 and phase h, defined as a projection on the real axis of a complex vector
F ¼ F0eiðXtþhÞ:

f ðtÞ ¼ jF0j cosðXt þ hÞ ¼ Re Fð Þ ¼ Re jF0jeiðXtþhÞ
� �

ð2:262Þ

The steady state response of the system can be obtained as a product of the
harmonic transfer function HðXÞ for the complex vector F ¼ F0eiXt:

xðtÞ ¼ Re HðXÞFðXÞð Þ ¼ Re HðXÞj jeiwjF0jeiðhþXtÞ
� �

ð2:263Þ

i.e., by recalling De Moivre’s theorem [2] on the product of complex numbers:

xðtÞ ¼ Re jHðXÞjjF0jeiðwþhÞeiXt
� �

ð2:264Þ

¼ jHðXÞjjF0j cosðXt þ wþ hÞ ¼ jXPj cosðXt þ wþ hÞ ð2:265Þ

where h represents the force phase, dependent on the value of force phase f ðtÞ at
initial instant t ¼ 0, while w represents the phase lag of the response with respect to
the excitation force.

2.4.1.4.2 Representation in a Complex Plane

To better explain the meaning of the three zones shown in the diagram of transfer
function HðXÞ, it is possible to resort to the complex representation of the equation
of motion in the real variable xðtÞ:
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�m€x� r _x� kxþ F0 cosXt ¼ 0 ð2:266Þ

Expression (2.266) can be interpreted as the dynamic equilibrium equation of the
forces acting on the system:

inertia forces fi ¼ �m€x
damping forces fd ¼ �r _x
elastic forces f kf g ¼ �kx
external forces f ðtÞ ¼ F0 cosXt

ð2:267Þ

The same relation can be rewritten by adopting a complex notation: by con-
sidering all the components of the forces as projections on the real axis of force
vectors rotating in the Gauss plane (it is necessary to underline that this step is
possible in that all the vectors rotate at the same angular speed Ω) and, remem-
bering that the same expression (2.266) represents the sum of all the forces acting
on mass m, it is, in fact, possible to rewrite the equation of motion of the one d.o.f.
system subjected to a harmonic excitation as:

Re Fi þ Fd þ Fk þ Fð Þ ¼ 0 ) Fi þ Fd þ Fk þ F ¼ 0 ð2:268Þ

Excitation force f ðtÞ ¼ F0 cosXt can be seen as the projection on the real axis of
a rotating vector F in the complex plane:

F ¼ F0 cosðXtÞ ) F ¼ F0eiXt ð2:270Þ

By bearing in mind that the particular integral of (2.266) can be expressed, in a
complex field [see (2.247)] as:

xP ¼ XPeiXt ¼ jXPjeiweiXt ¼ jXPjeiðXtþwÞ ð2:271Þ

Fig. 2.31 One d.o.f. system:
vector diagram of the forces
for a ≪ 1
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and, as a consequence, that the velocity and acceleration can be expressed as:

_xP ¼ iXXPeiXt ¼ iXjXPjeiðXtþwÞ ð2:272Þ
x
::
P ¼ �X2XPeiXt ¼ �X2jXPjeiðXtþwÞ ð2:273Þ

the expression of the inertia force Fi (2.267) thus becomes:

fi ¼ �mx
::
p ) Fi ¼ mX2XPeiXt ¼ mX2xP ð2:274Þ

i.e. it is represented by a rotating vector having the same direction as the complex
vector xP; on the contrary, the elastic force has the opposite direction of xP:

fk ¼ �kxP ) Fk ¼ �kXPeiXt ¼ �kxP ð2:275Þ

and, lastly, the viscous force has a direction that is perpendicular to xP and has a 90°
phase lag on the displacement itself:

fd ¼ �r _xp ) Fd ¼ �irXXPeiXt ¼ �irXxP ð2:276Þ

The vector equation (2.268) is graphically represented in Fig. 2.31. This rep-
resentation allows us to better evidence the peculiar characteristics of the three zone
in the diagram of the transfer function already seen in Sect. 2.4.1.4.1.

In particular, for the first zone, (a ¼ ðX=x0Þ\1), inertia force Fi and viscous
force Fd are small, on account of frequency Ω being small and, furthermore, phase
lag w is practically null. Thus, ultimately, it results that external excitation force F is
balanced by the only elastic force Fk (Fig. 2.31). Under this condition, the

Fig. 2.32 One d.o.f. system:
vector diagram of forces for
a = 1
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excitation force is offloaded onto the external constraints by means of the interposed
elastic element.

In the second zone in which a ¼ 1 (i.e. X ¼ x0) elastic force Fk balances inertia
force Fi, on account of having the same modulus and an opposite direction.
Therefore, external force F is balanced by the only viscous force Fd since phase lag
w is equal to 90° (see Fig. 2.32). By equalling the modulus of external force jFj
with the modulus of viscous force Fd (2.267), we once again obtain the steady state
vibration amplitude in resonance:

jXPj ¼ F0

rx0
¼ F0

rX
¼ F0=k

2h
ð2:277Þ

As previously seen, as the damping increases the amplitude of oscillation
decreases.

In the third zone, termed the seismographic zone, defined by parameter a[ 1,
inertia force Fi, which depends on the square of frequency Ω of the excitation force,
is much greater than elastic force Fk and viscous force Fd . In this zone, phase w
between response xP and external excitation force F is worth approximately 180°,
regardless of the value assumed by damping r. External force F is therefore bal-
anced almost exclusively by the only inertia force Fi (Fig. 2.33) and the amplitudes
of oscillation tend to annul themselves by Ω tending towards infinity. Already for
the values of ratio a ¼ 2 the elastic forces Fk and the viscous ones Fd are negligible
with respect to those of inertia Fi and the mass can therefore be seen as free in

Fig. 2.33 One d.o.f. system:
vector diagram of forces for
a ≫ 1
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space, i.e. devoid of external constraints. The fact of being able to consider the
system as if it were devoid of ground constraints is exploited in problems related to
isolation of foundations: by creating a system having a very low natural frequency
x0 with respect to the frequency of excitation force Ω, so that functioning takes
place above the natural frequency of the system: in this case, the force transmitted
by the spring and by the damper to the external constraints decreases. This property
is, in fact, exploited in isolation of vibrations by means of an elastic foundation (see
Sect. 2.4.1.4.1).

2.4.1.4.3 Coefficient of Dynamic Amplification

In some cases, the frequency response can also be represented in terms of a
dynamic amplification coefficient: by remembering that the natural frequency of the
undamped system is x2

0 ¼ k=m, by introducing the non-dimensional relationship
a ¼ X

x0
and after defining the non-dimensional damping ratio h ¼ r

rc
, it is possible to

rewrite (2.249) in the following form:

XP ¼ ðF0=kÞ
ð1� a2Þ þ i2ah

ð2:278Þ

By now using Xst to define the displacement to which the system is subjected
due to the effect of static application (i.e. with null frequency Ω) of the same force
F0:

Xst ¼ F0

k
ð2:279Þ

expression (2.278) can thus be rewritten as8:

XP

Xst
¼ 1

ð1� a2Þ þ i2ah
ð2:280Þ

The term dynamic amplification coefficient A(a) is used to define the modulus of
relationship (2.280):

AðaÞ ¼ A
X
x0

� �
¼ XP

Xst

���� ���� ¼ 1

ð1� a2Þ2 þ ð2ahÞ2 ð2:281Þ

8Function Xp
�
Xst

can be obtained from H iXð Þ simply divided by 1=k.
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and the corresponding phase is given by:

tanw ¼ � 2ha
1� a2

ð2:282Þ

This relationship provides amplification of the response amplitude of the system
with respect to the static case: calculation of the steady state amplitude can be
performed by simply multiplying the static deformation Xst by amplification
coefficient AðaÞ given by (2.281).

To highlight the dynamic effects of the application of the harmonic excitation
force, it is customary, as a function of non-dimensional parameter a ¼ X=x0, to
plot the dynamic amplification coefficient AðaÞ (2.281) and the relative phase w
(2.282): function AðaÞ thus represents the vibration amplitude, compared with the
static displacement, as a function of the relationship between frequency Ω of the
excitation force and natural frequency x0. Function w ¼ wðaÞ (Fig. 2.34) as pre-
viously mentioned expresses the angular phase lag between excitation force F ¼
F0eiXt and vibration XP ¼ jXPjeiðXtþwÞ (Fig. 2.34); on the contrary, the temporal
phase lag is equal to:

Dt ¼ w
X

ð2:283Þ

Diagrams AðaÞ and wðaÞ are representative of the dynamic behaviour of each 1
d.o.f. system. The diagrams of modulus and phase can be divided into three zones
depending on the value of the ratio a ¼ ðX=x0Þ similar to the situation involving
the harmonic transfer function, so that we obtain:

• a quasi-static zone with a ¼ X=x0
\1;

• a resonance zone with a ¼ X=x0
¼ 1;

• a seismographic zone with a ¼ X=x0
[ 1.
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Fig. 2.34 Forced 1 d.o.f. system: a dynamic amplification coefficient A(a); b phase ψ(a) of the
response with respect to a harmonic excitation force
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The first zone (defined as a quasi-static zone), in which a\1 (a zone in which
frequency Ω of the excitation force is much smaller than the natural frequency x0 of
the system) is characterized by a dynamic amplification coefficient AðaÞ near to
unity. In this zone, the vibration amplitudes assume values near to those that would
be obtained by applying the excitation force statically. In the almost static zone,
phase w remains almost null: the force and displacement thus prove to be in phase.

The resonance zone is characterized by an excitation force frequency Ω near to
the natural frequency of system x0: the dynamic amplification AðaÞ for a ¼
ðX=x0Þ ¼ 1 [see (2.281)] is worth:

AðaÞ ¼ jXPj
Xst

¼ 1
2h

ð2:284Þ

The vibration amplitudes in resonance are inversely proportionate to damping
h ¼ ðr=rcÞ and the width of the resonance peak base increases with damping.
Amplification coefficient AðaÞ is smaller than unity only in the case of h[ 0:5: this
damping value is difficult to achieve for structures or machine elements, where
usual values of h are of the order of a few percent and, as a consequence, the
dynamic amplification coefficient in resonance AðaÞa¼1 can become of the order of
some tens. Under these conditions, phase w, is always equal to −90°, regardless of
the damping value (2.282). For a null damping value h, expression (2.284) shows
that vibration amplitudes jXPj tend towards the infinity. In the third zone, termed
seismographic, characterized by a[ 1, the dynamic amplification coefficient AðaÞ
is smaller than unity and decreases as relationship ðX=x0Þ itself increases: the
dynamic effect thus reduces the amplitude of oscillation. Phase w between vibration
XP and force F tends towards −180°.

2.4.1.4.4 An Example of Application: Isolation of Vibrations by Means of a
Foundation

In theory, there is often the problem of reducing the level of vibrations both of the
machine as well as the surrounding environment: a classic example is the case of a
machine mounted on a base. While operating, the machine transmits a force to the
base (an inertia force in an alternative machine, an unbalance in a rotating machine,
etc.) which, generally speaking, is periodic and therefore can be developed, by
means of a Fourier series, into harmonics with frequency nX0 proportional to
fundamental frequency X0 (let us remember that n is used to define the order of the
harmonic). In this case, the aim of the foundation is to limit the value of the
vibrations of the base and the value of the force transmitted to the constraints:
depending on the applications, the first or second aspect will be predominant.

A first approach to the problem is to use a simple diagram with one d.o.f., in
which m represents the mass of the base plus that of the machine, k the stiffness of
the foundation and r its damping. Let us consider the vibrating system as being
subjected to a harmonic force f ðtÞ ¼ F0 cosXt: the equations of motion, in complex
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form, that allow us to define the steady state response of the system, have been
defined in Sect. 2.4.1.4, Eq. (2.242) and the solution has been obtained by using the
vector notation in (2.247). The force transmitted by vibrating system ftr is offloaded
onto the constraints by means of spring k and damper r: under steady state con-
ditions, by resorting to the complex vector notation, by keeping account of (2.271)
(2.276), ftr therefore simply becomes:

ftr ¼ Re Ftrð Þ ¼ kxþ r _x ) Ftr ¼ kxP þ r _xP ð2:285Þ

i.e.:

Ftr ¼ k þ iXrð ÞXP ð2:286Þ

Ωt

Im

Re

|X p| Ω2 e i(Ωt + ψ)

|X p| Ω e i(Ωt + ψ)

|X p|

F0e
iΩt

Fi
Ftr

Fk

Fd

Fig. 2.35 Vector representation of the steady state situation: displacements and forces acting on a
vibrating one d.o.f. system
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Fig. 2.36 Transmissivity for
various structural damping
values
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The modulus of the force transmitted is:

jFtrj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðkjXPjÞ2 þ ðXrjXPjÞ2

q
¼ jXPj

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þ ðXrÞ2

q
ð2:287Þ

Figure 2.35 shows a steady-state vector representation of:

• displacement XP, velocity _XP, acceleration X
::

P, (2.272) and (2.273), of mass m;
• excitation force F ¼ F0eiXt acting on the system;
• the corresponding elastic force Fk , viscous force Fd and inertia force Fi (2.267);
• transmitted force Ftr (2.286).

We note how the vector notation enables us to easily evidence the fact that
viscous force Fd foreruns the elastic force Fk.

By recalling the expression of the steady state vibration amplitude jXPj (2.278),
the modulus of transmitted force jFtrj becomes:

jFtrj ¼ 1
k

F0

ð1� a2Þ2 þ ð2ahÞ2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þ ðXrÞ2

q
¼

F0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ð2haÞ2

q
ð1� a2Þ2 þ ð2ahÞ2 ð2:288Þ

The relationship between the modulus of the force transmitted to constraint jFtrj
and the modulus of the excitation force applied to vibrating system F0j j is defined
as a TR transmissivity relationship (Fig. 2.36):

TR ¼ jFtrj
F0j j ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ð2haÞ2

q
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1� a2Þ2 þ ð2ahÞ2

q ð2:289Þ

In this way, modulus jFtrj of the force transmitted can be rewritten as a product
of the impressed force modulus F0j j multiplied by transmissibility coefficient TR:

jFtrj ¼ F0j j TR ð2:290Þ

In the diagram showing the trend of the TR transmissivity ratio between the
modulus of the force transmitted to the constraint and excitation force (Fig. 2.36), it
is possible to observe a first zone (corresponding to X=x0\1) in correspondence to
which the entire excitation force F0 is transmitted to the constraints (in this case, we
refer to a rigid foundation) and a third zone (seismographic zone) in which the TR
ratio is lower than unity and tends to annul itself as ratio a ¼ ðX=x0Þ increases. As
can be noted, for values of a ¼ ffiffiffi

2
p

the whole of force F0 is transmitted to the
ground, while for a[

ffiffiffi
2

p
the force tends to decrease, as frequency Ω of the

excitation force increases. It is interesting to note how, in a seismographic zone, as
damping h increases so does the force transmitted. To isolate a machine, it is
therefore necessary to design the foundation so that its frequency x0 is much lower
than the frequency of excitation force Ω, with a damping that, though possibly
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limited is, nevertheless, compatible with passing through resonance. Furthermore, it
is necessary to bear in mind that, in addition to the periodic (or harmonic) force,
there is also a noise factor, associated with the random excitation forces (Chap. 7;
[14]) resulting from uncontrollable phenomena that act on the machine. Generally
speaking, the noise covers a wide frequency band and is also capable of exciting the
natural frequency of the base: for this reason, it is necessary that same is sufficiently
damped. From a technical point of view, the largest problems are encountered when
creating low values of x0, which can be obtained either with low stiffness values k,
or high mass values m: however, from a practical point of view, this solution is not
always an option. In fact, by rewriting the relation that describes the natural fre-
quency of a 1 d.o.f. system as:

x0 ¼
ffiffiffiffi
k
m

r
¼

ffiffiffiffiffiffi
kg
mg

s
¼

ffiffiffiffiffi
g
dst

r
ð2:291Þ

where g is the acceleration of gravity and dst is the static drawdown sustained by the
mass of the system due to the effect of the natural weight, it is possible to observe
that, in order to obtain low frequencies, it is necessary to create a highly deformable
suspension. Expression (2.291) shows how as natural frequency x0 of the foun-
dation decreases, the value of static drawdown dst, required by the elastic element,
increases and that this value is not easily achievable in non-theoretical situations:
for example, to obtain a natural frequency equal to 1 rad/s (0.16 Hz), it is necessary
to have a static deformation of as much as 9:81m! Furthermore, it is important to
note that a high value of dst, i.e. a low value of k, implies that the system, subjected
to generic external actions, sustains considerable displacements that are not always
compatible with the correct functioning of the machine which is bound to the
outside world either to receive or supply energy.

2.4.1.4.5 Response to a Periodic Excitation Force

In Sect. 2.4.1.4.1 we showed how a vibrating system, subjected to a harmonic
excitation force of frequency Ω, oscillates at steady-state conditions having the
same frequency as the excitation force with amplitudes that depend on the rela-
tionship [see Eqs. (2.247) and (2.278)] between the frequency of excitation force Ω
and the natural frequency ω of the system. In the previous Sect. 2.4.1.4.1 we saw
how a representation that is similar to dynamic amplification coefficient A
(a) (Sect. 2.4.1.4.3, (2.281), Fig. 2.34), can be provided by the modulus of the
harmonic transfer function H iXð Þj j defined, in the frequency domain, as the rela-
tionship between the complex vector XPeiXt (2.259), whose projection on the real
axis provides the actual vibration xPðtÞ, and the complex vector F ¼ F0eiXt, whose
projection on the real axis represents the actual excitation force f ðtÞ (see Footnote
6). If the system is linear, then the principle of the superposition of effects applies to
it: the dynamic response to several excitation forces is thus equal to the sum of
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responses to each single excitation force. As previously mentioned in
Sect. 2.4.1.4.1, this property is useful when one wishes to analyse the dynamic
behaviour of a linear system, subjected to a periodic excitation force. We consider a
generic periodic excitation force f ðtÞ whereby relationship f ðtÞ ¼ f ðt þ T0Þ applies,
where T0 is the period of the same function. This function can be represented as:

f ðtÞ ¼
X1
n¼0

Re FneinX0t
� � ¼X1

n¼0

jFnj cos nX0t þ hnð Þ ð2:292Þ

where Fn ¼ jFnjeihn is the generic complex harmonic component and Xn ¼ nX0 is
the generic frequency, a multiple of the fundamental harmonic X0 [rad/s] associated
with fundamental period T0:

X0 ¼ 2p
T0

¼ 2pf0 ð2:293Þ

Expression (2.292) can also be rewritten as:

f ðtÞ ¼
X1
n¼0

FAn cos nX0tð Þ þ FBn sin nX0tð Þ ð2:294Þ

The generic harmonic Fn of (2.292) can be evaluated by means of (see also [2,
12, 27]):

Fn ¼ jFnjeihn ¼ 2
T0

ZTo=2
�To=2

f ðtÞe�inX0tdt ð2:295Þ
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Fig. 2.37 Periodic excitation
force: time history
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while, on the contrary, for formulation (2.294) components FAn and FBn prove to be:

FAn ¼ 2
T0

ZT0=2
�T0=2

f ðtÞ cos nX0tð Þdt ð2:296Þ

FBn ¼ 2
T0

ZT0=2
�T0=2

f ðtÞ sin nX0tð Þdt ð2:297Þ

Relationships (2.296) and (2.297) are nothing other than a variable transfor-
mation that allow us to pass from a time domain to a frequency domain: the
representation of generic amplitude f ðtÞ in the time domain is obviously given by
the same time history (Fig. 2.37), while its representation in the frequency domain
is given by a discrete spectrum Fn ¼ FðXnÞ (with n ! 1), i.e. by two diagrams
(Fig. 2.38):

• the moduli spectrum in which we show, as a function of frequencies Xn ¼ nX0,
all multiples of fundamental frequency X0, the amplitude jFnj of each harmonic
component of (2.292);

• the phase spectrum hn which, on the contrary, always as a function of generic
frequency Xn, shows the value of each phase:

hn ¼ a tan
ImðFnÞ
ReðFnÞ
� �

¼ a tan
FnI

FnR

� �
ð2:298Þ

of the nth harmonic.

The harmonics can also be represented by means of real part FnR ¼ ReðFnÞ and
imaginary part FnI ¼ ImðFnÞ of the complex number Fn in (2.295). Representation
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Fig. 2.38 Periodic excitation force: spectrum(jFnj amplitude, hn phase)
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of a periodic excitation force by means of the corresponding frequency spectrum
proves to be extremely advantageous and immediate in numerous representations,
as will be seen in more depth later on.

Once the excitation force f ðtÞ has been broken up into single harmonic com-
ponents Fn (2.292), should one wish to analyse the behaviour of a linear system, it
is possible to calculate the steady-state response XPn to each component Fn of the
excitation force using the harmonic transfer function HðXnÞ, Sect. 2.4.1.4.1,
(2.259):

XPn ¼ H iXð Þj jFn ð2:299Þ

In theory, all the infinite harmonic of f ðtÞ defined by expression (2.292) should
be considered: from an engineering viewpoint, only the most significant harmonics
are considered. This approximation is justified by three considerations:

• first and foremost, whatever the physical phenomenon that gives rise to a
periodic excitation force f ðtÞ, the harmonic content (i.e. the amplitude of the
various harmonics) of the latter tends to annul itself at high frequencies, due to
the fact that the energy associated with the physical phenomenon under
examination is proportional to the sum of the squares of the harmonics; since
this energy cannot be infinite, only a frequency band limited in the upper part
must be significant, as is the case in the spectrum shown in Fig. 2.38;

• furthermore, in the case of n d.o.f. systems, the influence of the harmonics of an
order higher than the highest natural frequency becomes negligible. This phe-
nomenon will be explained more clearly in Sect. 2.5, with reference to the modal
approach;

• damping increases as the frequency increases.

Thus, for these reasons, the Fourier series (2.292) is truncated to the first
N terms, since N is a function of the specific problem considered:

f ðtÞ ¼
XN
n¼0

Re FneinX0t ¼
XN
n¼0

jFnj cos nX0t þ hn

 !
ð2:300Þ

The complex response can be obtained by recomposing the single XPn responses
using the Fourier series:

xðtÞ ¼
XN
n¼0

Re XPneiðnX0tÞ
� �

¼
XN
n¼0

Re HðnX0ÞFneiðnX0tÞ
� �

¼
XN
n¼0

Re jXPnjeiðnX0tþhnþwnÞ
� �

¼
XN
n¼0

jXPnj cos nX0t þ hn þ wnð Þð Þ

¼ Xst þ
XN
n¼1

jXPnj cos nX0t þ hn þ wnð Þ

ð2:301Þ
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having used Xst to indicate the static response of the system, i.e. the response to the
constant component of the force (corresponding to n ¼ 0).

As seen in Sect. 2.3.3, depending on the relationship between frequency Xn of
the generic harmonic Fn of excitation force f ðtÞ and natural frequency ω of the
system, the dynamic amplification coefficient AðaÞ ((2.281), Fig. 2.34) can assume
widely differing values:

• equal to approximately 1 in the quasi-static zone (an ¼ ðXn=xÞ � 1);
• much larger than one in the resonance zone (corresponding to

an ¼ ðXn=xÞ ¼ 1);
• lower than one (tending to zero) in the seismographic zone (an 
 1).

Fig. 2.39 System response to a periodic excitation force: response spectrum
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Fig. 2.40 Trend of the determinant of the coefficient matrix of problem (2.85) for the system in
Fig. 2.4 (numerical data shown in Table 2.2)
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Fig. 2.41 a Vibration modes
of the system in Fig. 2.4 (data
shown in Table 2.2).
b Vibration modes of the
system in Fig. 2.7 (data
shown in Table 2.3)

Fig. 2.42 Two d.o.f. system:
examples of free motion for
different initial conditions
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Fig. 2.43 In-frequency response of the system shown in Fig. 2.4 without damping: relative data
shown in Table 2.2
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Even phase lag wn between the response and excitation force is a function of
relationship an. As an example, in the frequency domain, Fig. 2.39 shows the
response of a 1 d.o.f. system subjected to an excitation in which the first seven
harmonics, of equal amplitude jFnj (with n = 1, 2, … ,7), were considered as
representative: as can be seen, transfer function jHðXÞj of the 1 d.o.f. system
modifies the response spectrum and, as a consequence, the time history which can
be defined by means of (2.301). From this point of view, the 1 d.o.f. system can
thus be considered as a mechanical filter. If the non-dimensional damping ratio
h ¼ ðr=rcÞ is very small, only the harmonics near to the resonance will be amplified
and the system will thus operate as a low pass filter, filtering all the harmonics with
frequency Xn which is much greater than natural frequency ω of the system.

2.4.1.4.6 Laplace Transform

To complete the subject, in this section we will analyse an alternative approach to
solve the linear differential equations that define the forced motion of a generic
discrete 1 d.o.f. system. This approach is used, above all, within the context of a
control theory [31, 35] and is based on Laplace transforms: for a more in-depth
analysis of the problem see [10, 11, 16]. In particular, we will show how the
harmonic transfer function can be obtained from the transfer function in complex
variable s. Let us consider a generic function f ðtÞ, defined for t ¼ 0, if a number b is
real and positive so that product e�btf ðtÞ tends to a finite value for t ! 1, then the
Laplace transform of function f ðtÞ exists:

FðsÞ ¼ L f ðtÞ½ � ¼
Z1
0

f ðtÞe�stdt ð2:302Þ

where s represents a generically complex variable. This transformation, which, to
simplify matters, we will refer to hereinafter with the symbol TdL, allows us to pass
from a function f ðtÞ of the real variable t to a function FðsÞ of the complex variable
s (which is named after the Laplace operator) and, as will be seen, allows us to
transform a linear differential equation into an algebraic equation, thus facilitating
the search for a general solution. Let us briefly recall the main properties of this
transformation [24, 26, 28, 29, 31, 37]:

• the Laplace transform is a linear transformation, i.e.:

L A1f1ðtÞ þ A2f2ðtÞ½ � ¼ A1F1ðsÞ þ A2F2ðsÞ ð2:303Þ

where A1 and A2 are two constants and F1(s) and F2(s) are respectively the
Laplace transforms of functions f1(t) and f2(t);
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• the Laplace transform of the derivative of order r with respect to the time of a
function f(t) is given by:

L
drf ðtÞ
dtr


 �
¼ srFðsÞ � sr�1f ð0Þ � sr�2 d

rf ð0Þ
dtr

� � � � :� dr�1f ð0Þ
dtr�1 ð2:304Þ

where f(0) and drf ð0Þ
dtr respectively represent function f(t) and the rth derivative of f

(t) calculated at time t ¼ 0: if, for example, we assume that these values are null
for all the initial conditions, then expression (2.304) simply becomes:

Table 2.1 Laplace transform of several characteristic functions

f(t) F(s)

d tð Þ impulse 1

u tð Þ step 1
s

tn n ¼ 1; 2; . . . n!
snþ1

e�xt 1
sþ x

te�xt 1

sþ xð Þ2
cosxt s

s2 þ x2

sinxt x
s2 þ x2

coshxt s
s2 � x2

sinhxt x
s2 � x2

1� e�at x
s sþ xð Þ

1� cosxt x2

s s2 þ x2ð Þ
xt � sinxt x3

s2 s2 þ x2ð Þ
xt cosxt x s2 � x2ð Þ

s2 þ x2ð Þ2
xt sinxt 2x2s

s2 þ x2ð Þ2
1

1�n2ð Þ1=2x e
�nxt sin 1� n2

� �1=2
xt 1

s2 þ 2nxsþ x2

e�nxt cos 1� n2
� �1=2

xt þ n

1�n2ð Þ1=2 sin 1� n2
� �1=2

xt


 �
sþ 2nx

s2 þ 2nxsþ x2
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L
drf ðtÞ
dtr


 �
¼ srFðsÞ ð2:305Þ

i.e., the derivative operation corresponds, in the Laplace domain, to a
multiplication for variable s.

• the inverse transform, that allows us to perform an inverse step, is given by [15,
26, 30]:

L�1½FðsÞ� ¼ f ðtÞ ¼ 1
2pi

Zcþi1

c�i1
FðsÞestds ð2:306Þ

where i ¼ ffiffiffiffiffiffiffi�1
p

represents the imaginary unit and c is a real constant, termed
abscissa of convergence, greater than the real part of all the singular points of
FðsÞ [26, part IV]. Determination of f ðtÞ, starting from FðsÞ by means of
(2.306), usually proves to be extremely laborious: in the event of it not being
possible to perform an inverse Laplace transform, by taking advantage of
Table 2.1 (which, as an example, shows the Laplace transforms and the inverse
transforms of several characteristic functions) we commonly resort to other
methods such as, for example, the partial fractions method.

Let us now consider the equation of motion of a 1 d.o.f. linear vibrating system:

m€xþ r _xþ kx ¼ f ðtÞ ð2:307Þ

where, according to this approach x ¼ xðtÞ and can be seen as an output variable
and f ¼ f ðtÞ is considered as an input variable. By keeping account of properties
(2.302) and (2.303) and assuming null initial conditions, the transform of this
equation becomes:

L m€xþ r _xþ kx½ � ¼ L f ðtÞ½ � ð2:308Þ
L m€x½ � þ L r _x½ � þ L kx½ � ¼ L f ðtÞ½ � ð2:309Þ

ms2XðsÞ þ rsXðsÞ þ kXðsÞ ¼ FðsÞ ð2:310Þ

where XðsÞ and FðsÞ are the Laplace transform of the system’s response (output)
and of the excitation force (input): as can be noted, the transformation has allowed
for the transition from a linear differential equation (2.307) to an algebraic equation
in variable s (2.308) which can be rewritten as:

XðsÞ ¼ HðsÞFðsÞ ð2:311Þ
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in which HðsÞ is the transfer function:

HðsÞ ¼ 1
ms2 þ rsþ k

ð2:312Þ

which enables us to obtain transform XðsÞ of the response (in this case steady-state)
of the system to excitation force f ðtÞ, simply by multiplying transform FðsÞ of the
excitation force by HðsÞ. In order to then have response xðtÞ in the time domain, it is
necessary to perform the inverse transform of XðsÞ (see Table 2.1).

As can be noted from (2.312), the transfer function depends univocally on the
parameters of the system: it remains unvaried regardless of the variations over time
of the input amplitude, i.e. the force. More generally speaking, for a linear n d.o.f.
system, expression (2.312) can be expressed [24, 26] as the ratio between two
polynomials in s, with numerator of degree m and denominator of degree n (where,
for physical systems n > m):

HðsÞ ¼ XðsÞ
FðsÞ ¼ K

ðs� z1Þðs� z2Þ � ðs� zmÞ
ðs� p1Þðs� p2Þ � ðs� pnÞ ð2:313Þ

where z1; z2; . . .; zm are the zeros of transfer function HðsÞ and p1; p2; . . .; pn define
the poles.

In the case analysed, i.e. a 1.d.o.f. linear vibrating system, formulation (2.313) of
H(s) is given by:

HðsÞ ¼ 1
ms2 þ rsþ k

¼ 1
ðs� p1Þðs� p2Þ ð2:314Þ

Poles p1 and p2 therefore correspond to solutions ki ði ¼ 1; 2Þ of the charac-
teristic equation (see Sect. 2.4.1.2, (2.205):

p1 ¼ �aþ ix ð2:315Þ
p2 ¼ �a� ix ð2:316Þ

As an example, we will now analyse the case of an impulsive excitation force,
i.e. [31, 35] of a force fimp applied in a time e ! 0 so that:

Ze
0

fimpðtÞdt ¼ 1 ð2:317Þ

By referring to Table 2.1, the Laplace transform of this quantity proves to be:

L fimpðtÞ
� 	 ¼ FimpðsÞ ¼ 1 ð2:318Þ
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and by keeping account of (2.311) and (2.312) the response in the Laplace domain
is thus simply equal to the transfer function:

XimpðsÞ ¼ HðsÞFimpðsÞ ¼ HðsÞ ¼ 1
ms2 þ rsþ k

ð2:319Þ

By performing the inverse transform (2.319) [see Table 2.1 penultimate function
and Eq. (2.317)] and by recalling that α = r/(2m), we obtain the response of the
system defined in the time domain:

xðtÞ ¼ L�1½XimpðsÞ� ¼ 1
xm

e�at sinðxtÞ ð2:320Þ

It is possible to demonstrate [10, 16, 24, 26, 31] that the harmonic transfer
function HðXÞ of a linear system (Sect. 2.4.1.4) is nothing else but the transfer
function, the Laplace transform of the response to impulse XimpðsÞ, by assuming
s ¼ iX as a Laplace variable, i.e.:

HðXÞ ¼ HðsÞs¼iX ¼ XimpðsÞ ¼ 1

�mX2 þ iXr þ k
ð2:321Þ

¼ 1

mð�X2 þ i2hx0Xþ x2
0Þ

¼ 1=k

1� X2

x2
0

� �
� i Xrk

¼ 1=k
ð1� a2Þ � i2ha

ð2:322Þ

2.4.1.5 Solution of Generic Motion

The complete solution of the equation of motion (2.175) of a vibrating system is
given by the sum:

• of the general integral xG of the associated homogenous (Sect. 2.4.1.2), which
describes the free motion;

• of the particular integral xP (Sect. 2.4.1.4) due to excitation force f ðtÞ acting on
the system, which describes the steady-state motion.

If the system [always see expression (2.175)] has an equivalent viscous damping
of constant r[ 0, the general integral of the associated homogenous tends to zero
as time t elapses, meaning that, in steady-state conditions, the solution is practically
given by the particular integral xP only. In any case, if the damping is greater than
the critical damping, the general integral of the associated homogenous is given by
two decreasing exponential functions (2.217):

xGðtÞ ¼ X1e�a1t þ X2e�a2t ð2:323Þ

while, if the damping is lower than the critical damping, integral xG describes an
oscillation with a decreasing amplitude (2.222):
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xGðtÞ ¼ e�atðA cosxt þ B sinxtÞ ð2:324Þ

Let us consider Eq. (2.175) in the case of r > 0 but lower than the critical
damping and forced by a harmonic excitation force with frequency Ω:

mx
::þr _xþ kx ¼ f ðtÞ ¼ F0 cosðXtÞ ð2:325Þ

The complete solution is the sum of the general integral which, in this case,
describes an oscillation with a frequency equal to natural frequency ω of the
damped system (h ¼ r=rc\1), (2.324), and of the particular integral which, in the
case of the harmonic excitation force, has a frequency Ω equal to the frequency of
the excitation force [Sect. 2.4.1.4, (2.247)]:

xðtÞ ¼ xGðtÞ þ xPðtÞ ¼ e�atðA cosxt þ B cosxtÞ þ jXPj cosðXt þ wÞ ð2:326Þ

Let us now analyse the case in which the damping constant is negative ðr\0Þ:
this situation can arise in mechanical systems subjected to force fields (as we will
see in Chap. 5), while it does not pertain in the dissipative systems analysed in this
chapter. Under these conditions, the general integral defines an expansive solution
of the type (2.222):

xGðtÞ ¼ eatðA cosxt þ B sinxtÞ ð2:327Þ

which will thus be predominant with respect to the particular integral. Constants
A and B are determined by imposing the initial position and velocity conditions
xð0Þ ¼ x0 and _xð0Þ ¼ _x0 on the complete solution xðtÞ (2.243).

2.4.2 Two-Degree-of-Freedom Systems

We propose to study the system of differential equations which describes the per-
turbed motion of a two d.o.f. system, linear or linearized about the static equilib-
rium position, written in the more general matrix form (using e.g. one of the
methods outlined in Chap. 1, Sect. 1.5 and in Sect. 2.3.2) as:

½M�x:: þ ½R� _xþ ½K�x ¼ f ðtÞ ð2:328Þ

By following the same outline already seen for one d.o.f. systems, we start
analysing, first and foremost, the free undamped and damped free motion, (Sects.
2.4.2.1 and 2.4.2.2), and, finally, the forced motion (Sect. 2.3.2.3).
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2.4.2.1 Undamped Free Motion

2.4.2.1.1 Calculating Natural Frequencies and Vibration Modes

In the absence of damping and applied external excitation forces, the vibrating
system becomes conservative and (2.328) is reduced to:

½M�x:: þ ½K�x ¼ 0 ð2:329Þ

If, as in the cases analysed until now, matrices ½M� and ½K� are symmetrical and
positive definite (a condition always verified for a disturbed motion of a conser-
vative system about the stable static equilibrium position), solution [2, 20] is of the
type9:

x ¼ Xeixt ¼ X1

X2

� �
eixt ! _x ¼ ixXeixt ! x

:: ¼ �x2Xeixt ð2:330Þ

where X is generally complex or rather:

X1 ¼ jX1 jeiw1

X2 ¼ jX2 jeiw2
ð2:331Þ

By substituting (2.239) in the differential equation (2.330) and simplifying term
eixt, always different from zero, we obtain:

�x2½M� þ ½K�� 	
X ¼ 0 ð2:332Þ

which represents a homogenous linear algebraic system in the unknown X (i.e. in
the two scalar unknowns X1 and X2). As is known, this system will accept a
different solution from the trivial one if and only if the determinant of the coefficient
matrix is equal to zero [2, 20], i.e.:

det �x2½M� þ ½K��� �� ¼ 0 ð2:333Þ

By keeping account of the general expression of the mass [M] and stiffness ½K�
matrices for a generic two d.o.f. system, (2.333) can be rewritten as:

Dðx2Þ ¼ det
ð�x2m11 þ k11Þ ð�x2m12 þ k12Þ
ð�x2m21 þ k21Þ ð�x2m22 þ k22Þ

� ����� ���� ¼ 0 ð2:334Þ

9The general solution of (2.325) has the form x ¼ Xekt, but, since ½K� and ½M� are symmetric and
positive definite, roots ki are always imaginary [2, 21] i.e. ki ¼ �ixi.
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i.e. the determinant:

Dðx2Þ ¼ x4ðm11m22 � m12m21Þ � x2ðm11k22 þ k11m22 � m12k21 � k12m21Þ
þ ðk11k22 � k12k21Þ ¼ 0 ð2:334aÞ

thus proves to be a polynomial in ω of order 4 (generally speaking, for a system
with n d.o.f. of the 2n order) in x2 of the second order of the type:

Dðx2Þ ¼ x4aþ x2bþ c ¼ 0 ð2:335Þ

where coefficients a, b and c [by comparing (2.334) with (2.335)] are functions of
physical parameters of the system, represented by the elements of the mass and
stiffness matrices. The (2.335) represents a biquadratic equation and its solution is
therefore of the type:

x2
I;II ¼

�b�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 � 4ac

p

2a
ð2:336Þ

with x2
I and x2

II always real and positive. There are four values of ω for which the
determinant Dðx2Þ is zero, (2.335) in correspondence to which the algebraic system
has a non-trivial solutions:

x1;3 ¼ �
ffiffiffiffiffiffi
x2

I

q
ð2:337Þ

x2;4 ¼ �
ffiffiffiffiffiffiffi
x2

II

q
ð2:338Þ

By subsequently substituting in (2.335) the four solutions we obtain:

�x2
I ½M� þ ½K�� 	

X
ð1Þ ¼ 0 ! �x2

I ½M� þ ½K�� 	
X
ð3Þ ¼ 0 ð2:339Þ

�x2
II ½M� þ ½K�� 	

X
ð2Þ ¼ 0 ! �x2

II ½M� þ ½K�� 	
X
ð4Þ ¼ 0 ð2:340Þ

Based on (2.333), the matrices of coefficients �x2
I ½M� þ ½K� and �x2

II ½M� þ ½K�
prove to be singular: this condition corresponds to the fact that one of the two
equations, both in (2.339), and (2.340), is a linear combination of the other.10 For

this reason, the generic eigenvector X
ð1Þ
; X

ð3Þ
; X

ð2Þ
; X

ð4Þ
(calculated respectively

10Actually, for an n d.o.f system the number of rows presenting linear combination with others is
equal to the number of coincident solutions of the generic xi; in case of a single solution, the row
linear combination of the others is the one that, once eliminated, a minor with denominators
different from zero are determined [2, 21]. As far as multiple roots xi are concerned, see [29, 31].
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for x ¼ x1;x ¼ x3;x ¼ x2 and x ¼ x4) can be defined, up to a constant, by
using only one of the equations of (2.339) and (2.340), for example, the first:

ð�x2
I m11 þ k11ÞXð1Þ

1 þð�x2
I m12 þ k12ÞXð1Þ

2 ¼ 0 ð2:341Þ

ð�x2
IIm11 þ k11ÞXð2Þ

1 þð�x2
IIm12 þ k12ÞXð2Þ

2 ¼ 0

The solution to the problem therefore univocally defines the relationship
between the two values of the solution (2.339), a relationship which can be obtained
immediately from (2.340) and (2.341):

l1 ¼
X
ð1Þ
1

X
ð1Þ
2

¼ jXð1Þ
1 jeiwð1Þ

1

jXð1Þ
2 jeiwð1Þ

2

¼ �ð�x2
I m12 þ k12Þ

ð�x2
I m11 þ k11Þ ð2:342Þ

l2 ¼
X
ð2Þ
1

X
ð2Þ
2

¼ jXð2Þ
1 jeiwð2Þ

1

jXð2Þ
2 jeiwð2Þ

2

¼ �ð�x2
IIm12 þ k12Þ

ð�x2
IIm11 þ k11Þ

where:

X
ð3Þ
1

X
ð3Þ
2

¼ jXð3Þ
1 jeiwð3Þ

1

jXð3Þ
2 jeiwð3Þ

2

¼ l1 ð2:343Þ

X
ð4Þ
1

X
ð4Þ
2

¼ jXð4Þ
1 jeiwð4Þ

1

jXð4Þ
2 jeiwð4Þ

2

¼ l2

By analysing (2.343) it is possible to note how these characteristic relationships
are real, thus enabling us to obtain:

wð1Þ
1 ¼ wð1Þ

2 ¼ wð1Þ

wð2Þ
1 ¼ wð2Þ

2 ¼ wð2Þ

wð3Þ
1 ¼ wð3Þ

2 ¼ wð3Þ

wð4Þ
1 ¼ wð4Þ

2 ¼ wð4Þ

ð2:344Þ

In the following Sect. 2.4.2.1.2, we will show, in greater detail, how a pair of
counter-rotating vectors in the complex plane corresponds to a pair of complex
conjugate solutions �xi, which as noted for a 1 d.o.f. system, Sect. 2.4.1.1, can be
reduced to a projection on the real axis of a single rotating vector having an angular
speed of xi. In this way, in a two d.o.f. system, we find ourselves faced with only

2.4 Solving the Equations of Motion 173



www.manaraa.com

two solutions: x1 and x2. The two relationships l1 and l2 obtained in this way, or

the two pairs of solutions (X
ð1Þ
1 ; X

ð1Þ
2 ) or (X

ð2Þ
1 ; X

ð2Þ
2 ) defined up to a constant,

define the deformed shape of the two d.o.f. system, in the event of this vibrating
respectively with frequency x1 or x2, i.e. with one of its natural frequencies. The
two deformed shapes of the system are termed vibration modes of the undamped
system or rather principal vibration modes. In a vibrating system with n d.o.f. we
will obviously have n vibration modes, i.e. a vibration mode for each natural
frequency, each defined up to a constant, since only the relationships between an
independent coordinate and the remaining ðn� 1Þ are univocally fixed. Generally

speaking, the eigenvectors X
ðiÞ

[Eqs. (2.330), (2.342)] are numerically evaluated by

assigning a real arbitrary value to one of the coordinates X
ðiÞ
j and obtaining the other

from the characteristic relationship li (2.342): this operation is termed normaliza-
tion of the eigenvector (by means of this normalization, as a consequence, the

generic eigenvector X
ðiÞ

proves to be real). In the case of the system with two d.o.f.
analysed in this section, in the hypothesis, for example, of normalizing the generic

eigenvector X
ðiÞ

by assuming X
ðiÞ
2 ¼ 1, these, by considering (2.342), become:

X
ð1Þ ¼ l1

1

� �
X
ð2Þ ¼ l2

1

� � ð2:345Þ

From a purely didactic point of view, it could be useful to solve the problem of
the free motion of an undamped system in scalar form: though easy when operating
on a system having only 2 d.o.f., it becomes more laborious in the case of a n d.o.f.
system. In the absence of external excitation forces and damping, the system of
differential equations that describe the motion of the generic two d.o.f. system
(2.175) becomes:

m11 x
::
1 þm12x

::
2 þ k11x1 þ k12x2 ¼ 0

m21 x
::
1 þm22 x

::
2 þk21x1 þ k22x2 ¼ 0

ð2:346Þ

Based on what has gone before, by imposing the harmonic solution:

x1 ¼ X1eixt

x2 ¼ X2eixt
ð2:347Þ

we obtain a homogenous linear algebraic system, parametric in x2, with unknowns
X1 and X2, corresponding to the matrix form (2.332):
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ð�x2m11 þ k11ÞX1 þð�x2m12 þ k12ÞX2 ¼ 0

ð�x2m21 þ k21ÞX1 þð�x2m22 þ k22ÞX2 ¼ 0
ð2:348Þ

The annulment condition of the determinant of the matrix of coefficients obvi-
ously leads to (2.334a).

An alternative approach to the annulment method of the determinant is to
consider the problem of the evaluation of the natural frequencies xi and relative

vibration modes X
ðiÞ

as an eigenvalues-eigenvectors problem. It is important to
remember that we define eigenvalue k of a generic matrix ½A� as that value which,
when subtracted from the principal diagonal of same, annuls the determinant, or
rather [2, 20]:

�k½I� þ ½A�½ �V ¼ 0 ! det ½A� � k½I�j j ¼ 0 ð2:349Þ

and that there exist as many eigenvalues as the rank of the square matrix ½A�. After
imposing a solution of the type (2.329), we have seen that the equations of motion
of the free system (2.330), have been attributed (2.332) to a system of parametric
homogenous algebraic linear equations in ω of the type:

�x2½M� þ ½K�� 	
X ¼ 0 ð2:350Þ

By pre-multiplying the matrix of coefficients by ½M��1, which undoubtedly
exists because hypothetically ½M� is symmetric and positive definite (and therefore
not singular), we obtain:

�x2½M��1½M� þ ½M��1½K�
h i

X ¼ 0 ! �x2½I� þ ½M��1½K�
h i

X ¼ 0 ð2:351Þ

where ½M��1½M� ¼ ½I� is the identity matrix. It is thus possible to attribute the
calculation of the natural frequencies xi of the free undamped vibrating system
(2.350) to the calculation of the eigenvalues ki of matrix ½M��1½K�, the two
amplitudes xi and ki are linked by the relationship:

ki ¼ x2
i ð2:352Þ

and the vibration modes that coincide with the eigenvectors of the same matrix
½M��1½K�:

X
ðiÞ ¼ V

ðiÞ ð2:353Þ
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This factor is extremely convenient because subprograms are available for the
numerical calculation of the eigenvalues of a generic matrix. Therefore, usually,
once matrix ½M��1½K� has been calculated, calculation of the xi can generally be
performed without having to develop the determinant or calculate the solution of
the characteristic algebraic equation obtained: one of the methods used is to
diagonalize ½M��1½K� because, by definition, the eigenvalues of a diagonal matrix
are the diagonal elements themselves.

2.4.2.1.2 Calculation of the Response to Initial Conditions

Having used the methods described above to define natural frequencies xi and the

main vibration modes X
ðiÞ
, it is now possible to define the free motion of the

system, in the absence of damping, or rather its response to an initial assigned
disturbance. This motion is defined analytically by the general integral [2, 37] of the
equation of motion (2.346) of the vibrating system: in the hypothetical case of
distinct eigenvalues, this general integral is given by the linear combination of the
particular integrals (2.348) of the homogenous itself:

xðtÞ ¼
Xn¼4

i¼1

ai X
ðiÞ
ekit ð2:354Þ

i.e. in scalar form:

x1ðtÞ ¼ a1X
ð1Þ
1 eix1t þ a2X

ð2Þ
1 eix2t þ a3X

ð3Þ
1 e�ix1t þ a4X

ð4Þ
1 e�ix2t

x2ðtÞ ¼ a1X
ð1Þ
2 eix1t þ a2X

ð2Þ
2 eix2t þ a3X

ð3Þ
2 e�ix1t þ a4X

ð4Þ
2 e�ix2t

ð2:355Þ

Using similar steps to those implemented for one d.o.f. systems [Sect. 2.4.1,
Eq. (2.311)] the (2.355) can be rewritten as:

x1ðtÞ ¼ aX
ð1Þ
1 cosðx1t þ wð1ÞÞ þ bX

ð2Þ
1 cosðx2t þ wð2ÞÞ

x2ðtÞ ¼ aX
ð1Þ
2 cosðx1t þ wð1ÞÞ þ bX

ð2Þ
2 cosðx2t þ wð2ÞÞ

ð2:356Þ

In order to define these expressions numerically, it is necessary to evaluate the 2
unknowns α and β and the two phases wð1Þ and wð2Þ, since the two natural fre-
quencies x1 and x2 are calculated by means of Eq. (2.350) and because the modes
are normalized as shown in (2.345). To evaluate the four unknowns, it is necessary
to impose the four initial conditions:

x1ðtÞt¼0 ¼ x10 _x1ðtÞt¼0 ¼ _x10
x2ðtÞt¼0 ¼ x20 _x2ðtÞt¼0 ¼ _x20

ð2:357Þ
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Fig. 2.46 a Dynamic absorber: in-frequency response (μ = 1/5). b Dynamic vibration absorber:
complete frequency system of Fig. 2.41 (with x1 ¼ x2) as a function of the relationship of masses
l. c Dynamic vibration absorber: in-frequency response of mass m1 (with x1 ¼ x2 ¼ X) versus
non-dimensional damping value h2. d Dynamic vibration absorber: optimal in-frequency response
of mass m1 (with x1 ¼ x2 ¼ X and optimal non-dimensional damping h2)
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For generic initial conditions, the system will start moving exhibiting both
vibration modes, i.e. motion will actually be described by a linear combination of
two modes (neither of the two constants of the combination is null). If, vice versa,
convenient initial conditions are assigned (for example null initial velocities
ð _x1ðtÞt¼0 ¼ 0; _x2ðtÞt¼0 ¼ 0Þ and initial displacements in the same relationship
between them as one of any principle mode (ðx10=x20Þ ¼ l1 or ðx10=x20Þ ¼ l2)), it
is easy to analytically verify how only the mode characterized by the relationship
between the amplitudes established is excited.

2.4.2.1.3 Some Application Examples

For reasons of clarity, we will now give several numerical results obtained in
particular cases. Let us consider the vibrating linear system in Fig. 2.46, whose
equations of motion are shown in (2.85), with the numerical values outlined in
Table 2.2. Figure 2.51 shows the trend of determinant DðxÞ (2.334) as a function of
ω: as can be noted, DðxÞ becomes zero in correspondence to the two values x1 and

Table 2.2 System of
Fig. 2.4, numerical data
relative to a simulation

k1 = k2 100 daN/m

m1 = m2 100 kg

r1 = r2 0 daN s/m

Table 2.3 Natural
frequencies and vibration
modes of Fig. 2.4, numerical
data shown in Table 2.2

x1¼ 1:954 rad/s ¼ 0:311Hz
l1¼X

ð1Þ
1

X
ð1Þ
2

¼ þ0:618

x2 ¼ 5:116 rad/s ¼ 0:814Hz
l2 ¼ X

ð2Þ
1

X
ð2Þ
2

¼ �1:618

Table 2.4 System of
Fig. 2.7, numerical data
relative to a simulation

k1 = k2 2000 daN/m

m 950 kg

JG 1400 kg m2

r1 = r2 0 daN s/m

l1 1 m

l2 1.5 m

Table 2.5 Natural
frequencies and vibration
modes of the system in
Fig. 2.7, numerical data
shown in Table 2.4

x1 ¼ 5:944 rad=s ¼ 0:946Hz
l1 ¼ X

ð1Þ
1

X
ð1Þ
2

¼ þ1:55

x2 ¼ 7:294 rad=s ¼ 1:161Hz
l2 ¼ X

ð2Þ
1

X
ð2Þ
2

¼ �0:948
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x2 corresponding to the two natural frequencies of the system, shown in Table 2.3
with their relative vibration modes represented, for the sake of convenience, by

assigning an arbitrary value to one of the two variables, X
ð1Þ
2 ¼ 1 and X

ð2Þ
2 ¼ 1 and

thus defining the other which, as a consequence, is X
ð1Þ
1 ¼ l1 and X

ð2Þ
1 ¼ l2.

Figure 2.40 graphically shows these deformed shapes: the first vibration mode
corresponds to an in-phase motion of the two masses (relationship l1 is positive),
while in the second vibration mode the two masses oscillate in counter-phase (l2
negative). As can be seen further on, recognition of the type of modal deformed
shape is important in the event of one wishing to intervene and modify the natural
frequencies of the system. Always as an example, in Table 2.5, we show the natural
frequencies and relative vibration modes of the system shown in Fig. 2.4 (2.87), for
the particular numeric values shown in Table 2.4.

In this example, the generic vibration mode defined by relation:

�X ið Þ
1 ¼ li�X

ið Þ
2 i ¼ 1; 2ð Þ ð2:358Þ

represents the rotation of a rigid body around a point Pi lying at a distance of li
from centre of gravity G of the body itself, see Fig. 2.41 where, if we consider small

displacements, rotation �X ið Þ
2 around point Pi causes a displacement �X ið Þ

1 of centre of

gravity G equal to �X ið Þ
1 ¼ li�X

ið Þ
2 . Thus, in the generic mode it is as if there were an

ideal hinge in point Pi. Generally speaking, the two points Pi are positioned on
opposite ends with respect to centre of gravity G. Obviously, in the event of us
assigning null velocities and a configuration that satisfies the generic characteristic
relationship li to the system as initial conditions, the system will rotate around
generic point Pi, or rather the ideal generic hinge: under these conditions, as has
been seen, only one vibration mode is excited and the system thus behaves as if it

Table 2.6 System of Fig. 2.7, numerical data relative to a simulation

k1 = k2 2000 daN/m

M 950 kg

JG 1400 kg m2

r1 = r2 0 daN s/m

l1 = l2 1.5 m

Table 2.7 Natural frequencies and vibration modes of the system shown in Fig. 2.7, case of
symmetry: numerical data shown in Table 2.6

x1 ¼ 5:944 rad=s
l1 ¼ X

ð1Þ
1

X
ð1Þ
2

¼ 1:55

x2 ¼ 7:294 rad=s
l2 ¼ X

ð2Þ
1

X
ð2Þ
2

¼ �0:948
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only had one d.o.f. Furthermore, by analysing the modes of the system, it is
possible to observe how both vertical motion and rotating motion are coupled in
them.

Among other things, always by analysing the vibrating system in Fig. 2.7, it is
possible to observe how, when the system is symmetric with respect to the gravity
centre (Table 2.6), the stiffness ½K� and mass ½M� matrices prove to be diagonal
(2.90): in this case, the two d.o.f. are uncoupled or rather the extra diagonal terms,
which represent the forces that one d.o.f. exercises on the other, are null: the result
is that the two vibration modes (Table 2.7) prove to be uncoupled, i.e. pure vertical
motion (position of P1 to the infinite) and pure torsional motion ðP2 ¼ GÞ exist. By
generalizing the question regarding a n d.o.f. system, as will be described in-depth
further on (Sect. 2.4.3), there is always an n-set of independent coordinates, termed
principal coordinates, meaning that the n differential equations are always uncou-
pled (diagonal matrices).

2.4.2.2 Damped Free Motion

2.4.2.2.1 Calculating Natural Frequencies and Vibration Modes

In reality, all vibrating systems have their own damping, in other words, during
vibration, energy is dissipated in different forms. It is thus necessary to keep
account of the presence of this damping by referring, as previously mentioned, to a
viscous damping (i.e. proportionate to the vibration velocity). In the absence of
excitation forces, the equations of motion (2.328), can be traced back to:

½M�x:: þ ½R� _xþ ½K�x ¼ 0 ð2:359Þ

The solution of (2.359) is of the type:

x ¼ Xekt ¼ X1
�X2

� �
ekt ð2:360Þ

where, generally speaking, both the generic eigenvalues ki, and the generic
vibration mode XðiÞ are complex:

X
ið Þ
1 ¼ jX ið Þ

1 jeiw1

X
ið Þ
2 ¼ jX ið Þ

2 jeiw2

ð2:361Þ

By substituting (2.360) in (2.359) we obtain:

k2½M� þ k½R� þ ½K�� 	
�X ¼ 0 ð2:362Þ
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i.e. a system of homogenous linear algebraic equations in unknowns X. The system
(2.362) admits non-trivial solutions if the determinant of the coefficient matrix is
null, i.e. for:

D kð Þ ¼ det k2½M� þ k½R� þ ½K��� �� ¼ 0 ð2:363Þ

which, in the case of a two d.o.f. system, Eq. (2.346), is worth:

DðkÞ ¼ k2m11 þ kr11 þ k11 k2m12 þ kr12 þ k12
k2m21 þ kr21 þ k21 k2m22 þ kr22 þ k22

���� ���� ¼ 0 ð2:364Þ

i.e. it can be associated with a polynomial of the fourth order in λ of the type:

D kð Þ ¼ ak4 þ bk3 þ ck2 þ dkþ e ¼ 0 ð2:365Þ

The solutions in λ of this polynomial will be two by two complex conjugates, of
the type (assuming that matrices ½M�, ½R� and ½K� are symmetrical and positive
definite):

k1;3 ¼ �a1 � ix1

k2;4 ¼ �a2 � ix2
ð2:366Þ

With ai and xi real and positive: xi ði ¼ 1; 2Þ represents the natural frequency
of the damped system and ai the corresponding exponential coefficient. To solve
this polynomial, in the case of two d.o.f. systems, it is possible to resort to analytical
methods. Conversely, for systems with several d.o.f., it is necessary to use
numerical methods. By substituting the generic value of ki ði ¼ 1; 2; 3; 4Þ in one of
the two equations of system (2.362) (since the other is a linear combination of the
first) we obtain:

ðk2i m11 þ kir11 þ k11ÞXðiÞ
1 þ ðk2i m12 þ kr12 þ k12ÞXðiÞ

2 ¼ 0 ð2:367Þ

thus making it possible to define, in a way that is similar to that shown in the
previous section, the characteristic relationship:

li ¼
X
ðiÞ
1

X
ðiÞ
2

¼ � k2i m12 þ kir12 þ k12
k2i m11 þ kir11 þ k11

ð2:368Þ

which is complex because ki is complex. In this case, due to the presence of
damping, in addition to relationship li even the generic vibration mode XðiÞ will
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prove to be complex and the same vibration modes will prove to be two by two
complex conjugates:

�Xð3Þ ¼ coniug �Xð1Þn o
�Xð4Þ ¼ coniug �Xð2Þn o ð2:369Þ

The resulting motion due to a disturbance of the initial static conditions (as will
be seen in Sect. 2.4.1.3), is defined by means of a linear combination of the
vibration modes considered. An alternative approach to the annulment method of
determinant (2.364) is to consider the problem of the evaluation of the ki s and
relative vibration modes XðiÞ as an eigenvalue (eigenvectors) problem. For this
reason, a dummy identity is added to the system with the equations of motion of the
system (2.363) to obtain:

½M�x:: þ ½R� _xþ ½K�x ¼ 0

M½ � _x ¼ ½M� _x ð2:370Þ

Given the dummy added identity, this step does not alter the equations of the
initial system and, in particular, it does not change the natural frequencies of same.
The reason justifying the choice of type of identity will be given further one. By
gathering the variables in a new vector z defined as:

z ¼ _x
x

� �
ð2:371Þ

it is possible to rewrite expressions (2.370) as:

½B�_zþ ½C�z ¼ 0 ð2:372Þ

where:

½B� ¼ ½M� ½0�
½0� ½M�


 �
½C� ¼ ½R� ½K�

�½M� ½0�


 � ð2:373Þ

Expression (2.372), in a more compact form, can be rewritten as:

_z� ½A�z ¼ 0 ð2:374Þ
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Having used [A] to indicate matrix:

½A� ¼ �½B��1½C� ð2:375Þ

This form of writing will lead us to a system of differential equations of the first
order: matrix ½A� is generally defined as a state matrix. The solutions of expression
(2.374) are of the type:

z ¼ Zekt ð2:376Þ

By substituting expressions (2.376) in (2.374) we obtain:

½½A� � k½I��Z ¼ 0 ð2:376aÞ

Let us now recall the definition of an eigenvector of a matrix [2, 20], from
(2.375) we can ascertain that there are as many k as the rank of matrix ½A�, i.e. 2n,
and that they coincide with the eigenvalues ki of matrix ½A� itself. The vibration
modes coincide with the eigenvectors, in this case complex, of the same matrix ½A�.
In the systems with n d.o.f. analysed until now, i.e. whose matrices ½K�, ½R� and ½M�
are symmetric and defined as positive, solutions ki are always two by two complex
conjugates with a real negative part (stable motion).

2.4.2.2.2 Calculation of the Response to Given Initial Conditions

The response of the free damped motion of a two d.o.f. system is given by the
general integral, obtainable as a linear combination of the particular integrals of the
homogenous equation:

x1ðtÞ ¼ a1X
ð1Þ
1 ek1t þ a2X

ð2Þ
1 ek2t þ a3X

ð3Þ
1 ek3t þ a4X

ð4Þ
1 ek4t

x2ðtÞ ¼ a1X
ð1Þ
2 ek1t þ a2X

ð2Þ
2 ek2t þ a3X

ð3Þ
2 ek3t þ a4X

ð4Þ
2 ek4t

ð2:377Þ

where:

k1;2 ¼ �a1 � ix1

k3;4 ¼ �a2 � ix2
ð2:377aÞ

by keeping account of expression (2.377a), expressions (2.377) can be rewritten as:

x1ðtÞ ¼ e�a1t a1X
ð1Þ
1 eix1t þ a2X

ð2Þ
1 e�ix1t

� �
þ e�a2t a3X

ð3Þ
1 eix2t þ a4X

ð4Þ
1 e�ix2t

� �
x2ðtÞ ¼ e�a1t a1X

ð1Þ
2 eix1t þ a2X

ð2Þ
2 e�ix1t

� �
þ e�a2t a3X

ð3Þ
2 eix2t þ a4X

ð4Þ
2 e�ix2t

� �
ð2:378Þ
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This expression is similar to the previous expression (2.356) evaluated, always
for a generic two d.o.f. system, in the absence of damping. As previously men-
tioned, complex conjugate eigenvectors correspond to couples of complex conju-
gate eigenvalues (2.377a): each couple of displacements corresponds to two vectors
in the complex plane, counter-rotating with an angular speed xi and, therefore, as
already noted for one d.o.f. systems, equivalent to the projection of only one
rotating vector on the real axis. Using steps that are similar in all respects to those
used in the previous section, it is possible to rewrite expressions (2.378) as:

x1ðtÞ ¼ ae�a1tjXð1Þ
1 j cos x1t þ wð1Þ þWð1Þ

12

� �
þ be�a2tjXð2Þ

1 j cos x2t þ wð2Þ þWð2Þ
12

� �
x2ðtÞ ¼ ae�a1tjXð1Þ

2 j cos x1t þ wð1Þ
� �

þ be�a2tjXð2Þ
1 j cos x2t þ wð2Þ

� �
ð2:379Þ

This expression is similar in all respects to (2.356) defined for undamped sys-
tems except for:

• the exponential term, which, based on the dissipative systems analysed until
now, introduces a reduction of the oscillation amplitudes e�a1t (i = 1,2) which
are superimposed on harmonic motion ai [ 0;

• relative phase WðiÞ
12

(i = 1, 2) since, in the presence of damping, the characteristic
relationship of the generic mode proves to be complex.

To numerically define the expression of the general integral (2.379), or rather to
define the free damped motion of a vibrating two d.o.f. system, it is thus necessary
to determine the four unknowns a; b;wð1Þ;wð2Þ after normalizing, for example, the
vibration modes as follows:

X
ð1Þ
2 ¼ 1 ) X

ð1Þ
1 ¼ l10e

iWð1Þ
12 ) jXð1Þ

1 j ¼ l10

X
ð2Þ
2 ¼ 1 ) X

ð2Þ
1 ¼ l20e

iWð2Þ
12 ) jXð2Þ

1 j ¼ l20
ð2:380Þ

Using the two relations defined by the characteristic relationships of the modes.
The 4 unknowns a; b;wð1Þ;wð2Þ are thus defined by the four initial conditions:

x1ðtÞt¼0 ¼ x10 _x1ðtÞt¼0 ¼ _x10

Table 2.8 System of
Fig. 2.4, numerical data
relative to a simulation

k1 = k2 100 daN/m

m1 = m2 100 kg

case (a) r1 = r2 2 daN s/m

case (b) r1 = r2 20 daN s/m

case (c) r1 = r2 200 daN s/m
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x2ðtÞt¼0 ¼ x20 _x2ðtÞt¼0 ¼ _x20 ð2:381Þ

2.4.2.2.3 Some Application Examples

As an example, Table 2.9 shows the natural frequencies and the relative vibration
modes of the system in Fig. 2.4 regarding a simulation with the data shown in

Table 2.8. As can be noted, phase WðiÞ
12 of the characteristic relationship li0e

iWðiÞ
12 is

always or 0 or π. More generally speaking, it is possible to show [29] that this
occurs when damping matrix ½R� is proportionate to stiffness matrix ½K�. When
damping r1 and r2 increase, the real part αi of eigenvalues ki ¼ �ai � ixi always
remains negative though its modulus increases. For high damping values (case c),
solutions are no longer complex conjugate but purely real and negative, an indi-
cation of a stable hypercritical non-vibrating system (the eigenvalues represent
modes with r=rcð Þ[ 1). For the same cases, Fig. 2.42 shows the time histories of
free motion of the system analysed, i.e. the solution of the equations of damped
motion (see Table 2.9b), respectively imposing:

• initial conditions such as to excite the first mode;
• initial conditions such as to excite the second mode;
• any initial condition.

Table 2.9 Natural frequencies and vibration modes of the system shown in Fig. 2.4, numerical
data shown in Table 2.8

Case a

x1 ¼ 1:95 rad=s ¼ 0:31Hz a1 ¼ �0:038
l1 ¼ X

ð1Þ
1

X
ð1Þ
2

¼ 0:618ei0:00

x2 ¼ 5:11 rad=s ¼ 0:81Hz a2 ¼ �0:261
l2 ¼ X

ð2Þ
1

X
ð2Þ
2

¼ 1:47ei3:14

Case b

x1 ¼ 1:92 rad=s ¼ 0:305Hz a1 ¼ �0:382
l1 ¼ X

ð1Þ
1

X
ð1Þ
2

¼ 0:618ei0:00

x2 ¼ 4:39 rad=s ¼ 0:699Hz a2 ¼ �2:618
l2 ¼ X

ð2Þ
1

X
ð2Þ
2

¼ 1:47ei3:14

Case c

x1 ¼ 0:00 rad=s ¼ 0:00Hz a1 ¼ �0:504
l1 ¼ X

ð1Þ
1

X
ð1Þ
2

¼ 1:62ei3:14

x2 ¼ 0:00 rad=s ¼ 0:00Hz a2 ¼ �0:538
l2 ¼ X

ð2Þ
1

X
ð2Þ
2

¼ 1:47ei0:00

x1 ¼ 0:00 rad=s ¼ 0:00Hz a1 ¼ �7:101
l2 ¼ X

ð2Þ
1

X
ð2Þ
2

¼ 0:618ei0:00

x1 ¼ 0:00 rad=s ¼ 0:00Hz a1 ¼ �51:856
l2 ¼ X

ð2Þ
1

X
ð2Þ
2

¼ 1:62ei3:14
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2.4.2.3 Forced Motion

The equation of motion (2.328) complete with excitation term is:

½M�x:: þ ½R� _xþ ½K�x ¼ f ðtÞ ð2:382Þ

The complete solution of (2.382) is given by the sum of the general integral,
which defines the transient to which the system is subjected (defined by the linear
combination of the integrals of the homogenous equation (see previous section) and
by the particular integral of the complete equation, which defines steady-state
motion. The aim of this section is to evaluate the particular integral of (2.382). More
specifically, we will analyse the case of the harmonic excitation force because, as
previously mentioned in Sect. 2.4.1.4.1, once the response to a harmonic excitation
force is known, it is possible to obtain the response to any arbitrary excitation
forces, bearing in mind the Fourier series development for periodic excitation forces
and the Fourier transform for any excitation forces. A more general explanation,
also including random excitation forces, will be resumed in Chap. 7.

2.4.2.3.1 Forced Motion in the Absence of Damping

Let us begin by analysing the response of an undamped vibrating 2 d.o.f. system in
Fig. 2.4 with two excitation forces applied respectively to mass m1 and mass m2: the
general equation of motion in scalar form is:

m11x
::
1 þ m12x

::
2 þ k11x1 þ k12x2 ¼ F1 cosXt

m21x
::
1 þ m22x

::
2 þ k21x1 þ k22x2 ¼ F2 cosXt

ð2:383Þ

Let us assume:

xP ¼ XP1

XP2

� �
cosXt ð2:384Þ

as a particular integral. By substituting this solution in (2.383) and collecting the
terms proportionate to cosXt, since the solution being searched for is independent
from time, by equalizing the terms on the left and right of the equations propor-
tionate to cosXt, we will obtain:

ðk11 � m11X
2ÞXP1 þ ðk12 � m12X

2ÞXP2 ¼ F1

ðk21 � m21X
2ÞXP1 þ ðk22 � m22X

2ÞXP2 ¼ F2
ð2:385Þ

By imposing solution (2.384) in the differential equations of motion we obtained
a linear algebraic system with real coefficients and known non-null terms. The basic
difference between this system of equations and the corresponding one for the
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vibrating system devoid of excitation forces (2.362) lies in the presence of a known
term and the fact that in (2.385) the forcing frequency xi is known, (for free motion,
frequency ω was an unknown parameter, on account of being one of the natural
frequencies of the system). The solutions of (2.385) can be determined by applying,
for example Cramer’s rule [2, 20] or rather:

XP1 ¼ D1

D
¼

F1 k12 � m12X
2� �

F2 k22 � m22X
2� ������
�����

k11 � m11X
2� �

k12 � m12X
2� �

k21 � m21X
2� �

k22 � m22X
2� ������
�����

XP2 ¼ D2

D
¼

k11 � m11X
2� �

F1

k21 � m21X
2� �

F2

�����
�����

k11 � m11X
2� �

k12 � m12X
2� �

k21 � m21X
2� �

k22 � m22X
2� ������
�����

ð2:386Þ

where D is the determinant (real) of the matrix of coefficients of the associated
homogeneous and Di is the determinant of the matrix in which, instead of the
generic i-nth column, we substituted the vector of known terms (i = 1, 2). In the
presence of two generic real forces [in-phase with each other, as in the case of
(2.386)] determinant Di is real and therefore the same applies to solutions XP1 and
XP2. From a physical point of view, as already noted in 1 d.o.f. systems this means
that the response can have:

• phases w1 and w2 null with respect to the excitation force (if XP1 or XP2 are
positive), i.e. the vibration is in-phase with respect to the excitation force itself;

• phases w1 and w2 with respect to the excitation force equal to 180° (XP1 or XP2

are negative) i.e. the vibration is in counter-phase with respect to the excitation
force.

In relation to the example given in Fig. 2.4 and the data shown in Table 2.2,
Fig. 2.43 shows the frequency response of two d.o.f. system in terms of both
modulus jXP1j and jXP2j and phase w1 and w2 for a single unitary modulus force F1

applied to d.o.f. x1: these diagrams (also termed Bode diagrams) thus represent the
transfer functions H11 Xð Þ ¼ jXP1jeiw1 and H21 Xð Þ ¼ jXP2jeiw2 of the undamped
system under examination where, as previously mentioned, F1 is unitary. When
frequency X of the excitation forces approaches one of the two natural frequencies
x1 and x2 of the system, determinant Δ tends towards zero (2.386) and therefore
solutions XP1 and XP2 tend towards infinite, i.e. we have two resonance conditions.
More generally speaking, we can say that a 1 d.o.f. system has a resonance while a
vibrating 2 d.o.f. system has two resonances and a generic n d.o.f. system has
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n resonances. All the assertions and considerations made until now for an
undamped 2 d.o.f. system, forced with a harmonic excitation force, can be gen-
eralized for undamped n d.o.f. systems, whose equations, as seen previously, are in
matrix form11:

½M�x:: þ ½K�x ¼ F0e
iXt ð2:387Þ

We impose a solution of the type:

xP ¼ XPe
iXt ð2:388Þ

in the complex domain and, by resorting to a matrix notation, we obtain:

�X2½M� þ ½K�� 	
XP ¼ F0 ) D Xð Þ½ �XP ¼ F0 ð2:389Þ

where matrix D Xð Þ½ � has real coefficients depending on the characteristics of the
system and on frequency X of the excitation force. Having named the matrix
obtained from D½ � with Di½ � by substituting the i-nth column with the column of
known terms F0, it is possible to once again use Cramer to solve the system (2.389)
by means of:

XPi ¼ Dij j
Dj j i ¼ 1; 2; . . .; nð Þ ð2:390Þ

For X tending to generic xi, the denominator of (2.390) tends to zero and
therefore the corresponding solutions XPi tend to infinite. In resonance conditions,
expression (2.390), just as the similar scalar expression (2.386), are not valid any
longer, because determinant D½ � goes to zero. A more efficient method of solving
(2.389) is to pre-multiply the terms of same by ½DðXÞ��1 to obtain:

D Xð Þ½ ��1 D Xð Þ½ �XP ¼ D Xð Þ½ ��1F0 ) XP ¼ D Xð Þ½ ��1F0 ð2:391Þ

i.e. the particular integral solution in a direct form (obviously the inversion of
matrix ½DðXÞ� is only possible if X 6¼ xi, i.e. if resonance conditions do not apply).

11As already seen for 1 d.o.f. systems, whenever an excitation force has the form F ¼ F0cosXt it
is useful to substitute it with the complex F ¼ F0e

iXt. This allows us an easier solution of the
problem (particularly avoiding doubling the equations of motion) since it facilitates the elimi-
nation of the time dependence from the equations of motion. The solution found has to be
projected on the real axis. These passages are implied in what follows (and will not be shown)
and excitation force will be expressed as F ¼ F0e

iXt and the same will be done for the response
x ¼ XPe

iXt.
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2.4.2.3.2 Forced Motion in the Presence of Damping

Let us now consider the steady-state response of a vibrating 2 d.o.f. system (see
Fig. 2.4) whose damping is subjected to sinusoidal excitation forces: the general
equation of motion in scalar form is:

m11x
::
1 þ m12x

::
2 þ r11 _x1 þ r12 _x2 þ k11x1 þ k12x2 ¼ F1 cosXt

m21x
::
1 þ m22x

::
2 þ r21 _x1 þ r22 _x2 þ k21x1 þ k22x2 ¼ F2 cosXt

ð2:392Þ

When damping is present, the solution can be obtained more easily
(Sect. 2.4.1.4.1) by passing to the complex domain, i.e. by considering the fol-
lowing substitution:

F1 cosXt ) F1eiXt;F2 cosXt ) F2eiXt ð2:393Þ

so that the equation of motion (2.392) becomes:

m11x
::
1 þ m12x

::
2 þ r11 _x1 þ r12 _x2 þ k11x1 þ k12x2 ¼ F1eiXt

m21x
::
1 þ m22x

::
2 þ r21 _x1 þ r22 _x2 þ k21x1 þ k22x2 ¼ F2eiXt

ð2:394Þ

A particular integral of (2.394) is given by:

XP ¼ XP1

XP2

� �
eiXt ð2:395Þ

By substituting this solution in (2.394) and simplifying the term eiXt (always
different from zero) we will obtain:

k11 þ ir11X� m11X
2� �
XP1 þ k12 þ ir12X� m12X

2� �
XP2 ¼ F1

k21 þ ir21X� m21X
2� �
XP1 þ k22 þ ir22X� m22X

2� �
XP2 ¼ F2

ð2:396Þ

By imposing solution (2.395) in differential equations (2.392) we obtained a
linear algebraic system with non-homogenous complex coefficients. The solutions
of (2.396) can be determined by once again applying Cramer’s rule, i.e.:
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XP1 ¼ D1

D
¼

F1 k12 þ ir12X� m12X
2� �

F2 k22 þ ir22X� m22X
2� ������
�����

k11 þ ir11X� m11X
2� �

k12 þ ir12X� m12X
2� �

k21 þ ir21X� m21X
2� �

k22 þ ir22X� m22X
2� ������
�����

XP2 ¼ D2

D
¼

k11 þ ir11X� m11X
2� �

F1

k21 þ ir21X� m21X
2� �

F2

�����
�����

k11 þ ir11X� m11X
2� �

k12 þ ir12X� m12X
2� �

k21 þ ir21X� m21X
2� �

k22 þ ir22X� m22X
2� ������
�����

ð2:397Þ

where D is the determinant (complex) of the matrix of coefficients and Di is the
determinant of the matrix in which, instead of the generic ith column, we substi-
tuted the vector of known terms (i = 1, 2).

When frequency X of the excitation force tends to one of the two natural
frequencies x1 and x2 of the system, due to the presence of damping terms,
determinant D no longer tends to zero (2.397), but will have a minimum.

Therefore, under resonance conditions, although solutions XP1 and XP2 have a
maximum, they no longer tend towards the infinite. Since both determinant D and
determinant Di are complex, solutions, XP1 and XP2 are also complex:

XP ¼ jXP1jeiw1
jXP2jeiw2

� �
eiXt ð2:398Þ

where

XP1 ¼ ReðXP1Þ þ iImðXP1Þ ¼ XP1R þ iXP1I

XP2 ¼ ReðXP2Þ þ iImðXP2Þ ¼ XP2R þ iXP2I

ð2:399Þ

and

jXP1j ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
X2
P1R þ X2

P1I

q
; w1 ¼ arctg

XP1I

XP1R

� �
jXP2j ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
X2
P2R þ X2

P2I

q
; w2 ¼ arctg

XP2I

XP2R

� � ð2:400Þ

The actual solution, i.e. the steady-state response of the 2 d.o.f. system to the
harmonic excitation force of frequency X, bearing in mind (2.393), becomes:

x1ðtÞ ¼ jXP1j cos Xt þ w1ð Þ
x2ðtÞ ¼ jXP2j cos Xt þ w2

� � ð2:401Þ
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i.e. the response is generally out-of-phase with respect to the excitation force: this
will prove to be more or less in phase with the force for X\x1 and at 180° for
X[x2. Always as an example of Fig. 2.4 and the data shown in Table 2.2 and in
Table 2.8 case b, Fig. 2.44 shows the in-frequency response of two d.o.f. systems in
terms of modulus jXP1j and jXP2j and of phase w1 and w2 (2.400) for only one force
F1 of the unitary modulus applied to the d.o.f. x1: these diagrams (Bode diagrams)
thus represent the transfer functions H11ðXÞ ¼ jXP1jeiw1 and H21ðXÞ ¼ jXP2jeiw2 of
the system being examined in the presence of damping. These transfer functions
connect the input (the force on the first d.o.f.) to the outputs (displacements x1 and
x2). In the event of our wishing to define the overall response of the system, it
would be necessary to obtain matrix ½D��1 (2 × 2) (2.389) containing transfer
functions HijðXÞ (i = 1, 2, j = 1, 2): this matrix thus contains the response of the
system, or rather outputs x1 and x2 (first and second line) due to inputs F1 and F2

(first and second column). All the statements and considerations made until now for
a damped 2 d.o.f. system, forced with a harmonic excitation force, can be gen-
eralized for n d.o.f. systems forced in the presence of damping, whose equations, in
matrix forms, are [see (2.394)]:

½M�x:: þ ½R� _xþ ½K�x ¼ F0eiXt ð2:402Þ

By imposing a solution of the type:

xP ¼ XPe
iXt ð2:403Þ

and making recourse to a matrix notation, we obtain:

½�X2½M� þ iX½R� þ ½K��XP ¼ F0 ) ½D Xð Þ�XP ¼ F0 ð2:404Þ

where, this time, matrix ½DðXÞ� has complex coefficients, always, obviously,
dependent on the characteristics of the system and the frequency of the excitation
force. This equation can be solved once again by using Cramer, or, by pre-multi-
plying the terms of same for ½DðXÞ��1 thus directly obtaining the particular integral
solution:

½DðXÞ��1½DðXÞ�XP ¼ ½DðXÞ��1F0 ) XP ¼ ½DðXÞ��1F0 ¼ H iXð Þ½ �F0 ð2:405Þ

Due to the presence of damping terms, the inversion of matrix ½DðXÞ� is now
possible; in fact, even for X ¼ xi. H iXð Þ½ � is the harmonic transfer matrix in which
the various terms Hjk iXð Þ� 	

represent the transfer function between the jth point in
which the system’s response is evaluated and the kth point where the excitation
force is applied.
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2.4.2.4 One Application: The Dynamic Vibration Absorber

Let us consider a mechanical system, modelled as having 1 d.o.f., on which a
harmonic excitation force f1 ¼ F10senXt of frequency Ω, assigned and constant,
acts. Let us assume that this frequency is near to the natural frequency x1 ¼ffiffiffiffiffiffiffiffiffiffiffiffi

k1=m1

p
of the system itself and, furthermore, that the damping is small: under

these conditions, the oscillations prove to be high and unacceptable for the seamless
functioning of the system. In order to reduce the vibration amplitudes, it is possible
to:

• limit the excitation force: for example, in the case where this is due to an
eccentric rotating mass, by balancing the rotor;

• to change either the mass or stiffness of the system;
• to increase damping.

At times, these remedies can be onerous or even impossible to apply. Another
option is to mount a dynamic vibration absorber (first introduced by Frahm in 1909,
see [15] and [37]). This absorber consists of a vibrating 1 d.o.f. system, relatively
small with respect to the initial system, to be added to the principal mass m1

(Fig. 2.53): the natural frequency ω2 of this auxiliary system is chosen to coincide
with the frequency of excitation force:

x2 ¼
ffiffiffiffiffiffi
k2
m2

r
¼ X ð2:406Þ

We will demonstrate that, thanks to this absorber, machine mass m1 no longer
oscillates, while the same absorber oscillates so that the force transmitted by spring
k2 is equal instant by instant and opposed to external force f1 ¼ F10senXt acting on
the machine. In actual fact, this proposition is theoretical because it presupposes the
absence of damping, which actually is always present, and the equality of the
excitation frequency X with natural frequency ω2. To better interpret the problem,
we will write the equations of motion of the system in Fig. 2.45, obtainable from the
general expression found in (2.396), neglecting damping for the time being:

m1 x
::
1 þðk1 þ k2Þx1 � k2x2 ¼ F10 sinXt

m2 x
::
2 �k2x1 þ k2x2 ¼ 0

ð2:407Þ

As always, by imposing a steady-state solution of the type:

xP1 ¼ XP1 sinXt

xP2 ¼ XP2 sinXt
ð2:408Þ
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we obtain:

�X2m1 þ ðk1 þ k2ÞXP1 � k2XP2 ¼ F10

�k2XP1 þ �X2m2 þ k2
� �

XP2 ¼ 0
ð2:409Þ

For an easier and more direct interpretation of the results, we divide the first
equation by k1 and the second equation by k2: furthermore, we use:

• XST ¼ F10
k1

to denominate the static deflection of the main system;
• l ¼ m1

m2
the relationship between the two masses;

thus obtaining:

�X2 m1

k1
þ 1þ k2

k1

� �� �
XP1 � k2

k1
XP2 ¼ F10

k1
) 1þ k2

k1
� X2

x2
1

� �
XP1 � k2

k1
XP2 ¼ XST

�XP1 þ �X2 m2

k2
þ 1

� �
XP2 ¼ 0 ) XP1 ¼ 1� X2

x2
2

� �
XP2

ð2:410aÞ

from which, by solving in XP1 and XP2 we obtain:

1þ k2
k1

� X2

x2
1

� �
1� X2

x2
2

� �
� k2
k1

� �
XP2 ¼ XST

) XP2

XST
¼ 1

1þ k2
k1
� X2

x2
1

� �
1� X2

x2
2

� �
� k2

k1

� � ð2:410bÞ

Fig. 2.47 Dynamic absorber
l ¼ m1=m2 ¼ 3% frequency
response of the main system
for different values of the
non-dimensional damping h2

2.4 Solving the Equations of Motion 193



www.manaraa.com

XP1

XST
¼

1� X2

x2
2

� �
1þ k2

k1
� X2

x2
1

� �
1� X2

x2
2

� �
� k2

k1

� � ð2:410cÞ

By analysing (2.410c) we note that amplitude Xp1 of steady-state mass m1 is null,
or rather that the machine no longer oscillates. Always bearing in mind the same
relationship (2.410c), from (2.410b) we obtain:

XP2

XST
¼ 1

� k2
k1

¼ �k1
k2

) XP2 ¼ �XSTk1
k2

) k2XP2 ¼ �F10 ð2:411Þ

or rather, instant by instant, the force transmitted by spring k2 balances the external
excitation force. To give an example, in Fig. 2.46 we show the frequency response
of the main mass m1 and of the dynamic absorber m2 as a function of the frequency,
in the case of l ¼ 1=5 and x1 ¼ x2: as can be noted, there are obviously two
resonance peaks (the two d.o.f. system) and, in correspondence to the frequency of
the excitation force, as previously mentioned, amplitudes Xp1 are null. Furthermore,
by imposing relationship:

x1 ¼ x2 ) k1
m1

¼ k2
m2

) k2
k1

¼ m2

m1
¼ l ð2:412Þ

expressions (2.410c) and (2.411) become:

XP2

XST
¼ 1

1þ l� X2

x2
2

� �
1� X2

x2
2

� �
� l

� � ð2:413Þ

XP1

XST
¼

1� X2

x2
2

� �
1þ l� X2

x2
2

� �
1� X2

x2
2

� �
� l

� �
The natural frequencies of the complete system can be obtained by equating the

denominator of expressions (2.413) to zero:

1þ l� X2

x2
2

� �
1� X2

x2
2

� �
� l ¼ X

x2

� �4

� X
x2

� �2

2þ lð Þ þ 1 ¼ 0 ð2:414Þ

The solution of (2.414) is shown graphically in Fig. 2.47: as an example, it can
be observed that by adopting a relationship between the masses l ¼ 2, the two
natural frequencies of the complete system are 1.25 and 0.8 times the initial fre-
quency x1 =x2.

Bearing in mind a possible damping introduced by the dynamic absorber, which
can be schematized using a linear viscous damping of constant r2, the equations of
motion of the complete system of (2.409) of Fig. 2.45 becomes:
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m1 x
::
1 þr2 _x1 � r2 _x2 þ ðk1 þ k2Þx1 � k2x2 ¼ F10eiXt

m2 x
::
2 �r2 _x1 þ r2 _x2 � k2x1 þ k2x2 ¼ 0

ð2:415Þ

Figure 2.47 shows the frequency response of mass m1 (with x1 ¼ x2 ¼ X and
l ¼ 1=20) with the variation of non-dimensional damping h2 ¼ r2=ð2m2x2Þ. The
continuous line indicates the null damping curve (h2 ¼ 0), while the dotted line is
used to show the same amplitude in the presence of damping. When the damping
increases, the two peaks decrease to once again reunite in a peak tending towards
infinite as h2 ! 1. The optimal damping value to be assigned to the dynamic
absorber can be obtained [15, 36] by exploiting the property whereby all the curves
pass through points P and Q of Fig. 2.47 regardless of the value of h2 and by
making sure that the frequency response passes through these two points with a null
tangent, in order to obtain a diagram like the one shown in Fig. 2.48 (in the case of
l ¼ 1=4). The presence of damping means that the mass amplitude m1 is no longer

Fig. 2.48 a Dynamic
absorber l ¼ m1=m2 ¼ 3%
frequency response of the
secondary system—
magnitude—for different
values of the non-dimensional
damping h2. b Dynamic
absorber l ¼ m1=m2 ¼ 3%
frequency response of the
secondary system—phase
u31—for different values of
the non-dimensional damping
h2
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equal to zero for X ¼ ffiffiffiffiffiffiffiffiffiffiffiffi
k2=m2

p
: a more widespread field exists in which the

oscillation amplitudes of m1 are, however, small with respect to those that we would
have in the absence of an absorber.

Vice versa, with null damping, the amplitudes of m1 are amplified when dis-
tanced from condition X ¼ ffiffiffiffiffiffiffiffiffiffiffiffi

k2=m2

p
. We should thus consider the absorber not as

an additional element that balances the external excitation force but as a suitably
damped system which, on account of being in resonance, dissipates a considerable
amount of energy: the effect of this dissipation is such that it increases the overall
damping of the new vibrating 2 d.o.f. system, thus resulting in an overall decrease
of the vibration amplitudes. It can, therefore, be deduced that this is effectively
applicable when the original system is in resonance and has a small damping.

The dynamic absorber can thus be seen as a passive system to control (decrease)
the vibrations of a system.

At present, there is still the option of resorting to an active control system: in its
most elementary formulation, this control system can act on the mechanical system
either to create an excitation force which opposes itself to the external excitation or
by introducing a force of the type (�r _x) in order to increase the overall damping of
the system. As regards the question of control techniques, we suggest that reference
be made to specialist texts (see, for example, [10, 11, 16, 30]).

To further investigate the behaviour of the dynamic absorber we will consider
again the system shown in Fig. 2.45, where the main system is equipped with a
Tuned Mass Damper (TMD). This time, the equations of motion (2.415) can be re-
written by using the absolute displacement x1 of the main system and the relative
displacement x3 of the TDM as new d.o.f.’s. According to the sign conventions
shown in the same figure, we have:

m1 þ m2ð Þx::1 þ m2x
::
3 þ r1 _x1 þ k1x1 ¼ f1

m2x
::
1 þ m2x

::
3 þ r2 _x3 þ k2x3 ¼ 0

�
ð2:416Þ

Instead of elastic and damping connections between the TMD and the main
system, in this case, system (2.416) is coupled by means of the TMD mass.

By analysing the first equation of system (2.416), we can see how the absorber
effect increases the main system mass, which becomes m1 + m2, where, generally
speaking, mass m2 is negligible with respect to m1.

The damping introduced by TMD can thus be calculated, in non-dimensional
form, by means of relationship (see Sect. 2.4.1.3):

heq ¼ Ed

4pEcmax
ð2:417aÞ

where Ecmax is the maximum value of the total kinetic energy of the system and Ed

is the energy dissipated by the TMD.
The energy dissipated in one period T by the TMD, and in particular by the

linear viscous damping of constant r2, can be expressed as:
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Ed ¼
ZT
0

r2 _x
2
3dt ¼ r2pX

2X2
p3 ð2:417bÞ

Having used Xp3 to define the magnitude of the relative motion of the TMD. The
kinetic energy of the system, considering the two variables x1 and x3, is:

Ec ¼ 1
2
m1 _x

2
1 þ

1
2
m2 _x1 þ _x3ð Þ2 ð2:417cÞ

By analysing the second equation of (2.416), when X ¼ ffiffiffiffiffiffiffiffiffiffiffiffi
k2=m2

p
the ratio

between the magnitude of the relative motion of the TMD Xp3 and the magnitude of
the dynamic response of the main system Xp1 is:

Xp3

Xp1
¼ 1

2h
ð2:417dÞ

where h ¼ r2= 2m2x2ð Þ and x2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
k2=m2

p
, and, moreover, Xp3 and Xp1 are in

quadrature. Considering that m1 is typically much greater than m2 and considering
that Xp3 and Xp1 are in quadrature, the maximum value of the kinetic energy in one
period T for the system is:

Ecmax ¼ 1
2

m1 þ m2ð ÞX2
p1X

2 ð2:417eÞ

Fig. 2.49 Dynamic absorber
l ¼ m1=m2 ¼ 3% damping
heq for different values of the
non-dimensional damping h2
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Thus, the non-dimensional damping factor is:

heq ¼ 1
4p

Ed

Ecmax
¼ 1

4p

r2pX
2X2

p3
1
2 m1 þ m2ð ÞX2X2

p1

¼ 1
4p

r2pX
2X2

p1
1
2h

� �2
1
2 m1 þ m2ð ÞX2X2

p1

¼ 1
4h

m2

m1 þ m2ð Þ
ð2:417fÞ

The efficiency of TMD in terms of the damping increment of the main system
can be evaluated, when X ¼ ffiffiffiffiffiffiffiffiffiffiffiffi

k2=m2

p
(perfect tuning condition), by means of

(2.417f). For this reason, this formulation provides preliminary indications in the
choice and setting of TMD parameters.

As an example, Fig. 2.47 shows the frequency response Xp1
�� ��=Xst of the main

system, in the case of a ratio between l ¼ m1=m2 ¼ 3%, as damping ratio h2 ¼
r2=2m2x2 associated with TMD, changes.

For the same case, Fig. 2.48a, b show the response of the secondary system, in
magnitude Xp2

�� ��=Xst and the relative phase u31.
The damping trend introduced into the main system as a function of damping h2,

in a parametric form, is shown in Fig. 2.49.
Once again, these results show how TMD efficiency depends, first and foremost,

on the ratio between added mass and main system mass and how the damping
introduced also depends on the transfer function between the relative motion of the
added mass and the motion of the system to be damped.

The dynamic absorber can thus be seen as a passive system to control (decrease)
the vibrations of a system.

At present, there is still the option of resorting to an active control system: in its
most elementary formulation, this control system can act on the mechanical system
either to create an excitation force which opposes itself to the external excitation or
by introducing a force of the type (�r _x) in order to increase the overall damping of
the system. As regards the question of control techniques, we suggest that reference
be made to specialist texts (see, for example, [10, 11, 16, 30]).

2.4.3 n-Degree-of-Freedom System

2.4.3.1 Undamped Free Motion

2.4.3.1.1 Calculation of Natural Frequencies and Vibration Modes

As noted, the equation in matrix form for a system with n d.o.f. is:

M½ �x:: þ R½ � _xþ K½ �x ¼ F tð Þ ð2:418Þ
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where F is the vector of the generalized forces depending on the d.o.f. (independent
coordinates x) pre-chosen to describe the system. To calculate the natural fre-
quencies, as in the case of 2 d.o.f. systems (Sect. 2.4.2.1.1), in the absence of
damping, we consider equation:

M½ �x:: þ K½ �x ¼ 0 ð2:419Þ

As seen in Sect. 2.4.2.1, for the 2 d.o.f. system, when ½M� and ½K� are symmetric
and defined as positive, the solution of expression (2.419) is the following:

x ¼ Xeixt ð2:420Þ

which when placed in the same equation leads to:

½�x2½I� þ ½M��1½K�X ¼ 0 ð2:421Þ

The natural frequencies of system ωi can be evaluated by calculating the
eigenvalues ki of matrix ½A� ¼ ½M��1½K�, since relationship:

x2
i ¼ ki ð2:422Þ

is valid. Conversely, the generic principal vibration mode XðiÞ corresponds to the
relative eigenvector:

X ¼
X

ið Þ
1

X
ið Þ
2

. . .
X

ið Þ
n

8>><>>:
9>>=>>; ð2:423Þ

These eigenvectors are defined up to a constant, or rather n × (n − 1) can be
defined as characteristic relationships of the type:

l ið Þ
jk ¼ XðiÞ

j

X ið Þ
k

j ¼ 2; n i ¼ 1; nð Þ ð2:424Þ

which define the relationship (in relation to the generic ith vibrating mode) between

the generic jth coordinate X ið Þ
j and the kth coordinate X ið Þ

k chosen as a reference. The
eigenvectors (2.424) can be normalized, i.e. numerically defined, by assigning e.g.

an arbitrary value to a variable chosen as a reference X ið Þ
k : for example, by imposing

(for k = 1) X
ðiÞ
1 ¼ 1 and keeping account of (2.424), the eigenvector relative to the

generic natural frequency ωi will be defined numerically as:
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X ið Þ ¼
1
l

ið Þ
21
. . .
l

ið Þ
n1

8>><>>:
9>>=>>; ð2:425Þ

There are obviously countless ways of normalizing the eigenvectors, several of
which have proven to be particularly convenient for subsequent manipulations of
the same equations of motion: this subject will be resumed further on in Sect. 2.5,
when discussing the modal approach.

As previously mentioned in Sect. 2.4.2.1, relationships l
ið Þ
jk (2.424) which define

the generic eigenvector, in the case where no damping is present, are real: this
means that the motions of the various d.o.f. of each vibrating mode are only in
phase or in counter-phase one with the other (depending on the sign of the various

components of eigenvector X ið Þ
j ). One particular and useful property of the eigen-

vectors of the free, undamped system, where matrices ½K� and ½M� are symmetrical
and positive definite, is the orthogonality (in the broad sense of the term [20, 22,
34]) with respect to mass ½M� and stiffness ½K� matrices:

X ið ÞT ½M�X jð Þ ¼ dijmij

X ið ÞT ½K�X jð Þ ¼ dijkij
ð2:426Þ

where δij is the Kroneker delta (dij ¼ 1 by i ¼ j and dij ¼ 0 by i 6¼ j) and mij and kij
two real values. This property will be demonstrated later on and exploited in the
modal approach (Sect. 2.5). To calculate these eigenvectors it is necessary, most of
all for a n d.o.f. system, to use numeric algorithms, using the calculation subrou-
tines already existing in scientific calculation software, which use different
numerical algorithms, including, for example, the QR method [29, 31, 37].

2.4.3.1.2 Calculation of the Response to Initial Conditions

The free motion of an undamped vibrating n d.o.f. system, subjected to an initial
disturbance is described by the general integral (as seen for 2 d.o.f. systems,
Sect. 2.4.2), i.e. by the linear combination of the particular integrals of the asso-
ciated homogenous (2.419):

x tð Þ ¼ C1X
1ð Þ cos x1t þ /1ð Þ þ � � � þ CnX

nð Þ cos xnt þ /nð Þ ð2:427Þ
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i.e. in a more convenient form:

x tð Þ ¼ X 1ð Þ A1 cosx1t þ B1 sinx1tð Þ þ � � � þ X nð Þ An cosxnt þ Bn sinxntð Þ

¼ U½ �
A1 cosx1t þ B1 sinx1t

. . .

An cosxnt þ Bn sinxnt

8><>:
9>=>;

ð2:428Þ

where ½U� is the matrix, termed modal (this matrix will be referred to again in
Sect. 2.5, in relation to the modal approach), having n vibration modes as columns,
i.e. the n eigenvectors XðiÞ, systematically placed side by side as shown below:

U½ � ¼ Xð1Þ Xð2Þ . . . XðnÞ� 	 ¼ X 1ð Þ
1 X 2ð Þ

1 . . . X nð Þ
1

X 1ð Þ
2 X 2ð Þ

2 . . . X nð Þ
2

. . . . . . . . . . . .
X 1ð Þ
n X 2ð Þ

n . . . X nð Þ
n

26664
37775 ð2:429Þ

By deriving (2.428) with respect to time, we obtain:

_x tð Þ ¼ X 1ð Þ �x1A1 sinx1t þ x1B1 cosx1tð Þ þ � � � þ X nð Þ �xnAn sinxnt þ xnBn cosxntð Þ

¼ U½ � x½ �
�A1 sinx1t þ B1 cosx1t

. . .

�An sinxnt þ Bn cosxnt

8><>:
9>=>;

ð2:430Þ

where x½ � is the diagonal matrix:

x½ � ¼
x1 0 . . . 0
0 x2 . . . 0
. . . . . . . . . . . .
0 0 . . . xn

2664
3775 ð2:431Þ

Thus, by imposing the initial conditions and keeping account of expressions
(2.428) and (2.430), we obtain:
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x0 ¼ x 0ð Þ ¼ U½ �

A1

A2

. . .

An

8>>><>>>:
9>>>=>>>;) U½ �A ¼ x0

_x0 ¼ _x 0ð Þ ¼ U½ � x½ �

B1

B2

. . .

Bn

8>>><>>>:
9>>>=>>>;) U½ � x½ �B ¼ _x0

ð2:432Þ

equations that enable us to obtain constants A and B which are necessary to define
the free motion of the system (2.419).

2.4.3.2 Damped Free Motion

2.4.3.2.1 Calculation of the Natural Frequencies and Vibration Modes

Let us now consider the presence of damping: the matrix equation that describes the
free damped motion of a generic n d.o.f. system is given by (on a pair with 2 d.o.f.
systems, Sect. 2.4.2):

M½ �x:: þ R½ �x:: þ K½ �x ¼ 0 ð2:433Þ

We will look for a solution of the type:

x ¼ Xekt ð2:434Þ

which, when substituted in (2.433), results in a homogenous linear system in the
unknown X:

k2 M½ � þ k R½ � þ K½ �� �
X ¼ 0 ð2:435Þ

This system accepts a solution that is different from the trivial solution only if the
determinant of the coefficient matrix is null:

det k2 M½ � þ k R½ � þ K½ ��� �� ¼ 0 ð2:436Þ

Development of the determinant leads to a complete polynomial expression of
order 2 in λ which, generally speaking, will have complex solutions (purely real or
complex conjugate, because the coefficient matrix is real [2, 8, 9, 20, 21]. For n d.o.f.
systems the analytical development of the characteristic polynomial and the zero
setting of (2.436) is extremely laborious: therefore, as noted for 2 d.o.f. systems
(Sect. 2.4.2.1.1), we prefer to calculate the natural frequencies of a damped system
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by solving an eigenvalues/eigenvectors problem. As previously seen, for this pur-
pose, alongside the equation of motion (2.370), we consider an auxiliary identity:

M½ �x:: þ R½ � _xþ K½ �x ¼ 0

M½ � _x ¼ M½ � _x ð2:437Þ

and we perform the following change of variables:

z ¼ _x
x

� �
¼ y

x

� �
) _z ¼ x

::

_x

� �
¼ _y

_x

� �
ð2:438Þ

In this way, system (2.437) can be rewritten as:

M½ � _yþ R½ �yþ K½ �x ¼ 0

M½ � _x� M½ �y ¼ 0
ð2:439Þ

By defining matrices ½B� and ½C�:

B½ � ¼ M½ � 0½ �
0½ � M½ �


 �
C½ � ¼ R½ � K½ �

� M½ � 0½ �


 � ð2:440Þ

expression (2.439) is synthetically expressed as:

B½ �_zþ C½ �z ¼ 0 ð2:441Þ

where matrix ½B� proves to be symmetrical and positive definite on account of
having been obtained by suitably assembling mass matrix ½M�. Starting from
(2.441), it is possible to obtain an expression that is frequently adopted in the
systems control field [10, 11, 16, 19, 24, 28]:

_z ¼ A½ �z ð2:442Þ

having used ½A� to define matrix:

½A� ¼ �½B��1½C� ð2:443Þ

In (2.443) matrix ½B� is definitely invertible. The solution of expression (2.442) is
of the type:

z ¼ Zekt ð2:444Þ
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which, when substituted in (2.442) leads to a homogenous linear algebraic system
in Z with real coefficients, parametric in λ12:

A½ � � k I½ �½ �Z ¼ 0 ) Z ¼ Y
X

� �
¼ kX

X

� �
ð2:445Þ

which accepts a solution that is different from the banal solution if the determinant
of the matrix of coefficients is null. The 2n values of which annul the determinant
are, by definition [see (2.445)], the eigenvalues of matrix ½A�. In dissipative systems,
i.e. those having symmetrical matrices and defined as positive, and small structural
damping, the eigenvalues are two by two complex conjugates of the type:

ki;iþ1C ¼ �ai � ixi ð2:446Þ

with αi and ωi being real positives. In (2.446), the imaginary part ωi (rad/s) rep-
resents the natural frequency of the damped system, while the real part αi provides
information about the damping of the system: more specifically, since matrices ½K�,
½R� and ½M� are symmetric and positive definite, for dissipative systems perturbed
about the stable rest position the real parts ai of the eigenvalues are positive, i.e. free
motion is damped. As seen in Sect. 2.4.2.1.1 for the free motion of damped two d.o.
f. systems, unlike that which occurs for undamped systems, the eigenvectors Z ið Þ are
no longer real but complex, involving non-orthogonality in a generalized sense (i.e.
with respect matrix ½M� or ½K�) of the vibration modes themselves. Eigenvectors Z ið Þ

of expression (2.445) are also two by two complex conjugates.

2.4.3.2.2 Calculation of the Response to Initial Conditions

Having given an initial generic condition to the damped system, defined in terms of
state variables z:

z tð Þt¼0¼ z0 ð2:447Þ

12Keeping account of (2.438) we have:

_x ¼ y ð2:12:1Þ

and, from (2.444) we obtain:

x ¼ Xekt ) y ¼ Yekt ¼ kXekt: ð2:12:2Þ
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the motion of the system is defined by the combination of particular integrals
(2.444) of the associated homogenous (2.441):

z tð Þ ¼
X2n
i¼1

ciZ
ið Þekit ð2:448Þ

where ci (i = 1, 2n) are complex constants that can be defined by imposing the
initial conditions (2.447) which, by keeping account of (2.448), become:

z0 ¼
X2n
i¼1

ciZ
ið Þ ð2:449Þ

By pre-multiplying expression (2.449) by matrix [B], see (2.440), and by the
complex generic vibration mode Z(k)T we obtain:

Z kð ÞT B½ �z0 ¼ Z kð ÞT B½ �
X2n
i¼1

ciZ
ið Þ ð2:450Þ

By keeping account of the properties of orthogonality of the eigenvectors
(Sect. 2.5.2.1, [2, 20, 29] and, in particular, Argiris, 1991, Sect. 9.1) all the terms on
the right of equal sign of (2.450) are null with the exception of the one with index
j ¼ k: from this it is easy to obtain the value of the generic complex constant ck of
the general integral (2.448):

ck ¼ Z kð ÞT B½ �Z kð Þ
h i�1

Z kð ÞT B½ �z0
n o

ð2:451Þ

2.4.3.3 Forced Motion

In the case of a sinusoidal excitation force and by using the complex exponential
notation (as seen for 1 d.o.f. systems, Sect. 2.4.1 and in 2 d.o.f. systems,
Sect. 2.4.2), the equation of motion of a generic n d.o.f. system (2.328) can be
rewritten:

M½ �x:: þ R½ � _xþ K½ �x ¼ f ðtÞ ¼ F0 e
iXt ð2:452Þ

As a particular integral, expression (2.452) will have:

xP ¼ XP e
iXt ð2:453Þ

where XP is generally complex. By introducing (2.453) into the equation of motion
(2.452) we obtain a complete linear algebraic system with complex coefficients (i.e.
have an unknown non-null term):
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�X2 M½ � þ iX R½ � þ K½ �� 	
XP ¼ F0 ð2:454Þ

i.e.:

D Xð Þ½ �XP ¼ F0 ) XP ¼ D Xð Þ½ ��1F0 ð2:455Þ

The response:

xj tð Þ ¼ XPjeiXt ¼ XPj

�� �� cos Xt þ wj

� �
j ¼ 1; nð Þ ð2:456Þ

is generally out-of-phase with respect to the excitation force. The known term F0 in
(2.455) is real if all the excitation forces acting on different d.o.f. of the system are
all in-phase or in counter phase; conversely, if the excitation forces on various d.o.f.
are generally out-of-phase in time, the known term F0 of (2.455) is complex. As
with the 1 d.o.f. system (Sect. 2.4.1.4.1), it is possible to define as harmonic transfer
function HjkðXÞ the ratio:

xv3 = 0

xv1

xv2

Fig. 2.51 Vibrating n d.o.f. system: motion imposed to constraints

Π
2

−

Ψik

hik(Ω)

Ω

Ω

ω1 ω2

Fig. 2.50 Vibrating n d.o.f.
system: example of a
harmonic transfer function
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Hjk Xð Þ ¼ XPjk Xð Þ
F0k Xð Þ ð2:457Þ

between the response of the generic jth d.o.f.:

xPjk ¼ XPjkeiXt ¼ XPjk

�� ��eiwjeiXt ð2:458Þ

which can be obtained by solving (2.456) where we impose:

F0 ¼

0
. . .
F0k

. . .
0

8>>>><>>>>:

9>>>>=>>>>; ð2:459Þ

and the generic harmonic excitation force applied according to the kth d.o.f. of the
system:

fk ¼ F0keiXt ð2:460Þ

The harmonic transfer function HjkðXÞ is, obviously, complex, since the
response of the system (2.457) is generically complex: this function is usually
represented, as a function of excitation frequency X, in modulus and phase as
shown, as an example, in Fig. 2.50. In damped and forced n d.o.f. systems as seen
in 1 and 2 d.o.f. systems (Sects. 2.4.1.4.1 and 2.4.2.3.2), when frequency X of the
excitation force coincides with one of the natural frequencies of system xi, there
will be an increase of steady-state amplitudes which, unlike undamped systems,
will not reach infinite values. More specifically, as the damping increases, the
resonance peaks are lowered and the frequencies of the undamped system are more
strongly diversified than those of the same damped system.

Finally, let us remember that, generally speaking the solution to expression
(2.455) is obtained numerically, using suitable algorithms in the complex field (e.g.
Gauss-Jordan, Cholesky and others, see, for example [4, 7, 8, 26]) implemented as

xv3

xv1Rv1

Rv3

xv2

Rv2

Fig. 2.52 Vibrating n d.o.f.
system: applied forces on the
system free in space
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subprograms of automatic calculation in various scientific software packages
(IMSL etc.).

2.4.3.4 Motion Imposed on Constraints

Let us now consider a generic vibrating n d.o.f. system constrained to the outside
world with a certain number of constraints that can either be fixed or in motion with
an assigned law, see Fig. 2.51; x ¼ xL is the vector of the independent variables that
describe the behaviour of the system and xV the vector of the constraint
displacements:

xL ¼

x1
. . .
xi
. . .
xn

8>>>><>>>>:

9>>>>=>>>>;; xV ¼
xV1
xV2
. . .
xVnv

8>><>>:
9>>=>>; ð2:461Þ

A general methodology used to define the equations of motion of this system
consists in writing the same equations by considering as independent coordinates x
not only free coordinates xL but also coordinates xV imposed by the law of motion:

x ¼ xL
xV

� �
ð2:462Þ

Fig. 2.53 One d.o.f.
vibrating system with motion
imposed to the constraint
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When using this approach, the system proves to be free in space (since the
imposed constraints were eliminated during this first phase) and, therefore, in
addition to forces f

L
acting on effectively free d.o.f., as external forces it also has

constraint reactions Rv (Fig. 2.52). The equations of motion are obtained later on by
using, for example Lagrange’s equations: these equations will contain as unknowns,
by suitably transferring to the right hand side those terms depending on coordinates
xV (imposed laws of motion), the displacements associated with the actual d.o.f.’s
xL as well as the constraint reactions Rv: these reactions are those necessary to
maintain the imposed law of motion. It is tacitly understood that this approach can
also be used to calculate constraint reactions Rv when the constraints xV ¼ 0 are
fixed, thus representing the particular situation whereby the imposed law of motion
is constant and null. Let us consider, as a first example, a vibrating system with 1 d.
o.f. with an imposed motion xV ¼ xV tð Þ to the constraint (see Fig. 2.53).

By adopting a Lagrangian approach, we will evaluate the various forms of
energy, also considering, in addition to the free variable xL, xV as an independent
variable and assigning the term RV to the constraint reaction:

EC ¼ 1
2
m _x2L; V ¼ 1

2
k xL � xVð Þ2

D ¼ 1
2
r _xL � _xVð Þ2; d�L ¼ RV d

�xV
ð2:463Þ

To write the two equations of motion, as is customary, the forms of energy are
derived according to Lagrange, with respect to coordinate xL.

d
dt

@EC

@ _xL

� �
¼ mx

::
L;

@EC

@xL
¼ 0

@V
@xL

¼ k xL � xVð Þ; @D
@ _xL

¼ r _xL � _xVð Þ; d�L
d�xL

¼ 0

ð2:464Þ

and coordinate xV:

d
dt

@EC

@ _xV

� �
¼ 0;

@EC

@xV
¼ 0

@V
@xV

¼ �k xL � xVð Þ; @D
@ _xV

¼ �r _xL � _xVð Þ; d�L
d�xV

¼ RV

ð2:465Þ

which leads to the two equation system in coordinates xV and xL:

mx
::
L þ r _xL � r _xV þ kxL � kxV ¼ 0

�r _xL þ r _xV � kxL þ kxV ¼ RV
ð2:466Þ

By bearing in mind that xV is, in actual fact, an assigned function of time
xV ¼ xV tð Þ, the two equations (2.466) can be rewritten as:
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mx
::
L þ r _xL þ kxL ¼ r _xV þ kxV ¼ efL
�r _xL þ r _xV � kxL þ kxV ¼ RV

ð2:467Þ

The second member of the first equation efL ¼ r _xV þ kxV constitutes a known
equivalent excitation force, due to imposed displacement xV : after solving the first
equation, the second equation provides the reaction RV ¼ RV ðtÞ to be applied to the
constraint to obtain the imposed law xV ¼ xV tð Þ. The procedure outlined can be
generalized for a vibrating n d.o.f. system in which, generally speaking there are nv
constrains having a known, imposed motion.

By using x (2.469) to define the vector containing both the sub-vector xL of the
n independent variables and sub-vector xV containing the constrained d.o.f., by
applying the Lagrange’s equations, we obtain the equation of motion of the system
(see Sect. 2.4) which, in matrix form, can be written as:

M½ �x:: þ R½ � _xþ K½ �x ¼ f ð2:468Þ

By ordering vector x so that it proves to be:

x ¼ xL
xV

� �
ð2:469Þ

and, as a consequence, by reordering matrices [M], [R] and [K] and partitioning
same into 4 sub-matrices:

M½ � ¼ MLL½ � MLV½ �
MVL½ � MVV½ �


 �
; R½ � ¼ RLL½ � RLV½ �

RVL½ � RVV½ �

 �

; K½ � ¼ KLL½ � KLV½ �
KVL½ � KVV½ �


 �
ð2:470Þ

expressions (2.468) can be rewritten as two matrix equations:

MLL½ � x::L þ MLV½ � x::V þ RLL½ � _xL þ RLV½ � _xV þ KLL½ � xL þ KLV½ � xV ¼ f
L

MVL½ � x::L þ MVV½ � x::V þ RVL½ � _xL þ RVV½ � _xV þ KVL½ � xL þ KVV½ � xV ¼ RV

ð2:471Þ

In expressions (2.471) f
L
represents the vector containing the active external

excitation forces acting on actual d.o.f., while RV represents the vector of the
generalized reactions applied to the constrained d.o.f. By keeping account of the
fact that vector xV , and its derivatives with respect to time, are vectors of known
functions, the first of the two equations (2.471) can be rewritten as:

MLL½ � x::L þ RLL½ � _xL þ KLL½ �xL ¼ � MLV½ � x::V
� RLV½ � _xV � KLV½ �xV þ f

L
¼ ~f

L
þ f

L
¼ ~~f

L

ð2:472Þ
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in which the second member ~f
L
is composed solely of known terms, i.e. the

effective external excitation forces f
L
and the equivalent excitation forces:

~f
L
¼ � MLV½ � x::V � RLV½ � _xV � KLV½ � xV ð2:473Þ

due to the motion imposed on constraints xV . Expression (2.472) thus represents a
system of n equations, the same number as the xL unknowns, which when solved
can be used to calculate the motion of the vibrating system. Conversely, the
equation relative to constrained d.o.f. [based on the matrix equation of expressions
(2.471)] allows us to obtain the constraint reactions RV , once expressions (2.472)
have been integrated and the values of xL and their derivatives obtained.

2.5 Modal Approach for Linear n-Degree-of-Freedom
Systems

In the previous sections, the methods most commonly used to write the equations of
motion of discrete 2-n d.o.f. systems were introduced. Generally speaking, the
equations obtained are coupled i.e. the corresponding matrices of mass ½M�,
damping ½R� and stiffness ½K� are full: for systems with a high number of d.o.f. this
involves a complex calculation process to obtain the solution of same (see Sects. 2.3
and 2.4). In this chapter, we will demonstrate a particular type of approach, termed
the “modal approach” which, under certain conditions and thanks to a suitable,
preordained choice of a specific set of independent coordinates, enables us to
uncouple the equations of motion of a generic vibrating 2-n d.o.f. system: instead of
n coupled equations, it allows us to solve n independent equations with 1 d-o-f.,
thus saving a considerable amount of time and occupation of space on the computer
and, even more important, to use a model that allows us to have a better under-
standing of the behaviour of the system. For teaching purposes, as in the past, we
will analyse this technique applied, first and foremost, to 2 d.o.f. systems
(Sect. 2.5.1), to subsequently extend the procedure to n d.o.f. systems (Sect. 2.5.2).

2.5.1 Modal Approach for Two-Degree-of-Freedom Systems

Let us resume the example of a vibrating 2 d.o.f. system shown in Fig. 2.4: for the
same system as the one in Sect. 2.3.2.1, using two different approaches, we defined
the equations of motion of a free undamped system (2.85) which, for the sake of
convenience, is shown in a compact matrix form:
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M½ �x:: þ K½ �x ¼ 0 ð2:474Þ

having used x to indicate the vector of independent coordinates:

x ¼ x1
x2

� �
ð2:475Þ

and ½K� and ½M� to indicate the matrices of stiffness and damping of the same
system. For the system in question, in Sect. 2.3.1 we subsequently obtained the
natural frequencies, i.e. the two eigenvalues xi (i ¼ 1; 2) and the corresponding

vibration modes, i.e. eigenvectors X
ðiÞ
:

x ¼ x1 ) X
ð1Þ ¼ X

ð1Þ
1

X
ð1Þ
2

( )

x ¼ x2 ) X
ð2Þ ¼ X

ð2Þ
1

X
ð2Þ
2

( ) ð2:476Þ

We can now define a generic change of variables, by moving from a couple of
independent variables x1 and x2 to a new couple of variables q1 and q2 and
imposing:

x1 ¼ X
ð1Þ
1 q1 þ X

ð2Þ
1 q2

x2 ¼ X
ð1Þ
2 q1 þ X

ð2Þ
2 q2

ð2:477Þ

This change of variables is determined univocally once the eigenvectors X
ðiÞ
j

have been defined numerically thanks to the use of a normalization process. The
new variables q1 and q2 can be interpreted as multiplicative coefficients of the
vibration modes of the system. This change of variables, introduced progressively
by means of expressions (2.477) can be rewritten in matrix form as:

x ¼ U½ �q ð2:478Þ

Having ordered the new independent variables in q:

q ¼ q1
q2

� �
ð2:479Þ
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and the vibration modes organized by columns in matrix ½U�:

U½ � ¼ X
ð1Þ

X
ð2Þ

h i
¼ X

ð1Þ
1 X

ð1Þ
2

X
ð2Þ
1 X

ð2Þ
2

" #
ð2:480Þ

This matrix is referred to as a modal matrix: given the particular change of
variables proposed, ½U� is defined by placing the eigenvectors of problem (2.480)
one next to the other, i.e., in this particular case, the two eigenvectors (2.476). For a
generic n d.o.f. system, if the number of vibration modes taken into consideration is
n (i.e. the same as the number of d.o.f. of the system), ½U� is a n� n square matrix,
and its columns contain the n vibration modes of the structure. By using a
Lagrange’s equation (Sect. 2.2.5), all the matrix relations, expressed previously as a
function of the independent coordinates x, can be rewritten in the new variables q.
Potential energy V (2.80) becomes:

V ¼ 1
2
xT K½ �x ¼ 1

2
qT U½ �T K½ � U½ �q ¼ 1

2
qT K
� 	

q ð2:481Þ

having used:

K
� 	 ¼ U½ �T K½ � U½ � ð2:482Þ

to indicate the stiffness matrix in the new principal independent coordinates q. It is
important to note how, by applying the new set of independent variables, i.e. by
writing the potential energy V as a function of q, the formal writing of the same
form of energy does not change its appearance. By applying a change of variables
(2.478) in the expression of kinetic energy Ec [Sect. 2.4.2, (2.79)] we obtain:

Ec ¼ 1
2
_xT M½ � _x ¼ 1

2
_qT U½ �T M½ � U½ � _q ¼ 1

2
_qT M
� 	

_q ð2:483Þ

having used:

Fig. 2.54 Physical meaning of the principal coordinates
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M
� 	 ¼ U½ �T M½ � U½ � ð2:484Þ

to indicate the mass matrix in the new principal independent coordinates q. The
equations of motion (2.474), in the new independent coordinates q, thus become:

M
� 	

q
:: þ K

� 	
q ¼ 0 ð2:485Þ

It is possible to demonstrate that the new independent coordinates q, obtainable
explicitly, in the case of a squared modal matrix ½U�, from relation:

q ¼ U½ ��1 x ð2:486Þ

have, on account of the way in which they are defined, the ability to uncouple the
n equations of motion of the system (2.474), i.e. they are such as to have in each
equation only one unknown. As a consequence of this property, the q variables thus
allow us to diagonalize matrices ½M� and ½K� of a discrete n d.o.f. system: for this
reason, the new coordinates are termed “principal” or “orthogonal” (an example of
this property will be given in Sect. 2.5.2.1). If ½U� were an ordinary matrix, i.e. not a
modal matrix, matrices K

� 	
and M

� 	
shown in expressions (2.482) and (2.484)

would be full: if, on the contrary, among all the possible variable changes, we
decided to actually assume the modal matrix of (2.480) as a transformation matrix,
then K

� 	
and M

� 	
are diagonal and the equations of motion (2.485) expressed as a

function of the new independent variables q prove to be uncoupled. Generally
speaking, the principal independent coordinates q for a vibrating system do not
have a specific physical meaning. However, in some particular cases, this physical
meaning can emerge like, for example, for the system shown in Fig. 2.7
(Sect. 2.3.3), defined by means of the two independent coordinatesx1, the absolute
vertical displacement of the centre of gravity and x2 the absolute rotation of the
rigid body: the two principal coordinates q1 and q2 which define the coordinate
transformation (see Sect. 2.4.2.1.3 and, in particular, (2.478) and Fig. 2.41b):

x1 ¼ X
ð1Þ
1 q1 þ X

ð2Þ
1 q2

x2 ¼ X
ð1Þ
2 q1 þ X

ð2Þ
2 q2

ð2:487Þ

represent the rotation of the system around the two particular points P1 and P2 of
Fig. 2.41b. Another interesting example is the one relative to the cantilevered beam,
having a rectangular section and a negligible mass and a mass M, considered as a
particle, concentrated at one end of the same beam (Fig. 2.54).

This mass M is thus free to move in the plane orthogonal to the longitudinal axis
of the beam, neglecting, on account of their smallness, the longitudinal displace-
ments associated with the deformability of same in this direction. In this way, the
mass proves to have 2 d.o.f. identified by two variables x1 and x2 which represent
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the displacements in two generic mutually orthogonal directions (Fig. 2.54). In
general, the equations of dynamic equilibrium which define the free motion of mass
M, in the absence of damping, according to the two generic directions x1 and x2 are
of the following type:

Mx
::
1 þk11x1 þ k12x2 ¼ 0

Mx
::
2 þk21x1 þ k22x2 ¼ 0

ð2:488Þ

i.e. they are two equations which are not uncoupled, due to the presence of mixed
coefficients kij of stiffness, i.e. the elastic restoring forces which arise in the generic
ith (i = 1, 2) direction due to the effect of a displacement in the other direction j (we
find ourselves in unsymmetrical bending conditions). If, among the infinite set of
variables, as free coordinates of the system we choose displacements q1 and q2
(Fig. 2.54), which define the motion of mass in the directions parallel to the
principal axes of the central inertia ellipse of the beam section (Fig. 2.54), the
equations are reduced, as explained by the Science of Constructions (straight
bending conditions, in which one displacement in one direction does not generate a
force in the other and vice versa), to:

Mq
::

1 þ kq1q1 ¼ 0

Mq
::

2 þ kq2q2 ¼ 0
ð2:489Þ

In other words, for the vibrating system shown in Fig. 2.54, the principal
coordinates q (i.e. the coordinates that uncouple the equations of motion) represent
the displacements according to the main directions of the axes of the central inertia
ellipse.

2.5.2 Modal Approach for n-Degree-of-Freedom Systems

We now wish to demonstrate how a change of coordinates, expressed in scalar form
in (2.477) or in matrix form in (2.478), uncouples the equations of motion of a
vibrating n d.o.f. system, i.e. results in the diagonalization of the stiffness and mass

k1 k2 k3 kn

mnm2m1

x1 x2 xn

Fig. 2.55 Generic vibrating n d.o.f. system
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matrices of the system. For this purpose, to simplify matters, we will not refer to the
specific example shown in the previous section, but to a generic n d.o.f. system, like
the one shown in Fig. 2.55, formed by n mi masses, each of which is associated
with one xi d.o.f.:

x ¼
x1
. . .
xn

8<:
9=; ð2:490Þ

For example, the equations of motion can be written by using the equations of
dynamic equilibrium relative to the generic mass: since variables x define the
disturbed motion about the static equilibrium configuration and since the link
between the elongations Dlj of the springs is linear with the independent variables xi
themselves, the equations of equilibrium will be linear and of the following type:

m1 x
::
1 þðk1 þ k2Þx1 � k2x2 ¼ 0

. . .

mi x
::
i � kixi�1 � kiþ1xiþ1 þ ðki þ kiþ1Þxi ¼ 0

. . .

mn x
::
n � knxn�1 þ ðkn þ knþ1Þxn ¼ 0

8>>>>>><>>>>>>:
ð2:491Þ

The same system of equations can obviously be obtained using an energy-related
approach, exploiting, for example, Lagrange’s equations by defining potential
energy V and kinetic energy Ec of the system as:

V ¼
Xnþ1

j

1
2
kjD

2
lj ð2:492Þ

Ec ¼
Xn
i

1
2
mi _x

2
i ð2:493Þ

having used:

Dl1 ¼ x1
. . .
Dli ¼ xi � xi�1

. . .
Dlnþ1 ¼ xn

8>>>><>>>>: ð2:494Þ

to indicate the elongations of the elastic elements (positive by convention if pro-
ducing traction). By applying Lagrange’s form to expressions (2.492) and (2.493)
we thus obtain a system of equations, similar to that obtained with dynamic equi-
libriums, which in matrix form can be expressed as usual by the following relation:
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M½ �x:: þ K½ �x ¼ 0 ð2:495Þ

having used x to indicate the vector of the independent variables (2.490) and due to
the fact that ½K� and ½M� are respectively the matrices of stiffness and mass of the
system under examination:

K½ � ¼

k1 þ k2 �k2 . . . 0

�k2 k2 þ k3 . . . . . .

. . . . . . . . . . . .

0 . . . �kn kn þ knþ1

26664
37775

M½ � ¼

m1 0 . . . 0

0 m2 . . . . . .

. . . . . . . . . . . .

0 . . . 0 mn

26664
37775

ð2:496Þ

We now note that, since the conservative system analysed is perturbed about a
stable equilibrium configuration, ½K� and ½M� are positive definite symmetrical
matrices (in this particular example, given the specific type of independent variables
assumed, the mass matrix ½M� is also diagonal, while the stiffness matrix ½K� is a
three diagonal band matrix) and the solution is of the following type (Sect. 2.3.1):

x ¼ Xeixt ð2:497Þ

which, when substituted in expressions (2.495), results in a homogenous linear
algebraic system in X and parametric in x:

�x2 M½ � þ K½ �� �
X ¼ 0 ð2:498Þ

The non-trivial solutions can be ascribed (Sect. 2.4.2.1.1) to a problem of
eigenvalues eigenvectors on account of having defined matrix

A½ � ¼ M½ ��1 K½ � ð2:499Þ

with ½A� i.e.:

A½ � � x2 I½ �� �
X ¼ 0 ð2:500Þ

The eigenvalues of matrix ½A� correspond to n values of x2 which satisfy
expression (2.500) and which represent the natural frequencies of the system. By
imposing the generic value xi in system (2.498) on natural frequency x, it is
possible to calculate the generic ith principal vibration mode XðiÞ of the system,
whose shape will be defined, up to a constant:
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x ¼ xi ) X
ðiÞ ¼

X
ð1Þ
1
. . .

X
ðiÞ
n

8><>:
9>=>; ði ¼ 1; 2; . . .; nÞ ð2:501Þ

Let us now perform a change of variables. The new coordinates q:

q ¼
q1
. . .
qn

8<:
9=; ð2:502Þ

will now be defined as multiplicative coefficients of the deformation shapes of
n principal vibration modes: the generic deformation shape x is thus represented as
a linear combination of the eigenvectors (2.501) i.e. in scalar form:

x1 ¼ X
ð1Þ
1 q1 þ X

ð2Þ
1 q2 þ � � � þ X

ðiÞ
1 qi þ � � � þ X

ðnÞ
1 qn

x2 ¼ X
ð1Þ
2 q1 þ X

ð2Þ
2 q2 þ � � � þ X

ðiÞ
2 qi þ � � � þ X

ðnÞ
2 qn

. . .
xn ¼ X

ð1Þ
n q1 þ X

ð2Þ
n q2 þ � � � þ X

ðiÞ
n qi þ � � � þ X

ðnÞ
n qn

8>>><>>>: ð2:503Þ

where the various mode components should be considered numerically fixed, i.e.
the generic principal vibration mode XðiÞ should be considered normalized, i.e. for
each mode the relative constant multiplicative has been fixed arbitrarily a priori.
The aforementioned change of variables expressed in scalar form in (2.503) can be
rewritten in a more compact matrix form as:

x ¼ U½ �q ð2:504Þ

having defined, as in the previous section in relation to 2 d.o.f. systems (2.478), the
modal matrix ½U� having as columns n vibration modes, i.e. n eigenvectors XðiÞ,
ordered by columns:

U½ � ¼ X
ð1Þ

X
ð2Þ

. . . X
ðnÞ

h i
¼

X
ð1Þ
1 X

ð1Þ
2 . . . X

ð1Þ
n

X
ð2Þ
1 X

ð2Þ
2 . . . X

ð2Þ
n

. . . . . . . . . . . .

X
ðnÞ
1 X

ðnÞ
2

. . . X
ðnÞ
n

266664
377775 ð2:505Þ

Bearing in mind that:

xT ¼ U½ �q
n oT

¼ qT U½ �T ð2:506Þ
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it is thus possible, in matrix form, to express kinetic energy Ec and potential energy
V of the system analysed as a function of the new variables q as:

V ¼ 1
2
qT U½ �T K½ � U½ �q ¼ 1

2
qT K
� 	

q ð2:507Þ

Ec ¼ 1
2
_qT U½ �T M½ � U½ � _q ¼ 1

2
_qT M
� 	

_q ð2:508Þ

Let us now show how matrices K
� 	

and M
� 	

are diagonal, i.e. how the
undamped vibration modes of the system have the property of uncoupling the
equations of motion.

2.5.2.1 The Orthogonality of Vibration Modes

As seen, potential and kinetic energy do not formally change their appearance when
the independent coordinates, chosen to describe the motion of the vibrating system,
vary: in order to ensure that the change of variables uncouples the equations of
motion, matrices K

� 	
and M

� 	
must prove to be diagonal. We will now show how

the modal matrix ½U� defined in (2.505) makes these matrices diagonal. For this
purpose, we will consider two ordinary generic modes XðrÞ and XðsÞ corresponding
to two generic natural frequencies xr and xs, i.e. any two ordinary columns of the
modal matrix ½U�. Obviously the generic eigenvalue xi and the corresponding
eigenvector XðiÞ satisfy (2.498):

�x2
s M½ �XðsÞ þ K½ �XðsÞ ¼ 0 ) K½ �XðsÞ ¼ x2

s M½ �XðsÞ

�x2
r M½ �XðrÞ þ K½ �XðrÞ ¼ 0 ) K½ �XðrÞ ¼ x2

r M½ �XðrÞ ð2:509Þ

By pre-multiplying the first of the Eq. (2.509) by XðsÞ T and the second by XðrÞ T

we obtain:

X rð ÞT K½ �X sð Þ ¼ x2
s X

rð ÞT M½ �X sð Þ

X sð ÞT K½ �X rð Þ ¼ x2
r X

sð ÞT M½ �X rð Þ ð2:510Þ

By transposing the first equation of expressions (2.510), the same equations can
be rewritten as:

X sð ÞT K½ �X rð Þ ¼ x2
s X

sð ÞT M½ �X rð Þ

X sð ÞT K½ �X rð Þ ¼ x2
r X

sð ÞT M½ �X rð Þ ð2:511Þ
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where, as we recall, the transpose of a matrix product can be obtained by trans-
posing the single matrices and inverting their order in the product itself [2, 20] and
where matrices ½K� and ½M� are symmetrical, so that the following relations apply:

X
ðsÞTn oT

¼ X
ðsÞ

K½ �T ¼ K½ �
M½ �T ¼ M½ �

ð2:512Þ

Let us note that the first members of expressions (2.511) are equal: by equalling
the second members we obtain:

x2
s � x2

r

� �
XðsÞT M½ �XðrÞ ¼ 0 ð2:513Þ

If we now consider two distinct modes (i.e. corresponding to two non-coincident
eigenvalues), the following relations must most certainly apply:

r 6¼ s ) x2
s 6¼ x2

r ) XðsÞT M½ �XðrÞ ¼ 0

r ¼ s ) x2
s ¼ x2

r ) XðsÞT M½ �XðrÞ ¼ mss 6¼ 0
ð2:514Þ

The two conditions (2.514) obtained for the eigenvectors enable us to define the
same as orthogonal in the broadest sense of the term13 [2, 4, 20] because they
satisfy the generic condition:

XðsÞT M½ �XðrÞ ¼ msr ) msr ¼ 0 r 6¼ sð Þ
XðsÞT M½ �XðrÞ ¼ msr ) msr 6¼ 0 r ¼ sð Þ

ð2:515Þ

where the generic term mss represents the “generalized mass” relative to the sth
vibration mode.

From expressions (2.509) and (2.510) it also results that:

XðsÞT K½ �XðrÞ ¼ 0 r 6¼ sð Þ
XðsÞT K½ �XðrÞ ¼ ksr ) ksr 6¼ 0 r ¼ sð Þ

ð2:516Þ

13Let us recall that (2.516) represents orthogonality condition in broad sense, while condition:

XðrÞTXðsÞ ¼ xrsdrs ð2:13:1Þ

being drs the Kroneker’s δ (drs ¼ 0 for r 6¼ s and drs ¼ 1 for r ¼ s), is intended in strict
sense.
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Having obtained these results, let us return to the problem of showing that a
change of variables (2.504) diagonalizes the mass and stiffness matrices. For this
purpose, let us consider the modal matrix U½ � defined in partitioned form (2.505)

where each vector column X
ðiÞ

(corresponding to the generic ith eigenvector) is

constituted by n X
ðiÞ
j components. As can be seen, in this way U½ � formally assumes

the appearance of a row vector having column vectors as elements:

U½ � ¼ X
ð1Þ

X
ð2Þ

. . . X
ðnÞ

h i
ð2:517Þ

If we now consider ½U�T , this can be seen as a column vector having, as ele-
ments, row vectors neatly defined as the transposed of the eigenvectors themselves:

U½ �T ¼
X
ð1ÞT

X
ð2ÞT

. . .

X
ðnÞT

26664
37775 ð2:518Þ

By using U½ � in this compact form it is possible to calculate the two products
found in expressions (2.507) and (2.508):

U½ �T K½ � U½ � ¼ K
� 	

U½ �T M½ � U½ � ¼ M
� 	 ð2:519Þ

Let us consider the first product: first of all we will calculate product M½ � U½ �
which, by keeping account of (2.505), becomes a row vector whose terms are, in
turn, represented by column vectors ½½M�XðiÞ�:

M½ � U½ � ¼ M½ �Xð1Þ
M½ �Xð2Þ

. . . M½ �XðnÞ
h i

ð2:520Þ

Let us now pre-multiply product ½½M�½U�� (2.520) by matrix ½U�T in the form of a
column vector (2.505), formally executing a product of a “row vector” ½U�T by a
“column vector” M½ � U½ �. The final result of this operation is a square matrix of
n� n order, whose elements are constituted by matrix products and, more
precisely:

U½ �T M½ � U½ � ¼
X
ð1ÞT

X
ð2ÞT

. . .
X
ðnÞT

26664
37775 M½ �Xð1Þ

M½ �Xð2Þ
. . . M½ �XðnÞ

h i
ð2:521Þ
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by performing the products of (2.521) we obtain:

U½ �T M½ � U½ � _q ¼ M
� 	 ¼

X
ð1ÞT

M½ �Xð1Þ
X
ð1ÞT

M½ �Xð2Þ
. . . X

ð1ÞT
M½ �XðnÞ

X
ð2ÞT

M½ �Xð1Þ
X
ð2ÞT

M½ �Xð2Þ
. . . X

ð2ÞT
M½ �XðnÞ

. . . . . . . . . . . .

X
ðnÞT

M½ �Xð1Þ
X
ðnÞT

M½ �Xð2Þ
. . . X

ðnÞT
M½ �XðnÞ

266664
377775

ð2:522Þ

By keeping account of the relationships of orthogonality of the principal
vibration modes (2.515), we find that in the previous matrix M

� 	
all the extra-

diagonal terms are null (since the indices relative to the order of the modes are
different, r 6¼ s), while only the diagonal terms (where the two eigenvectors have
the same index) are different from zero:

M
� 	 ¼ m11 0 . . . 0

0 m22 . . . 0
. . . . . . . . . . . .
0 0 . . . mnn

2664
3775 ð2:523ÞÞ

As previously mentioned, the generic terms of the principal diagonal mii is
defined as a generalized mass relative to the generic ith principal vibrating mode.
The numeric value associated with the generalized mass depends on the type of
normalization adopted to define, always numerically, the corresponding eigenvec-
tor: to be more specific, if, for example, we choose the arbitrary multiplicative
constant of the mode so that:

M
� 	 ¼ ½I� ð2:524Þ

the mass matrix in principal coordinates is an identity matrix. By using exactly the
same method, from (2.346) we also show that the product:

U½ �T K½ � U½ � ¼ K
� 	 ¼ k11 0 � � � 0

0 k22 � � � 0
� � � � � � � � � � � �
0 0 � � � knn

2664
3775 ð2:525Þ

becomes a diagonal matrix (always due to the orthogonality of the eigenvectors):
the generic term kii, similar to the definition of the generalized mass mii, is defined
as generalized stiffness. If the elements of the eigenvectors are normalized in the
form shown in (2.354), the diagonal elements of K

� 	
are tidily given by

x2
1; x

2
2; . . .; x

2
n i.e. by the square of the eigenvalues of problem (2.498):
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K
� 	 ¼ x2

1 0 . . . 0
0 x2

2 . . . 0
. . . . . . . . . . . .
0 0 . . . x2

n

2664
3775 ð2:526Þ

where x2
i ¼ kiimii. The equations of motion of the system in principal coordinates

with normalization (2.524) can be rewritten as:

M
� 	

q
:: þ K

� 	
q ¼ 0 ð2:527Þ

i.e.:

1 0 . . . 0
0 1 . . . 0
. . . . . . . . . . . .
0 0 . . . 1

2664
3775

q
::

1
q
::

2

. . .
q
::

n

8>><>>:
9>>=>>;þ

x2
1 0 . . . 0
0 x2

2 . . . 0
. . . . . . . . . . . .
0 0 . . . x2

n

2664
3775

q1
q2
. . .
qn

8>><>>:
9>>=>>; ¼

0
0
0
0

8>><>>:
9>>=>>;

ð2:528Þ

or:

I½ �q:: þ diagðx2
i Þ

� 	
q ¼ 0 ð2:529Þ

Given the particular structure of matrices M
� 	

and K
� 	

(2.524) and (2.526), these
equations will obviously each contain one single unknown: in extended scalar form
the system of differential equations, generally coupled, which describes the motion
of a generic vibrating n d.o.f. system, see (2.529) is reduced to principal coordinates
with n uncoupled equations of the type shown below:

xj

mj

kj

qi

kii

mii

x = [Φ] q

Fig. 2.56 Logic diagram of the modal approach
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q
::

1 þx2
1q1 ¼ 0ð911Þ

q::
2 þx2

2q2 ¼ 0ð912Þ
. . .. . .. . .. . .ð913Þ
q
::

n þx2
nqn ¼ 0ð914Þ

8>><>>: ð2:530Þ

Conversely, by adopting a generic normalization of the eigenvectors we obtain:

m11 q::1 þk11q1 ¼ 0
m22 q::2 þk22 q2 ¼ 0
. . .
mnn q::n þknnqn ¼ 0

8>><>>: ð2:531Þ

where the relationship x2
i ¼ kiimii is valid and where, as we recall, mii and kii are

respectively the generalized mass of the generic ith vibration mode and the cor-
responding generalized stiffness. At this point, Eqs. (2.530) or (2.531) can be
integrated: although the analytical advantage of operating in principal coordinates is
a plus, it is also extremely important to highlight the physical aspects of the use of
these coordinates. Basically speaking, the fact of operating on n uncoupled equa-
tions of the type (2.531) means interpreting the vibrating n d.o.f. system as being
composed by n separate systems, each with 1 d.o.f., whose mass is the generalized
mass of the mode considered mii and whose stiffness is the generalized stiffness kii:
in other words, each of the n Eq. (2.531) in principal coordinates expresses the
movement of the system as if it only had one d.o.f., i.e. the ith one, characterized by
the natural frequency xi (Fig. 2.56).

The generic motion of the system is thus given by a combination of the
n vibration modes. Once the motion of the defined system, expressed in principal
coordinates q, is known, it is possible (see diagram in Fig. 2.56) to obtain same as a
function of the free coordinates x by means of the transformation relationship of
coordinates:

x ¼ U½ �q ð2:532Þ

As far as the free motions are concerned, the advantages offered by the modal
approach are negligible, being much more evident in the case when a forced system
is considered.

2.5.3 Forced Motion in Principal Coordinates

From a purely analytical though also operative point of view it is extremely con-
venient to use a modal approach to interpret an excited generic vibrating n d.o.f.
system (whose equations of motion are generally coupled) as if composed by n 1 d.
o.f. systems. In fact, by using this method, it is possible, as will be seen in detail in
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this section, to see the same excitation force distributed individually on each
vibration mode and to study the generic vibration mode subjected to this general-
ized excitation force separately. This analysis can be conducted exactly as if the
generalized excitation force were applied to a system having only 1 d.o.f. so that the

well-known diagram of dynamic response as a function of Xp
�
Xst

��� ��� related to a 1 d.

o.f. system can be used (Chap. 1, Sect. 1.3.3). It is clear that in order to obtain the
response of the vibrating system in terms of independent coordinates x (the only
ones with which, generally speaking, a specific physical meaning is associated) it is
necessary to superimpose the effect of the single modes. More specifically, if the
excitation force has a frequency X coinciding with one of the natural frequencies of
system xi, the approach in principal coordinates, i.e. the modal distribution of the
excitation force, is very interesting: in fact, under these conditions, the ith vibration
mode finds itself in resonance conditions while all the others, despite being excited,
are far removed from this condition. If the damping of the system is null, the
generic ith resonance mode has infinite amplitudes qi, meaning that, under this
condition, the contribution of the other modes is negligible: under this condition the
system behaves exactly like a 1 d.o.f. system and the deformation shape of the
system coincides with that of resonance mode XðiÞ. In the presence of small
damping (r/rc < 2–3 %, as is usually the case in structures and machines), the
generic ith mode reaches finite though elevated amplitudes (10–30 times that of the
static deformation shape), while all the other principal coordinates qj will remain far
removed from resonance condition. In other words, when a vibrating n d.o.f. system
is excited with X ¼ xi the contribution relative to the resonance mode is strongly
amplified and predominates over all the other modes: it is clear that, under this
condition, the motion of the system is prevalently determined, even in the presence
of damping, by the resonance mode, since the contributions of all the other modes
are negligible and expression (2.503) thus becomes:

X ¼ xi )
x1 ¼ X

ðiÞ
1 qi

x2 ¼ X
ðiÞ
2 qi

. . .
xn ¼ X

ðiÞ
n qi

8>>><>>>: ð2:533Þ

The statement ascertaining that when a vibrating n d.o.f. system is excited with a
coincident frequency with one of its natural frequencies it actually behaves like a 1
d.o.f. system and assumes as a deformation shape the specific one of the resonant
vibration mode [in other words, its deformation shape is no longer a linear com-
bination of all the modes, in that only the resonant one is predominant (2.533)] is
justified. This behaviour is operatively exploited experimentally, in that set of
methodologies, referred to as Modal Identification Techniques (described in detail
in Chap. 8) that allow us to experimentally obtain the characteristics of complex
vibrating systems.
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What has been described until now, in qualitative terms, regarding excitation in
principal coordinates, can be analytically described by writing the equations of
motion of the excited system in principal coordinates. Let us now reconsider the
generic excited vibrating system in Fig. 2.55, whose equations of motion, as a
function of principal independent coordinates q:

q ¼
q1
. . .
qn

8<:
9=; ð2:534Þ

can be obtained, as mentioned several times, by applying, for example Lagrange’s
equations in matrix form (Sect. 2.4.1.2):

d
dt

@Ec

@ _q

( )( )T

� @Ec

@q

( )T

þ @D
@ _q

( )T

þ @V
@q

( )T

¼ Q ð2:535Þ

where Q is the vector of the Lagrangian components of the active (non-conserva-
tive) forces defined by relation:

d � L ¼ QT d � q ð2:536Þ

Using the usual methodology, it is necessary to express the various forms of
energy found in (2.535) as a function of physical coordinates Y , to find the Y ¼
YðxÞ link between the physical coordinates and the independent coordinates x and,
finally, to impose the transformation of coordinates (2.504).

As regards this first example (Fig. 2.55), kinetic energy and potential energy
have already been developed in (2.492) and (2.493): on the contrary, it is necessary
to develop these steps with the dissipative function D and the virtual work d � L of
active non-conservative forces. In the example given, it is easy to immediately
obtain the expression of these quantities directly in independent coordinates x by
writing:

D ¼
Xnþ1

j¼1

1
2
rj _Dl

2
j ð2:537Þ

having used _Dlj ¼ ð _xi � _xi�1Þ to indicate the relative speeds of the ends of the
dissipative elements. Using similar steps to those used for potential energy, we
obtain:

D ¼ 1
2
_xT R½ � _x ð2:538Þ
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where ½R� is the damping matrix:

R½ � ¼
r1 þ r2 �r2 . . . 0
�r2 r2 þ r3 . . . 0
. . . . . . . . . . . .
0 0 . . . rn þ rnþ1

2664
3775 ð2:539Þ

and similarly the virtual work performed by the external non-conservative forces fj
is:

d � L ¼
Xn
j¼1

fj d � xj ¼ f T d � x ð2:540Þ

having ordered vector f as:

f ¼

f1
. . .
fj
. . .
fn

8>>>><>>>>:

9>>>>=>>>>; ð2:541Þ

Having now imposed the modal transformation (2.532) where:

d � x ¼ U½ �d � q ð2:542Þ

expressions (2.538) and (2.540) can be rewritten as:

D ¼ 1
2
_xT R½ � _x ¼ 1

2
_qT U½ �T R½ � U½ � _q ¼ 1

2
_qT R
� 	

_q R
� 	 ¼ U½ �T R½ � U½ � ð2:543Þ

d � L ¼ f T U½ �d � q ¼ QT d � q ð2:544Þ

where R
� 	

is the damping matrix in principal coordinates and Q is the vector of the
generalized forces:

QT ¼ f T U½ � ) Q ¼ U½ �T f ð2:545Þ

The generic ith component Qi of vector Q is thus worth:

Qi ¼ X
ðiÞT

f ¼
Xn
j¼1

fj X
ðiÞ
j ði ¼ 1; nÞ ð2:546Þ
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Basically speaking, this component represents the work performed by external
forces fj for one displacement corresponding to the generic ith vibrating mode: from
this viewpoint, it is clear how component Qij due to only one force fj:

Qij ¼ fj X
ðiÞ
j ð2:547Þ

is annulled in the event of the force being applied in a nodal point of the mode
considered, since the displacement of the application point of the force itself is null.
In the case in which the generic component (2.547) is null, the system of applied
excitation forces is incapable of introducing energy into the system, i.e. for no
reason whatsoever will the excitation force considered excite that natural vibration
mode, even under resonance conditions. Generally speaking, the matrix of damping
in principal coordinates R

� 	
is not diagonal: conversely, it is diagonal if, and only if,

matrix ½R� can be expressed as a linear combination of ½M� and ½K�:

R½ � ¼ a M½ � þ b K½ � ð2:548Þ

In fact, by pre-multiplying expression (2.548) by ½U�T , post-multiplying the
same by ½U� and recalling expressions (2.519), by using a number of simple steps
we obtain:

R
� 	 ¼ U½ �T R½ � U½ � ¼ a U½ �T M½ � U½ � þ b U½ �T K½ � U½ �

¼ a M
� 	þ b K

� 	 ð2:549Þ

Therefore, in this case, the matrix is diagonal and, on the principal diagonal
contains the generalized damping coefficients rii defined as:

rii ¼ amii þ bkii ð2:550Þ

By operating the normalization of the eigenvectors with respect to the matrix of
mass based on expression (2.524) we obtain:

R
� 	 ¼ a I½ � þ b diagðx2

i Þ
� 	) rii ¼ aþ bx2

i ð2:551Þ

By keeping account of expressions (2.519) and (2.549), applying Lagrange’s
equations and considering principal coordinates q as independent coordinates, we
obtain the equations of motion of the damped and excited system:

M
� 	

_qþ R
� 	

_qþ K
� 	

q ¼ Q ð2:552Þ

where the matrices of mass M
� 	

and stiffness K
� 	

are always diagonal and contain
the generalized masses mrr (2.515) and the generalized stiffnesses krr (2516) rela-
tive to the various vibration modes considered. In (2.552), generally speaking, the
matrix of damping R

� 	
is full: this is diagonal if relation (2.552) applies and, in this
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case, contains the generalized dampings rrr defined in (2.551). Finally, in
Eq. (2.552), vector Q of the active force components in principal coordinates is
obtained from relation (2.545). In the hypothesis that the damping matrix is diag-
onal, the system of Eq. (2.552) can be rewritten as n uncoupled equations, each of
which is formally similar to the equation of motion of a vibrating 1 d.o.f. system:

mii q
::

i þrii _qi þkiiqi ¼ Qi ði ¼ 1; nÞ ð2:553Þ

where mii, rii and kii are respectively the generalized mass, damping and stiffness of
the generic vibration mode. By now analysing expression (2.552) it is possible to
demonstrate how, in steady state conditions, if the excitation forces applied to the
system are such as to annul the generic Lagrangian component Qi, as previously
ascertained, the excitation force considered will not excite the mode considered,
even under resonance conditions. In this case, the ith vibration mode will not bring
any contribution to the global motion of the system, since the latter is always
described as a linear combination of the principal modes. Let us now analyse the
damping in greater detail: if the modal matrix U½ � also makes the damping matrix
R
� 	

diagonal, we are still able to see the n d.o.f. system, by reasoning in principal
coordinates, as n 1 d.o.f. systems which can be studied separately, expressing each
one of the n vibration modes (evaluated in the absence of damping) of the system
itself. Conversely, in the case in which matrix R

� 	
does not become diagonal,

Eq. (2.552) remain coupled in the velocity terms, in spite of obviously being
uncoupled in _q and q, i.e., in scalar for we will have:

mii q::i þ
Xn
j¼1

rij _qj
� �þ kiiqi ¼ Qi ði ¼ 1; nÞ ð2:554Þ

It is clear that, in this case, one of the advantages of the modal approach ceases
to exist, because there is no longer the option of uncoupling the equations of motion
and separately analysing the various vibration modes. In actual fact, it often hap-
pens that the damping matrix [R] is a linear combination of ½M� and ½K�. If the
damping is hysteretic (Sect. 2.4.1.3), this proves to be associated, like elastic
phenomena, with deformations; the energy dissipated by same is most certainly a
fraction of the similar elastic potential energy, hence the proportionality between ½R�
and ½K�:

R½ � ¼ b K½ � ) rrr ¼ bkrr ð2:555Þ

In the case in which R
� 	

is not diagonalized by modal matrix U½ �, if the extra-
diagonal terms of matrix R

� 	
are small with respect to those on the principal

diagonal, it is possible to neglect these and apply the modal analysis methodology,
by once again considering the uncoupled Eq. (2.552): in this case, it is clear that the
solution of motion defined in this way is approximated. Finally, it is important to
remember that the modal approach allows for the introduction of structural damping
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measured experimentally, as will be seen later on, mode by mode, otherwise not
definable analytically, by directly introducing diagonal matrix R

� 	
. The equations of

motion of the system in principal coordinates (2.552), on account of not being
coupled one to the other, can be integrated separately one at a time, by following
the usual analytical method inherent in 1 d.o.f. systems (Sect. 2.4.1).

2.5.3.1 Harmonic Excitation Forces in Principal Coordinates

Let us consider the case of sinusoidal excitation forces of frequency Ω:

f ðtÞ ¼ F0 e
iXt ¼

Fo1

Foj

Fon

8<:
9=;eiXt ð2:556Þ

By keeping account of (2.545) the generic component of active non-conservative
forces becomes:

Q ¼ U½ �T f ¼ U½ �T F0 e
iXt ¼ Q

0
eiXt ð2:557Þ

i.e.:

mi q
::

i þri _qi þkiqi ¼ QoieiXt ð2:558Þ

having respectively used mi, ri and ki to indicate the generalized mass, the gen-
eralized damping and the generalized stiffness relative to the generic ith vibration
mode. In the event of our wanting to evaluate the steady-state response, i.e. the
response of the system once the initial transient motion has finished, the solution, in
complex form, of expressions (2.558) is, as known, of the following type:

qi ¼ qoieiXt ði ¼ 1; nÞ ð2:559Þ

which, when placed in the same equation of motion (2.558), gives:

qoi ¼ Qoi

�X2mi þ iXri þ ki
� � ði ¼ 1; nÞ ð2:560Þ

i.e. in modulus and in phase:

qoi ¼ qoij jeiWi ¼ Qoiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�X2mi þ ki
� �2 þ Xrið Þ2

q eiWi ð2:561Þ
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where

Wi ¼ a tan
�iXri

�X2mi þ ki

� �
ð2:562Þ

For an improved interpretation of results, it is convenient to put these amplitudes
(see see Sect. 1.3.3) in non-dimensional form, by defining the generic non-
dimensional frequency ai and the non-dimensional damping (compared with criti-
cal) hi, both relative to the generic ith vibration mode:

ai ¼ X
xi

hi ¼ ri
2mixi

ð2:563Þ

so that expressions (2.561) become:

qoi ¼ qoij jeiWi ¼
Qoi=kiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

�ai þ 1ð Þ2þ 2hiaið Þ2
q eiWi

¼ qistffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�ai þ 1ð Þ2þ 2hiaið Þ2

q eiWi

ð2:564Þ

where:

Wi ¼ a tan
�2hiai
�ai þ 1

� �
ð2:565Þ

In (2.564):

qist ¼ Qoi=ki ð2:566Þ

was used to indicate the value of the response of the generic ith vibration mode,
based on the assumption that the vibrating system is excited by an excitation force
of modulus Qoi but of a null frequency X ¼ 0. In the more specific case of nor-
malization of the eigenvectors with respect to the matrix of mass (2.524), expres-
sions (2.564) and (2.565) become:

qoi ¼ qoij jeiWi ¼
Qoi
�
x2

iffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�ai þ 1ð Þ2þ 2hiaið Þ2

q eiWi ð2:567Þ

Wi ¼ a tan
�2hiai
�ai þ 1

� �
ði ¼ 1; nÞ ð2:568Þ
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Having obtained the amplitude of the vibration of the ith mode through (2.567),
it is possible to determine the dynamic amplification coefficient of the same mode
defined by ratio:

qoi
Qoi=ki

¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�ai þ 1ð Þ2þ 2hiaið Þ2

q eiWi ði ¼ 1; nÞ ð2:569Þ

which defines the extent to which the dynamic response of the system (i.e. when the
force is applied dynamically with a certain frequency Ω) is modified with respect to
the static case. Obviously the study of this function will lead to conclusions, already
widely analysed in the case of vibrating 1 d.o.f. systems (Sect. 2.4.1): the diagram
showing the dynamic amplification (in modulus and in phase, because the same
amplitude is complex) is shown for the sake of convenience in Fig. 2.57. As already
mentioned in Sect. 2.4.1.4 this diagram can be divided into 3 separate zones:

• ai � 1 ) X � xi a quasi-static zone: in this case the excitation force is
prevalently balanced by the elastic force and the response of the mode is in-
phase with this force;

• ai ¼ 1 ) X ¼ xi a resonance zone: in this zone the vibration amplitude
increases, tending towards the infinite if the damping is null;

• ai 
 1 ) X 
 xi a seismographic zone: the vibration amplitude decreases and
the external force is prevalently balanced by the inertia force, the phase tends
towards 180�.

In the event of a vibrating system being excited by a harmonic excitation force
with frequency X ¼ xi, the ith mode finds itself in resonance conditions and the
corresponding amplitude qoi is just as high as damping hi is small: on account of not
being near to resonance condition X 6¼ xj the amplitudes relative to the other
vibration modes qoj ðj 6¼ iÞ remain small. Now, it is always true that the motion of
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Fig. 2.57 Diagram of the
dynamic amplification
coefficient of the generic ith
vibration mode
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the vibrating system is described, using the modal approach, as a linear combination
of vibration modes:

x1 ¼ qo1X
ð1Þ
1 þ � � � þ qoiX

ðiÞ
1 þ � � � þ qonX

ðnÞ
1

� �
eiXt

x2 ¼ qo1X
ð1Þ
2 þ � � � þ qoiX

ðiÞ
2 þ � � � þ qonX

ðnÞ
2

� �
eiXt

. . .
xn ¼ qo1X

ð1Þ
n þ � � � þ qoiX

ðiÞ
n þ � � � þ qonX

ðnÞ
n

� �
eiXt

8>>>><>>>>: ð2:570Þ

In the event of a mode being excited in resonance, contribution qoi relative to the
resonance mode which becomes predominant over the other modes qoj ðj 6¼ iÞ is
strongly amplified: this assertion is even truer the smaller the damping of the
resonance mode. It is thus evident that, under this condition, the movement of the
system is prevalently determined by the resonance mode, since the contributions of
all the other mode are negligible, i.e.:

X ¼ xi )
x1 	 qoiX

ðiÞ
1 eiXt

x2 	 qoiX
ðiÞ
2 eiXt

. . .
xn 	 qoiX

ðiÞ
n eiXt

8>>><>>>: ð2:571Þ

As a result, by operating in principal coordinates, i.e. by describing a generic
vibrating n d.o.f. system through its principal vibration modes:

• it is possible to consider the same system as n vibrating systems with only 1 d.o.
f. each (2.564);

• if one of the frequencies of the excitation forces is near to one of the natural
frequencies xi of the system itself during actual motion it is possible to neglect
the contribution of all the non-resonant modes (2.571) if the dampings are low
and the natural frequencies are distant.

In other words, the vibrating system, excited in resonance, behaves as if it were a
1 d.o.f. system. In the event of the system being excited in resonance, despite the
corresponding Lagrangian component of the active stresses Qoi being null, the
excitation force cannot supply energy to excite the resonant mode and therefore its
response is null: conversely, in this situation, the contribution of the non-resonant
modes though small becomes important.

We now show everything that has been said until now in graphic form and more
specifically diagram modulus Xjo

�� �� of the response of the generic jth d.o.f. xj in
terms of modal reconstruction (2.570):

xj ¼ XjoeiXt ¼ qo1 X
ð1Þ
j þ � � � þ qoi X

ðiÞ
j þ � � � þ qon X

ðnÞ
j

� �
eiXt

¼ Xð1Þ
jo þ � � � þ XðiÞ

jo þ � � � þ XðnÞ
jo

� �
eiXt

ð2:572Þ
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having used:

XðiÞ
jo

��� ��� ¼ qoi X
ðiÞ
j

��� ��� ð2:573Þ

to indicate the generic term, the contribution to the overall response Xjo

�� �� of the
generic ith vibrating mode. Figure 2.58 shows the qualitative trend of the single

terms XðiÞ
jo

��� ��� as a function of the frequency of the excitation force and the overall

response Xjo

�� ��.
This representation allows us to highlight another advantage, possibly the most

important, of the modal approach, i.e. that of being able to reduce the number of d.
o.f. that allow us to describe the dynamic behaviour of a generic vibrating
mechanical n d.o.f. system, all the while maintaining high precision of the solution.
The figure highlights several peculiarities of the system:

• the generic contribution of the generic i-nth vibration mode XðiÞ
jo

��� ��� (2.573) varies
with the variation of the frequency of excitation force Ω, passing from the static
zone in which:

X\xi ) qoij j
qst

¼ 1 ð2:574Þ

to the resonance zone in which:

X ¼ xi ) qoij j
qist

! 1 ðwithout�dampiongÞ ð2:575Þ
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to the seismographic zone in which:

X[xi ) qoij j
qst

! 0 ð2:576Þ

where qist represents the deformation shape assumed statically by qi i.e. for
X ¼ 0, i.e.:

qist ¼ Qoi

x2
i

ð2:577Þ

• as the number of order of the vibration mode considered increases, i.e. with the
increase of natural frequency xi, static component qist of (2.577) decreases, with
the consequent decrease of the corresponding value of qoij j;

• this means, with the same Lagrangian component Qoi of active forces, a decrease

in the importance of the contribution to the overall response XðiÞ
jo

��� ��� of the modes

with a high number of order, which, for this reason, can thus be neglected

In other words, if we consider a generic frequency X of excitation force, the
contribution of the modes with frequencies near to X is definitely important: the
modes in the static zone (i.e. the modes having a frequency xi that is almost 2 times
higher than the frequency of excitation force X) are negligible, while those corre-
sponding to natural frequency xi lower than the frequency of excitation force X,
despite being in a seismographic zone nevertheless present a not negligible con-
tribution. Furthermore, it is important to point out that:

• external excitation forces fj remaining unaltered, the Lagrangian component Qoi,
generally speaking, decreases when the order of the considered vibration mode
increases;

• it is possible to verify, experimentally, that, generally speaking, structural
damping hi increases when frequency xi increases.

These considerations make more realistic the hypothesis of considering all the
modes having a frequency lower than 2 times the frequency X of the excitation
force as vibration modes participating in the response of the system. Having thus
defined a certain frequency range of interest 0\X\Xmax, the modal transformation
can be performed by only considering all the p modes (p\n) having a natural
frequency xi\2Xmax ði ¼ 1; 2; pÞ, i.e. by considering a reduced modal matrix Ur½ �
(with n rows equalling the d.o.f. of the system and p columns equalling the
vibration modes considered) from (2.504) and (2.517):

Ur½ � ¼ X
ð1Þ

X
ð2Þ

. . . X
ðpÞ

h i
ð2:578Þ
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from which the transformation in principal coordinates becomes:

x ¼ Ur½ �q ð2:579Þ

and the equations of motion of the system in principal coordinates (2.558) can be
retraced to:

miq
::

i þ ri _qi þ kiqi ¼ QoieiXt ði ¼ 1; 2; . . .; pÞ ð2:580Þ

This results in a reduction, often considerable, of the d.o.f. of the system and the
need to define a limited number of natural frequencies and principal vibration
modes with respect to the total d.o.f. number n.14

2.5.3.2 An Example

Let us now consider, as an applicative example of everything described in this
section, the 2 d.o.f. system in Fig. 2.7, whose equations of motion (2.91) have
already been defined in Sect. 2.3.3.1: the independent coordinates chosen to
describe the motion of the system are the absolute vertical displacement of centre of
gravity x1 and absolute rotation x2 of the rigid body, collected in vector x:

x ¼ x1
x2

� �
ð2:581Þ

By using Lagrange’s equations, the various forms of energy in scalar form (2.95)
are:

Ec ¼ 1
2m _x21 þ 1

2 JG _x
2
2

V ¼ 1
2 k2 x1 þ x2l2ð Þ2þ 1

2 k1 x1 � x2l1ð Þ2
D ¼ 1

2 r2 _x1 þ _x2l2ð Þ2þ 1
2 r1 _x1 � _x2l1ð Þ2

d � L ¼ f d � x1 þ d � x2bð Þ ¼ f d � x1 þ f bd � x2

8>><>>: ð2:582Þ

14Computer program packages which implement mathematical algorithms allowing us to calculate
the first p natural frequencies of vibrating systems in a certain pre-established frequency range are
already available at scientific libraries.
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and, in matrix form, as:

Ec ¼ 1
2
_xT M½ � _x ¼ 1

2
_xT

m 0

0 JG


 �
_x

V ¼ 1
2
xT K½ �x ¼ 1

2
xT

k1 þ k2 �k1l1 þ k2l2
�k1l1 þ k2l2 k1l21 þ k2l22


 �
x

D ¼ 1
2
_xT R½ � _x ¼ 1

2
_xT

r1 þ r2 �r1l1 þ r2l2
�r1l1 þ r2l2 r1l21 þ r2l22


 �
_x

d � L ¼ f Td � x ¼ f

fb

� �T

d � x

ð2:583Þ

and the relative equations of motion become:

M½ �x:: þ R½ � _xþ K½ �x ¼ f ð2:584Þ

In order to adopt a modal approach, it is necessary to define the natural fre-
quencies and the relative vibration modes by analysing the equations of free motion
of the system in absence of damping:

M½ �€xþ K½ �x ¼ 0 ð2:585Þ

evaluating, for example, as described in Sect. 2.4.2.1, the eigenvalues and eigen-
vectors of matrix [A] = [M]–1[K]. Having defined natural frequencies xi and
vibration modes XðiÞ in this way:

x ¼ x1 ) X
ð1Þ ¼ X

ð1Þ
1

X
ð1Þ
2

( )

x ¼ x2 ) X
ð2Þ ¼ X

ð1Þ
2

X
ð2Þ
2

( ) ð2:586Þ

In this case, modal matrix [Φ] is:

U½ � ¼ X
ð1Þ

X
ð2Þ

h i
¼ X

ð1Þ
1 X

ð1Þ
2

X
ð1Þ
2 X

ð2Þ
2

" #
ð2:587Þ
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These eigenvectors must be normalized, for example, with respect to the matrix
of mass [M] imposing that15:

X
ð1ÞT

M½ �Xð1Þ ¼ 1

X
ð2ÞT

M½ �Xð2Þ ¼ 1
ð2:588Þ

At this point it is possible to impose a change of variables:

x ¼ U½ �q ð2:589Þ

thus obtaining:

Ec ¼ 1
2 _q

T U½ �T M½ � U½ � _q ¼ 1
2 _q

T M
� 	

_q

V ¼ 1
2 q

T U½ �T K½ � U½ �q ¼ 1
2 q

T K
� 	

q

D ¼ 1
2 _q

T U½ �T R½ � U½ � _q ¼ 1
2 _q

T R
� 	

_q

d � L ¼ f T U½ �T d � q ¼ QT d � q

8>>>>>><>>>>>>:
ð2:590Þ

15Actually, convenient normalizing procedure with respect to mass matrix are performed by:

• normalizing the eigenvectors X
ð1Þ

and X
ð2Þ

in any chosen way (for instance equating to one
the maximum value);

• calculating the generalized masses obtained from:

X
ð1ÞT

M½ �Xð1Þ ¼ m11

X
ð2ÞT

M½ �Xð2Þ ¼ m22

ð2:15:1Þ

• obtaining:

Xð1Þ ¼ 1ffiffiffiffiffiffiffiffi
m11

p X
ð1Þ

Xð2Þ ¼ 1ffiffiffiffiffiffiffiffi
m22

p X
ð2Þ

ð2:15:2Þ

This procedure can be naturally extended to a n d.o.f. systems, so that:

XðiÞ ¼ 1ffiffiffiffiffiffi
mii

p X
ðiÞ ð2:15:3Þ

being X
ðiÞ

a generic vibration mode, normalized initially in any chosen way.
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where vector Q is defined as:

Q ¼ Q1

Q2

� �
¼ f X

ð1Þ
1 �bf X

ð1Þ
2

f X
ð2Þ
1 �bf X

ð2Þ
2

( )
ð2:591Þ

We immediately note that if f ¼ f ðtÞ is applied at point P1 so that

b ¼ l1 ¼ X
ð1Þ
1 X

ð1Þ
2 , the centre of rotation for the first vibration mode (see (2.358),

Sect. 2.4.2.1.3), we obtain:

Q1 ¼ f X
ð1Þ
1 �bf X

ð1Þ
2 ¼ f X

ð1Þ
1 �b X

ð1Þ
2

� �
¼ f X

ð1Þ
1 1� b

X
ð1Þ
2

X
ð1Þ
1

 !
¼ f X

ð1Þ
1 1� b

l1

� � ð2:592Þ

Similarly if this were applied at P2 (see Fig. 2.41b), the Lagrangian component
Q2 of the second mode would be null.

Summary This chapter outlines the dynamic behaviour of discrete systems
described by linear or linearized equations of motion. From an engineering point of
view, this approach simplifies the modelling of machines and mechanical systems
subject to vibrations. One, two up to n-degree-of-freedom (d.o.f.) systems are
considered, by writing the related equations of motion both in scalar and matrix
form. Solution methods for the resulting equations are described for both free and
forced motion. Several numerical examples are shown. At the end of the chapter.
the modal approach in principal coordinates for discrete n d.o.f. systems is
illustrated.
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Chapter 3
Vibrations in Continuous Systems

3.1 Introduction

The analysis of a continuous system can be seen as an extrapolation, for n tending
to infinity, of the analysis of discrete systems with n d.o.f. (see Chap. 2): the
problem is that of analytically implementing this formal step. Equations related to
continuous systems, unlike those of discrete systems, will be partial derivatives,
since the amplitudes, that define the motion of the system in this case, depend both
on time t and on space. All real systems should, in actual fact, be studied as
continuous systems: the exact solution is only obtained in particularly simple cases.
In complex structures, the analytical solution cannot be obtained using the natural
equations of the continuous system. Therefore, in these situations, it becomes
essential to return to discrete schemes, using suitable methodologies: concentrated
parameters [3, 16], transfer matrices [3, 7, 20], finite elements (see Chap. 4) and,
last but not least, finite differences [14, 16]. The study that will be conducted on a
continuous system will therefore assume a prevalently didactic/educational aspect,
with the same applying to the description of discretization methods. Furthermore,
we will limit ourselves to particularly simple cases, for which an analytical solution
in closed form is possible.

3.2 Transverse Vibrations of Cables

Some simple hypotheses will be assumed for these elements:

(a) Cables have a constant mass per unit length m(ξ) = ρ(ξ)A(ξ) = m, where ξ is the
abscissa along the cable.

(b) Tension S = So, obtained by axially preloading the cable, is constant along the
length of the cable (i.e. independent from space ξ). This hypothesis assumes
that the catenary, representing the shape of the cable in static equilibrium
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condition, has a very small deflection, thereby allowing us to disregard the
variations in the tension. Therefore, by assuming that the catenary has a small
deflection it is possible, for a heavy cable, to approximate its static equilibrium
configuration with a straight line.

(c) The motion of the cable will be described by means of a function w(ξ, t) of
time t and the current coordinate ξ, which indicates the generic section of the
continuous structure; in the example that we will develop, as constraint con-
ditions at both ends we will assume the same support conditions as those
shown in Fig. 3.1. We will use function w(ξ, t) to describe the transverse
displacement of the generic section of the cable in a plane p defined by axes x–
z of a right hand cartesian reference frame, positioned according to Fig. 3.1.
This means that both the longitudinal motions (i.e. parallel to axis x) and
transverse motions in the plane perpendicular to plane p will be assumed as
null.

(d) Another simplified hypothesis regarding motion is that this occurs in any plane
containing the axis of the cable: for this purpose, we must assume that the
cable has a polar symmetry (i.e. a symmetry with respect to its axis); the
motion will thus prove to be independent from plane p considered (all planes
are equal in polar symmetry); any spatial motion may thus be described by
means of 2 of its components on 2 orthogonal planes: in the hypotheses given,
the two equations that govern the two component plane motions are equal and
uncoupled, so that even the study of motion in space can always be traced
back to the study of two plane motions that are independent from each other.

Having established these hypotheses and simplifications, the writing of the
equations of motion can be obtained by defining the dynamic equilibrium equations
for a generic infinitesimal element dx of the cable, placed in a generic position x. An
inertia force fin, parallel to the direction of motion will act on this element. By using
the conventions assumed and shown in Fig. 3.1, this can be expressed as

fin ¼ �m xð Þdx @
2w
@t2

ð3:1Þ

where

• m(ξ) = m is the mass per unit of length of the cable, assumed to be constant;
• m dξ is the mass of the infinitesimal element of length dξ;

( , )w tξ
ξ

Z

L

X

Fig. 3.1 Taut cable: simply supported conditions
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• @2w=@t2 is the transverse component of absolute acceleration to which the
infinitesimal element is subjected.

Tension S = So acting on the element is assumed constant along the cable and
tangent at every point of the cable itself. By projecting tension force S (Fig. 3.2), in
correspondence to the left and right end of the element, in direction z (i.e. in the
direction along which the dynamic equilibrium is being written) and by keeping
account of the conventions adopted (forces considered as positive if in agreement
with the transverse displacements w) we obtain:

Ss ¼ �S sinus ð3:2Þ

Sd ¼ S sinud ð3:3Þ

where φs and φd are the angles formed by the tangent to the cable respectively in
x and in x + dx with respect to the undeformed configuration (i.e. horizontally), and
with generally (3.2):

us 6¼ ud ð3:4Þ

Given the initial hypotheses (disturbed motion in the about the static equilibrium
configuration, assumed to be rectilinear, in order to neglect the weight and the
coupling of the axial motion with the transverse one), no other forces should appear
in the dynamic equilibrium equations. The equation of motion thus becomes:

�m nð Þdn @
2w
@t2

� S sinus þ S sinud ¼ 0 ð3:5Þ

If we wish to analyse the small vibrations about the static equilibrium configuration
it is possible to linearize the problem. Having used ws = w(ξ, t) to define the
displacement of the left end of the generic infinitesimal element considered and

( , )w t

Z

d

X

w
w d

S

s

S

d

Fig. 3.2 Taut cable: undefined equations of equilibrium

3.2 Transverse Vibrations of Cables 243



www.manaraa.com

wd ¼ wþ dw ¼ wþ @w
@n

� �
dn ð3:6Þ

the displacement of the right end, in (3.6) the term ð@w=@nÞdn represents the
increase of the transverse displacement due to an increase of dξ. For small angles φs
and φd, or rather for small displacements w(ξ, t), we will obtain:

sinus � us � tanus ¼
@w
@n

ð3:7Þ

and furthermore:

sinud � ud � tanud ¼
@

@n
wþ @w

@n
dn

� �
¼ @w

@n
þ @2w

@n2

� �
dn ð3:8Þ

By substituting Eqs. (3.2) and (3.3) in the equation that defines the motion of the
generic infinitesimal small element of cable (3.5) and using suitable simplifications,
we obtain

�m nð Þdn @2w
@t2

� �
þ S

@2w

@n2

� �
dn ¼ 0 ð3:9Þ

Where, as far as tension S is concerned, the only contribution to the dynamic
equilibrium associated with the variation along dξ of angle φ appears. By furthering
simplifying Eq. (3.9) we obtain:

m
@2w
@t2

� �
¼ S

@2w

@n2

� �
ð3:10Þ

This is the partial derivatives equation of second order with constant coefficients
which defines the transverse motion of the cable, i.e. the trend of function w(ξ, t).
Similar equations are often used in the study of vibrations in continuous systems,
e.g. torsional vibrations of bars (which will be analysed in Sect. 3.5) or longitudinal
vibrations of beams (Sect. 3.4). More generally in physics, this equation, known as
the “wave equation”, is used to express the propagation of a wave-like motion. It
goes without saying that this equation defines the perturbed motion of the cable, i.e.
the free motion of same as determined by initial conditions. Finally, it is necessary
to point out that this Eq. (3.10) is valid in any part of the cable in which the
hypotheses indicated in the writing of same (mass m and tension S constant,
absence of distributed or concentrated forces) hold true.
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3.2.1 Propagative Solution

A general integral of Eq. (3.10) is the function1:

w n; tð Þ ¼ f1 n� Ctð Þ þ f2 nþ Ctð Þ ð3:11Þ

1It is easy to verify how (3.11) is actually the solution of (3.9) regardless of the shape of functions
f1 and f2 themselves: therefore, for reasons of convenience, let us assume that:

a ¼ n� Ct

b ¼ nþ Ct
ð3:1:1Þ

By substituting (3.11) in (3.9) and expressing the partial derivatives as:

@f1
@t

¼ @f1
@a

@a
@t

@2f1
@t2

¼ @2f1
@a2

@a
@t

� �2

þ @f1
@a

@2a
@t2

ð3:1:2Þ

we obtain:

m
@2f1
@a2

@a1
@t

� �2

þ @f1
@a

@2a
@t2

þ @2f2
@b2

@b
@t

� �2

þ @f2
@b

@2b
@t2

 !

¼ S
@2f1
@a2

@a1
@n

� �2

þ @f1
@a

@2a

@n2
þ @2f2

@b2
@b
@n

� �2

þ @f2
@b

@2b

@n2

 ! ð3:1:3Þ

where, therefore, from (3.1.1):

@a
@t

¼ �C ) @2a
@t2

¼ 0

@b
@t

¼ C ) @2b
@t2

¼ 0

@a
@n

¼ 1 ) @2a

@n2
¼ 0

@b
@n

¼ 1 ) @2b

@n2
¼ 0

ð3:1:4Þ

Equation (3.1.4) becomes:

m
@2f1
@a2

C2 þ @2f2
@b2

C2
� �

¼ S
@2f1
@a2

þ @2f2
@b2

� �
ð3:1:5Þ

or rather Eq. (3.11) is the solution to (3.9) if constant C applies:

C ¼
ffiffiffiffi
S
m

r
: ð3:1:6Þ
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where functions f1 and f2 are functions to be suitably defined, while constant C is
defined as C ¼ ffiffiffiffiffiffiffiffiffi

S=m
p

and represents the longitudinal propagation velocity of the
deformation wave. These functions both represent the motion of a wave travelling
at velocity C along the cable and, more specifically:

• f1 represents a displacement wave travelling in a direction corresponding to ξ
positive, without altering either the shape or the profile of the wave: this profile
is explicitly defined by the shape of function f1 itself;

• f2 is similar to f1, but represents a wave travelling in the opposite direction.

As an example, let us consider function f1(ξ − Ct) (similar considerations can be
made for function f2(ξ + Ct): its value is determined by argument (ξ − Ct) and
therefore by a series of correlated values of ξ and t. The value of function f1(ξ − Ct)
obviously remains unaltered if the argument (ξ − Ct) is the same and, therefore, a
generic increase dξ leads to the same value of the argument if the time is increased
by Δt = Δx/C. In other words, the transverse displacement w(ξ, t), in direction z,
reaches the same value w in different points ξ1, ξ2,…, ξn in different instants of time
t1, t2,…, tn correlated by Δt = Δx/C:

w ¼ f1 n1 � Ct1ð Þ ¼ f1 n2 � Ct2ð Þ ¼ f1 n1 þ Dnð Þ � C t1 þ Dnð Þð Þ ð3:12Þ

Physically, this means that function f1(ξ − Ct) represents a phenomenon that is
generally propagative, i.e. it describes the profile of the wave moving in a positive
direction along axis ξ with velocity C (Fig. 3.3).

In the same way we show how function f2(ξ − Ct) represents a wave moving in a
negative direction along axis ξ always with, however, a propagation velocity C. A
generic disturbance which starts from the left end of the cable, runs along the cable
itself with velocity C:

C ¼
ffiffiffiffi
S
m

r
ð3:13Þ

For ascending ξ, when this disturbance reaches the right end, it is reflected and then
turns back, always with velocity C, towards the left end ([12], Sect. 5.10). This
phenomenon is attenuated as a function of the dissipations found in the cable or at
its ends. This consideration can be used to measure tension S experimentally, once
the mass m of the cable is known: in fact, it is sufficient to measure at which
velocity C an impulsive disturbance is propagated along the cable. If L is the length
of the cable and t the time taken by the disturbance to travel from one extremity to
the other, we will obtain:

C ¼ L
t

� �
ð3:14Þ
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and subsequently tension S from Eq. (3.13). The previous particular integral (3.11)
is useful, above all, to describe the transient motion of the cable, i.e. the motion
following a generic initial perturbation.

3.2.2 Stationary Solution

Conversely, should we wish to study the steady-state vibrations of the cable sub-
jected to a generic excitation force (which, as usual, we will consider sinusoidal),
we will find ourselves dealing with a phenomenon that is no longer propagative but
stationary: the generic section of the cable oscillates in a transverse direction
w(ξ, t) with a given amplitude and a certain frequency. Therefore, under stationary
conditions, the shape of the profile ψf(ξ) of the deformation does not change, but the
amplitudes in various points of the continuous system change, moment by moment,
governed by a single time function G(t): this type of motion, referred to as “sta-
tionary wave”, can be described by means of a particular integral of the equation of
motion in the form:

w

0ξ

0t =

1t =

2t =

3t =

1ξ

2ξ

3ξ

w

w

w

Fig. 3.3 Taut cable: the travelling wave
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w n; tð Þ ¼ Wf nð ÞG tð Þ ð3:15Þ

In Sect. 3.6 we will see that infinite particular integrals of the (3.15) type exist, the
sum of which gives the previous general Eq. (3.11). It is, thus, a matter of defining
the two functions ψf(ξ) and G(t); for this purpose, let us now calculate the
derivatives:

@2w

@n2
¼ @2 Wf nð ÞG tð Þð Þ

@n2
¼ d2Wf nð Þ

dn2
G tð Þ ¼ W00

f nð ÞG tð Þ

@2w
@t2

¼ @2 Wf nð ÞG tð Þð Þ
@t2

¼ Wf nð Þ d
2G tð Þ
dt2

¼ Wf nð Þ€G tð Þ
ð3:16Þ

having used the symbol ″ to indicate the total second derivative with respect to the
spatial coordinate ξ. By substituting Eq. (3.16) in differential Eq. (3.10) and by
separating the variables, we obtain:

€G tð Þ
G tð Þ ¼

S
m

� �
W00

f nð Þ
Wf nð Þ ¼ costante ¼ �x2 ð3:17Þ

Obviously, with the first member we have a function of only time t, while with the
second member a function of only x: in order to verify the equality between the two
expression, functions of different variables, these can only be equal with the same
constant:

€G tð Þ
G tð Þ ¼

S
m

� �
W00

f nð Þ
Wf nð Þ ¼ costante ¼ �x2 ð3:18Þ

As will be explained further on, constant (−ω2) is defined in such a way as to be
negative. We can now consider the two differential equations with total derivatives
(3.18) separately, in that functions ψf(ξ) and G(t) are respectively only functions of
space ξ and of time t. By considering the first equation of (3.18) we obtain:

€G tð Þ þ x2G tð Þ ¼ 0 ð3:19Þ

i.e. a differential equation with constant coefficients similar to those previously
analysed for systems with 1 d.o.f. (Sect. 1.3.1). The general integral of Eq. (3.19) is
given by:

G tð Þ ¼ A sinxtþ B cosxt ¼ Dcos xtþ uð Þ ð3:20Þ

where A and B (or D and φ) are the integration constants to be defined by means of
the initial conditions (assigned) and ω is the frequency (still to be defined) with
which the generic section of the cable vibrates.
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By analysing solution (3.20) of (3.19) we thus justify the choice made with
regard to constant (�x2) of relation (3.18): owing to the fact that in this chapter we
are analysing a conservative system perturbed about the stable static equilibrium
position, the steady-state motion, over time, obviously has to be sinusoidal, not
expansive (see Chap. 1, Sect. 1.3.1). To obtain this result, it is necessary that the
coefficient multiplying G(t) in (3.19) is definitely positive, i.e. it is absolutely
essential that the constant in Eq. (3.18) is negative.

The second differential equation in (3.18) allows for the definition of the spatial
function ψf(ξ) which describes how the motion varies along the cable itself; this
equation can be developed as:

S
m
W00

f nð Þ þ x2Wf nð Þ ¼ 0 ð3:21Þ

formally identical, except for the constants, to the previous relation (3.19). We will
thus have:

W00
f nð Þ þ m

S
x2

� �
Wf nð Þ ¼ 0 ð3:22Þ

which by assuming:

c2 ¼ m
S
x2 ) c ¼

ffiffiffiffi
m
S

r
x ð3:23Þ

gives:

W00
f nð Þ þ c2Wf nð Þ ¼ 0 ð3:24Þ

Relation (3.24) admits:

Wf nð Þ ¼ F1 sin cnþ F2 cos cn ¼ F1 sin
x
C
nþ F2 cos

x
C
n ð3:25Þ

as a particular integral where γ will be determined by fixing ω (or vice versa) and F1

and F2 must be defined as a function of the spatial boundary conditions (functions
that are independent from time). The following can be imposed as boundary
conditions:

• congruence conditions;
• equilibrium conditions.

In the case in question (a cable supported at both end see Fig. 3.1) the boundary
conditions are congruence conditions, in that the generic space-time function
w(ξ, t) must satisfy the fact that the transverse displacement is null at the extremities
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of the cable. This condition must be verified in every instant of time t, i.e. regardless
of time, or rather regardless of the value of G(t):

w 0; tð Þ ¼ Wf 0ð Þ G tð Þ ¼ 0 ) Wf 0ð Þ ¼ 0
w L; tð Þ ¼ Wf Lð Þ G tð Þ ¼ 0 ) Wf Lð Þ ¼ 0

ð3:26Þ

where L is the length of the cable. From (3.26) and (3.24) we thus obtain:

Wf 0ð Þ ¼ 0 ) F2 ¼ 0 ð3:27Þ

so that (3.15) becomes:

w n; tð Þ ¼ F1 sin cn Asinxtþ B cosxtð Þ ð3:28Þ

Since F1, A and B are all constants that need to be determined, it is possible to
assume:

A ¼ F1A B ¼ F1B ð3:29Þ

and thus obtain:

w n; tð Þ ¼ sin cn A sinxtþ B cosxt
� � ð3:30Þ

where

Wf nð Þ ¼ sin cn ¼ sin
x
C
n ð3:31Þ

Let us now impose the second condition:

Wf Lð Þ ¼ sin cL ¼ 0 ) cnL ¼ np n ¼ 1; 2; . . .1ð Þ ð3:32Þ

At this point, by recalling (3.23), relation (3.32) imposes a condition on frequency
ω of the motion of the various sections:

cn ¼ np
L ) xn ¼ np

L

ffiffiffiffi
S
m

q
n ¼ 1; 2; . . .1ð Þ ð3:33Þ

and, from this relation, we obtain infinite values ωn, each associated with a specific
value assigned to the entire parameter n. It is interesting to note how, in this case,
the ωn all prove to be multiples of a fundamental frequency:

x1 ¼ p
L

ffiffiffiffi
S
m

r
1 ð3:34Þ

In short, for the normal system, schematized as a continuous system, they are
defined as infinite natural frequencies ωn, as an extrapolation of the “n” natural
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frequencies of the discrete systems with “n” d.o.f., since the normal system has
infinite d.o.f. A normal mode (ψf (ξ))n defined by the spatial deformation (ψf (ξ))ω=ωn
assumed by the system in correspondence to the generic ωn associated with it
corresponds to each natural frequency ωn:

/ðnÞ nð Þ ¼ sin
xn

C
n ¼ sin

np
L
n ¼ sin

2p
kn

n ð3:35Þ

Having used λn to define the wave length corresponding to the generic nth normal
mode, intended as the distance between homologous points in successive spatial
periods of deformation:

kn ¼ 2L
n

ð3:36Þ

The deformation of the generic normal mode Φ(n)(ξ) is now described, in the case
analysed, by a function of the sinusoidal type, and not by a finite number of terms
contained in eigenvalue X(i) as previously seen in the discrete systems (Chap. 2,
Sect. 2.4.3.1), on account of the fact that we are dealing with a continuous system,
i.e. with infinite d.o.f. As an example, let us consider the deformation of the first
mode:

/ðnÞ nð Þ ¼ sin
np
L
n ) n ¼ 1 ) / 1ð Þ nð Þ ¼ sin

p
L
n ð3:37Þ

We note that this only has one maximum (or antinode) in the midspan, where the
wavelength λ1 of the first mode (see (3.36)) is:

k1 ¼ 2L ð3:38Þ

Therefore, for the generic nth normal mode we will have:

xn ¼ np
L

ffiffiffiffi
S
m

r
) /ðnÞ nð Þ ¼ sin

np
L

¼ sin
2p
kn

n ð3:39Þ

So that the deformation assumed by the cable for the nth mode will be described by
a harmonic wavelength function kn equal to:

kn ¼ 2L
n

ð3:40Þ

Relation (3.39) shows how the deformation of the nth mode has n antinodes and
n + 1 nodes, i.e. points with a null displacement (see [3]). The previous definition of
wavelength λn can be included in the writing of the natural frequency of system ωn

(3.33):
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xn ¼ np
L

ffiffiffiffi
S
m

r
¼ 2np

2L

ffiffiffiffi
S
m

r
¼ 2p

kn

ffiffiffiffi
S
m

r
) cn ¼

2p
kn

ð3:41Þ

We note that the value of the generic frequency ωn, in addition to increasing with
tension S and decreasing with mass m per unit length of the cable, also proves to be
inversely proportional to the wavelength of the associated mode Φn(ξ). By exam-
ining a continuous system of any type whatsoever, we will thus always have infinite
natural frequencies ωn and, at the same time, infinite normal modes. Furthermore, in
the continuous system, it is possible to describe the generic deformation of steady-
state motion as a linear combination of the normal modes Φi(ξ), in this case, defined
by (3.35). This combination can be seen as an in-series development of the space-
time function w(ξ, t) in variable ξ:

w n; tð Þ ¼
X1
i¼1

/ ið Þ nð Þqi ð3:42Þ

where it is necessary to sum infinite deformations Φi(ξ), each of which is a function
of ξ and of a multiplicative coefficient qi. Relation (3.42) can be considered as a
transformation of coordinates: multiplicative coefficients qi are the infinite new
coordinates (termed principal or orthogonal) which can be used to describe the
motion of the system itself.

The qi s thus define the extent of the contribution of the generic ith normal mode
associated with the motion of the system: we will see (Sect. 3.7) how, for these,
orthogonal coordinates, similar peculiarities considered in the discrete system, are
valid. Needless to say, in case we want to schematize the continuous system by
means of “n” d.o.f., i.e. in discrete form, in order to define the generic deformation
w(ξ, t) it is only necessary to consider the first “n” terms of the previous in-series
development (3.42):

w n; tð Þ ¼
Xn
i¼1

/ ið Þ nð Þqi ð3:43Þ

As an example, Fig. 3.4 shows the first five natural frequencies ωi and relative
deformations Φi(ξ) of a taut cable using the data given in Table 3.1.

3.3 Transverse Vibrations in Beams

In this paragraph we will analyse the small transverse oscillations of a beam in the
neighbourhood of its static equilibrium condition (Fig. 3.5). We will assume that
the beam is homogenous, i.e. having transverse section A, bending stiffness EJ and
density ρ all constant along the beam; furthermore we will also assume the absence
of axial loads S. We will then analyse motion in a transverse direction z, coinciding

252 3 Vibrations in Continuous Systems



www.manaraa.com

with the main inertia direction of the beam. Let w(ξ, t) be the displacement along
z of the generic section of abscissa ξ along the beam.

Furthermore, let us assume that:

• even under dynamic conditions, the beam undergoes always to bending in a
plane of simmetry;

• the sections perpendicular to the axis remain plane.

ω1= 14.81 rad/s 
f1 =   2.35 Hz 

ω2= 29.62 rad/s
f2 = 4.71 Hz

ω 3= 44.43 rad/s
f3 = 7.07 Hz

ω 4= 59.24 rad/s
f4 = 9.43 Hz

ω 4= 74.05 rad/s
f4 = 11.78 Hz

Fig. 3.4 Taut cable: natural frequencies and normal modes (data shown in Table 3.1)

Table 3.1 Taut cable: inertial
geometric data

Length L = 30 m

Tension S = 30,000 N

Mass by unit of length m = 1.5 kg/m

( , )w tξξ

Z

L

X

Fig. 3.5 Transverse vibration in a narrow beam

3.3 Transverse Vibrations in Beams 253



www.manaraa.com

If in a generic instant of time t, we consider an infinitesimal beam element
of length dξ, this will be subjected to the stresses shown in Fig. 3.6, where
p(ξ, t) represents the generic load distribution on the beam, M and T are, respec-
tively, the bending moment and the shear force that the rest of the beam exercises
on the element considered. Since we are studying a dynamic problem, generally
speaking, both the internal actions M and T will be functions of both space
and time.

M ¼ M n; tð Þ
T ¼ T n; tð Þ ð3:44Þ

Furthermore, by referring to the static equilibrium configuration, assumed as
stable, or rather by analysing the perturbed motion about the static equilibrium
configuration, the natural weight does not formally appear in the dynamic equi-
librium equations. For this reason, function p(ξ, t) is only defined by the inertia
force which, according to the conventions assumed, becomes:

p n; tð Þdn ¼ qAdn
@2w n; tð Þ

@t2

� �
ð3:45Þ

in which the term:

• ρAdξ = mdξ represents the mass of the infinitesimal element;
• @2w n; tð Þ	@t2 is the acceleration to which the element itself is subjected.

Two dynamic equilibrium equations can be written for the same infinitesimal
element. The first equation is the one relative to a translation in a vertical direction
z which, by neglecting the higher order infinitesimals, becomes:

@T
@n

dn ¼ p n; tð Þdn ¼ qAdn
@2w
@t2

ð3:46Þ

T

Z

dξ

X

( , )p tξ

M

T dT+

M dM+

ξ

Fig. 3.6 Narrow beam in the
absence of axial loads:
undefined equilibrium
equations
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a well known relation: the variation of the shear force equals the distributed load.
The second equation that we will write is the dynamic equilibrium equation at
rotation, from which, by neglecting the higher order infinitesimals, we obtain:

@M n; tð Þ
@n

¼ �T n; tð Þ ð3:47Þ

another well-known link between the derivative of the bending moment M and
shear force T. Thus, these differential relationships, i.e. (3.46) and (3.47), do not
lose validity even in the dynamic case, but are expressed as partial derivatives
forms, being functions of independent variables represented by space ξ and time
t. By keeping account of the relation (3.46), the equilibrium equation at rotation
(3.47) can be expressed as:

@2M

@n2
¼ � @T

@n
¼ �qA

@2w
@t2

ð3:48Þ

We can now use the elastic line equation, the Euler-Bernoulli relation [2, 3, 13, 16],
also valid in the dynamic case. As is known, this relation correlates the bending
moment M with the curvature of the deformation line w(ξ, t), i.e. with the second
derivative of same with respect to the current abscissa ξ; thus, by disregarding the
deformation due to the shear force (narrow beam hypothesis) we obtain:

EJ
@2w

@n2

� �
¼ M ð3:49Þ

in which E represents the modulus of normal elasticity of the material (Young’s
modulus), while J is the inertia moment of the section with respect to the neutral
axis: in the hypothesis of a uniform beam with a constant section, EJ is constant
along the beam By substituting this latter link in the previous relation, we obtain:

@2

@n2
EJ

@2w

@n2

� �
¼ �qA

@2w
@t2

) EJ
@4w

@n4
¼ �qA

@2w
@t2

ð3:50Þ

This differential equation of the fourth order with partial derivatives defines the
transverse motion w(ξ, t) of the beam analysed: relation (3.50) is defined as an
undefined equilibrium equation and is valid for each section of the beam in which
the hypotheses made (homogeneous beam, absence of distributed loads other than
inertia loads) have been verified. In this case too, as with the cable (Sect. 3.2), in the
event of our wishing to study free steady-state motion, i.e. to look for a possible
stationary solution of (3.50), we assume a particular integral of this equation written
in the form of:
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w n; tð Þ ¼ Wb nð ÞG tð Þ ð3:51Þ

By substituting (3.51) in (3.50) and by re-ordering the terms, we obtain:

EJ
Wb nð Þ

d4Wb nð Þ
dn4

¼ � qA
G tð Þ

d2G tð Þ
dt2

ð3:52Þ

In (3.52) we note the substitution of the partial derivatives of the space-time w(ξ,
t) function with the total derivatives of functions ψb(ξ) and G(t). Thus, the terms on
the left and on the right of Eq. (3.52) are one a function of the only spatial
coordinate ξ and the other only of time t: for this reason, both terms will be equal if,
and only if, they are equal to the same constant K. This enables us to define
two separate differential ordinary equations; we can write the first one, relative to
G(t), as:

� 1
G tð Þ

d2G tð Þ
dt2

¼ K ð3:53Þ

Given that the system is conservative and perturbed about a static position, of stable
equilibrium, it is necessary to impose condition:

K ¼ x2 ð3:54Þ

so that the solution represents a non-expansive harmonic motion:

G tð Þ ¼ A sinxtþ B cosxt ¼ Dcos xtþ uð Þ ð3:55Þ

Where constants A and B (or amplitude D and phase φ) depend on the initial
conditions assigned to the system at time t = 0. The second ordinary differential
equation, relative to ψb(ξ), will be:

EJ
qA

1
Wb nð Þ

d4Wb nð Þ
dn4

� �
¼ x2 ) d4Wb nð Þ

dn4

� �
� c4Wb nð Þ ¼ 0 ð3:56Þ

where

c4 ¼ x2 qA
EJ

ð3:57Þ

In terms of a solution, (3.56) admits:

Wb nð Þ ¼ Fekn ð3:58Þ
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which, by being substituted in (3.56) itself, gives an algebraic, homogeneous,
parametric equation in λ:

k4 � c4
� �

F ¼ 0 ð3:59Þ

which admits nontrivial solutions for:

k4 � c4
� � ¼ 0 ð3:60Þ

i.e. for:

k1;2 ¼ �
ffiffiffiffiffiffiffiffi
�c2

p
¼ �ic

k3;4 ¼ �
ffiffiffiffiffi
c2

p
¼ �ic

ð3:61Þ

For this reason, the general integral of (3.56) can be expressed as:

Wb nð Þ ¼ F1ek1n þ F2ek2n þ F3ek3n þ F4ek4n ¼ F1eicn þ F2eicn þ F3eicn þ F4eicn

ð3:62Þ

which can also be expressed as:

Wb nð Þ ¼ F1 sinh cnþ F2 sinh cnþ F3 sinh cnþ F4 sinh cn ð3:63Þ

The stationary solution which represents the free steady-state motion of the beam is
thus given by the relation:

w n; tð Þ ¼ F1 sin cnþ F2 cos cnþ F3 sinh cnþ F4 cosh cnð Þ A sinxtþ Bcosxtð Þ
ð3:64Þ

This equation defines the transverse motion of a beam (homogenous and devoid of
distributed loads), whatever the boundary or initial conditions. In (3.64) constants
F1, F2, F3 and F4, depend on the boundary conditions, i.e. on the constraints
assigned to the extremities of the beam: by varying the latter, the solution is
modified.

A particularly simple, though significant example, is given by the beam which is
simply supported at both extremities (Fig. 3.7): in this case, regardless of the instant
considered, the vertical displacement at the ends must be null, or rather, by keeping
account of (3.64), the boundary conditions become simple:

w n; tð Þ½ �n¼0 ¼ 0ðat any tÞ ) Wb 0ð Þ ¼ 0

w n; tð Þ½ �n¼L ¼ 0ðat any tÞ ) Wb Lð Þ ¼ 0
ð3:65Þ
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Furthermore, regardless of time t, the bending moment M must be null in the same
points: by recalling the link given by the elastic line (bending moment
M proportional to the curvature) this gives us:

M½ �n¼0 ¼ EJ
@2w

@n2


 �
n¼0

¼ 0 ) d2Wb nð Þ
dn2


 �
n¼0

¼ 0

M½ �n¼L ¼ EJ
@2w

@n2


 �
n¼L

¼ 0 ) d2Wb nð Þ
dn2


 �
n¼L

¼ 0

ð3:66Þ

By imposing the boundary conditions which, as we remember, must generally be
equilibrium (e.g. relations (3.66)) or congruence (3.65) conditions, it is possible to
define the equations which must satisfy the spatial function ψb(ξ) and thus define
the integration constants of (3.64). in the specific case analysed, we obtain:

dWb nð Þ
dn

¼ c F1 cos cn� F2 sin cnþ F3 cosh cnþ F4 sinh cnð Þ
d2Wb nð Þ
dn2

¼ c2 �F1 sin cn� F2 cos cnþ F3 sinh cnþ F4 cosh cnð Þ
ð3:67Þ

By imposing the boundary conditions (3.65) and (3.66):

Wb 0ð Þ ¼ 0 ) F2 þ F4 ¼ 0

d2Wb nð Þ
dn2


 �
n¼0

¼ 0 ) �F2 þ F4 ¼ 0
ð3:68Þ
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Fig. 3.7 Simply supported beam: transverse vibrations
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we immediately obtain:

F2 ¼ F4 ¼ 0 ð3:69Þ

so that, in this case, ψb(ξ) is reduced to the following expression

Wb nð Þ ¼ F1 sin cnþ F3 sinh cn ð3:70Þ

If we now impose the last two conditions on ψb(ξ) (3.70), we obtain an algebraic
system, homogenous in the two unknowns F1 and F3 and parametric in γ:

Wb Lð Þ ¼ 0 ) F1 sin cLþ F3 sinh cL ¼ 0

d2Wb nð Þ
dn2


 �
n¼L

¼ 0 ) �c2F1 sin cLþ c2F3 sinh cL ¼ 0
ð3:71Þ

i.e. in matrix form, having organized the unknowns in a vector Z as:

Z ¼ F1
F3

� 
) H cð Þ½ �Z ¼ 0 con c ¼ c xð Þð Þ ð3:72Þ

where

H cð Þ½ � ¼ sin cL sinh cL
�c2 sin cL c2 sinh cL


 �
ð3:73Þ

This system will only admit nontrivial solutions, i.e. with at least one of the
unknowns being non-null (the trivial case Z = 0 corresponds to absence of motion, a
case almost devoid of interest) only if the determinant of the coefficient matrix
[H(γ)] is annulled, i.e. for:

det H cð Þj j ¼ 0
c2 sin cL sinh cLþ c2 sin cL sinh cL ¼ 2c2 sin cL sinh cL ¼ 0

ð3:74Þ

now obviously being:

L 6¼ 0 and c 6¼ 0 ) sinh cL 6¼ 0 ð3:75Þ

Equation (3.74) becomes:

sin cL ¼ 0 ð3:76Þ
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from which:

cL ¼ np n ¼ 1; 2; . . .1ð Þ ) cn ¼
np
L

ð3:77Þ

Therefore, infinite values of the parameter γ = γn, which satisfy the relation (3.76),
exist; a generic natural frequency ωn corresponds to each γn parameter defined, see
(3.56), as:

c4n ¼ x2
n
qA
EJ

) xn ¼ c2n

ffiffiffiffiffiffiffi
EJ
qA

s
) xn ¼ n2p2

L2

ffiffiffiffiffiffiffi
EJ
qA

s
n ¼ 1; 2; . . .1ð Þ ð3:78Þ

Having annulled the determinant of the coefficient matrix of the system (3.72) in
order to calculate the nontrivial solutions, the same matrix [H(γ)] evaluated by γ = γn
becomes singular, or rather one of the lines of the algebraic system (3.72) is linearly
dependent on the other: therefore, as previously observed in discrete systems,
vector Z of the unknowns can be multiplied by any arbitrary constant. In the case in
question, this is translated into the fact that the constants F1 and F3 of (3.70) and
(3.72) can be obtained from one of the two Eq. (3.71), e.g. the second:

�c2nF
ðnÞ
1 sin cnLþ c2nF

ðnÞ
3 sinh cnL ¼ 0 n ¼ 1; 2; . . .1ð Þ ð3:79Þ

By keeping account of (3.76), (3.79) is reduced to:

c2nF
ðnÞ
3 sinh cnL ¼ 0 n ¼ 1; 2; . . .1ð Þ ð3:80Þ

which, with:

sinh cnL 6¼ 0 n ¼ 1; 2; . . .1ð Þ ð3:81Þ

imposes the relation:

FðnÞ3 ¼ 0 n ¼ 1; 2; . . .1ð Þ ð3:82Þ

By keeping account of (3.82), (3.70) is reduced to:

Wb nð Þð Þx¼xn
¼ FðnÞ1 sin cnn n ¼ 1; 2; . . .1ð Þ ð3:83Þ

Since F1
(n) can be scaled by means of an arbitrary constant, it is possible to assume,

for example:

FðnÞ1 ¼ 1 n ¼ 1; 2; . . .1ð Þ ð3:84Þ
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By keeping account of (3.83), (3.84), (3.77) and (3.78), the spatial function
(ψb(ξ))ω=ωn = Φ(n)(ξ), which defines the deformation assumed by the beam, con-
sidered in correspondence to the generic natural frequency ωn, thus becomes:

Wb nð Þð Þx¼xn
¼ /ðnÞ nð Þ ¼ sin

np
L
n

h i
¼ sin cnn n ¼ 1; 2; . . .1ð Þ ð3:85Þ

This expression thus represents the deformation of the system (the simply supported
beam in Fig. 3.7) in correspondence to the natural frequency mode ωn: let us use
Φ(n)(ξ) to define the generic normal mode of the system. The generic particular
integral of (3.52) is thus of the following type:

wn n; tð Þ ¼ Wb nð Þð Þx¼xn
Gn tð Þ

wn n; tð Þ ¼ sin
np
L

� �
nDn cos xntþ unð Þ ¼ sin cnn An sinxntþ Bn cosxntð Þ

ð3:86Þ

Among the infinite normal modes that are allowed (in keeping with the fact that the
continuous system has infinite degrees of freedom.), wn(ξ, t) represents the generic
nth mode. Naturally, the actual free motion of the beam, due to any initial distur-
bance, is described by the general integral of (3.52), or rather by a linear combi-
nation of the infinite normal modes. Given the particular contraint conditions
analysed (see Fig. 3.7; Eqs. (3.65) and (3.66)) in all the normal modes wn(ξ, t) of the
system analysed (the simply supported beam) there is a null deformation in cor-
respondence to the extremities of the beam, where the restraint prevents displace-
ments in a transverse direction. Always in the case in question, as an example of the
taut cable in Sect. 3.3, on length L, the generic nth normal mode, shows “n” semi-
wave lengths, as shown in Fig. 3.8 for a numeric example (the relevant data are
shown in Table 3.2). Finally, as regards the simply supported beam, we notice that
the relationship between the two subsequently ordered natural frequencies ωn and
ωn + 1 is equal to (3.78):

xn

xnþ1
¼ n2

nþ 1ð Þ2 ð3:87Þ

When the boundary conditions vary, the conditions to be imposed on the spatial
function that defines the transverse deformation of the beam ψb(ξ) will also obvi-
ously vary and, as a consequence, so will the natural frequencies of the system ωn

and the relative normal modes Φ(n)(ξ). For example, in the case of a restrained beam
in correspondence to the extremities (Fig. 3.9) the restraint will prevent both the
transverse displacements w and rotations Өy: the corresponding boundary condi-
tions, in this case, congruence conditions, become:
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ω 1= 23.90 rad/s 
f1 =   3.80 Hz 

ω 2= 95.59 rad/s 
f2 =   15.22 Hz 

ω 3= 215.09 rad/s 
f3 =   34.25 Hz 

ω 4= 382.38 rad/s
f4 =   60.88 Hz 

Fig. 3.8 Simply supported beam natural frequencies and main normal modes (data shown in
Table 3.2)

Table 3.2 Beam: inertia
geometry data

Length L = 30 m

Bending stiffness EJ = 1.9 × 108 Nm2

Mass per unit of length m = 40 kg/m

( , )w tξξ

Z

L

,m EJ

w

ξ

ξ

w

yϑ

Fig. 3.9 Simply restrained beam
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w n; tð Þ½ �n¼0 ¼ 0 at any tð Þ ) Wb 0ð Þ ¼ 0

w n; tð Þ½ �n¼L ¼ 0 at any tð Þ ) Wb Lð Þ ¼ 0

Hy
� �

n¼0 ¼
@w
@n


 �
n¼0

¼ 0 ) dWb nð Þ
dn


 �
n¼0

¼ 0

Hy
� �

n¼L ¼ @w
@n


 �
n¼L

¼ 0 ) dWb nð Þ
dn


 �
n¼L

¼ 0

ð3:88Þ

By substituting these boundary conditions with the generic relation (3.63) and
defining the vector of the unknowns, or rather of the constants F1, F2, F3, F4, with
Z, we obtain the generic homogenous linear algebraic equation, parametric in γ and
generally of the type:

H cð Þ½ �Z ¼ 0 ð3:89Þ

The matrix terms of coefficients [H(γ)] obviously change, when the boundary
conditions vary. This system will admit nontrivial solutions only if the determinant
of the coefficient matrix [H(γ)] is annulled, that is for:

det H cð Þj j ¼ 0 ð3:90Þ

In simpler cases (such as for example in the case analysed, i.e. a simply supported
beam) the infinite roots γn of this expression can be obtained analytically or, in more
complex cases, numerically. By means of the relation:

c4n ¼ x2
n
qA
EJ

ð3:91Þ

it is thus possible to define the generic natural frequency ωn of the system. Always
in the case of the beam, the relative normal mode Φ(n)(ξ) is generally of the
following type:

/ðnÞ nð Þ ¼ FðnÞ1 sin cnnþ FðnÞ2 cos cnnþ FðnÞ3 sinh cnnþ FðnÞ4 cosh cnn ð3:92Þ

and can be scaled by means of any constant, by imposing an arbitrary value on one
of the amplitudes F1

(n), F2
(n), F3

(n) or F4
(n), for example F1

(n) = 1, and obtaining the
others by means of:

h cnð Þ½ �zn ¼ Nn ð3:93Þ
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where

• zn is the vector that contains the non-defined constants:

zn ¼
FðnÞ2

FðnÞ3

FðnÞ4

8><
>:

9>=
>; ð3:94Þ

• [h(γn)] is the matrix obtained from [H(γn)] reduced by eliminating the linear
combination line of the others and the column that multiplies the constant whose
value has been assigned (in the case in question, the first column);

• is vector Nn obtained by multiplying the column corresponding to the constant
assigned for the same constant whose sign has changed.

Depending on the different boundary conditions, we will thus have different
natural frequencies and, consequently, different normal modes. As regards the
transverse motions of a narrow, homogenous beam with a bending stiffness EJ and
density ρ, the value of the natural frequencies can be calculated using a simple
formula [10, 16] which is always valid, regardless of the boundary conditions:

xn ¼ Kn
n2p2

L2

� � ffiffiffiffiffiffiffi
EJ
qA

s
ð3:95Þ

where for coefficient Kn it depends on the specific boundary conditions (see
Table 3.3).

The bibliography contains the tabulated values of both the natural frequencies
and the normal modes in correspondence to the most common boundary conditions
[10, 16].

Table 3.3 Coefficient Kn

Eq. (3.95) for a homogenous
beam as a function of the
boundary conditions

Extremity A Extremity B K1 K2 K3 K4

Simply
supported

Simply
supported

1 1 1 1

Restrained Restrained 2.27 1.56 1.36 1.26

Restrained Simply
supported

1.56 1.26 1.17 1.13

Restrained Free 0.36 0.56 0.69 0.77

Free Free 2.27 1.56 1.36 1.26
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3.3.1 Transverse Vibrations in Beams Subjected
to an Axial Load (Tensioned Beam)

The transverse vibrations of a beam are influenced by the presence of an axial load:
to be more explicit, both the natural frequencies and the relative normal modes
change when axial load S varies. A tensile load increases the frequencies while, on
the contrary, a compression load reduces them. Furthermore, a certain compression
load value (referred to as a critical load, see [13]) exists whereby the beam becomes
statically unstable. In order to justify this phenomenon analytically, in this para-
graph we will analyse the small transverse oscillations around the static equilibrium
condition of a homogenous beam (Fig. 3.10) which, though identical to the one
analysed in the previous paragraph, is subjected to an axial load S. We will always
only analyse motion in the z direction, in the plane transversal to its own longi-
tudianl axis ξ (abscissa running along the beam).

If in a generic instant of time t, we consider an infinitesimal element of the beam
along dξ, this will be subjected to the stresses outlined in Fig. 3.11, where

p n; tð Þdn ¼ qAdn
@2w n; tð Þ

@t2

� �
ð3:96Þ

represents the only inertia force due to the motion of the element itself while
M, T and S are respectively the bending action, the shear and the axial action that
the remainder of the beam exercises on the element considered.

( , )w tξξ

Z

L

,m EJ S

Fig. 3.10 Tensioned beam
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Fig. 3.11 Tensioned beam: undefined equilibrium equations
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Since we are studying a dynamic problem, the internal actions M, T and S will
generally be functions of both space and time:

M ¼ M n; tð Þ; T ¼ T n; tð Þ; S ¼ S n; tð Þ ð3:97Þ

The equilibrium equation with translation in a vertical direction z, disregarding the
higher order infinitesimals, is given by:

�T� qAdn
@2w
@t2

þ Tþ dT� S sinu1 þ S sinu2 ¼ 0

) @T
@n

dn� qA
@2w
@t2

dnþ S
@2w

@n2
dn ¼ 0

ð3:98Þ

The dynamic equilibrium equation at rotation around pole O, or rather around the
left side of the infinitesimal generic element becomes, by disregarding the higher
order infinitesimals

T n; tð Þ ¼ � @M n; tð Þ
@n

� �
ð3:99Þ

By deriving (3.99):

@T n; tð Þ
@n

¼ � @2M n; tð Þ
@n2

� �
ð3:100Þ

and substituting it in (3.98) we obtain:

� @2M n; tð Þ
@n2

� �
þ S

@2w n; tð Þ
@n2

� �
� qA

@2w
@t2

¼ 0 ð3:101Þ

which, by recalling relation (3.49) and keeping account of the homogenous beam
hypothesis (EJ = cost), becomes:

�EJ
@4w

@n4

� �
þ S

@2w

@n2

� �
¼ qA

@2w
@t2

ð3:102Þ

This expression, a partial derivatives differential equation of the fourth order,
defines the transverse motion w(ξ, t) of the beam subjected to a static axial load
S. Equation (3.102) is identical to that obtained for the beam in the absence of an
axial load (3.50). The effect of the static axial action S is introduced by means of
term Sð@2w

	
@n2Þ which, among other things, appears in the equations of motion of

the cable (3.9) which can be considered as a borderline case of the beam in which
the bending stiffness EJ is disregarded. In this case too, should we wish to look for a
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possible stationary solution to (3.102), we will assume a particular integral of the
same equation in the following form:

w n; tð Þ ¼ Wc nð ÞG tð Þ ð3:103Þ

which, when placed in (3.102), due to the intrinsic structure of functions ψc(ξ) and
G(t), gives us a differential equation with total derivatives:

EJW0000
c nð ÞG tð Þ � SW00

c nð ÞG tð Þ þ qAWc nð Þ€G tð Þ ¼ 0 ð3:104Þ

where, for the sake of brevity, we have used the symbols W00 and W0000 to indicate
respectively the second derivative and the fourth derivative totals of the spatial
function Ψc(ξ):

W00
c nð Þ ¼ d2Wc nð Þ

dn2
; W0000

c nð Þ ¼ d4Wc nð Þ
dn4

ð3:105Þ

As with the previous cases, (3.104) by separating the variables, i.e.:

EJ
qA

� �
W0000

c nð Þ
Wc nð Þ � S

qA

� �
W00

c nð Þ
Wc nð Þ ¼ �

€G tð Þ
G tð Þ ¼ x2 ð3:106Þ

we are able to define two distinct differential ordinary equations; the first of (3.106),
relative to G(t) can be written as:

� 1
G tð Þ

d2G tð Þ
dt2

¼ x2 ) G tð Þ ¼ Asinxtþ B cosxt ¼ Dcos xtþ uð Þ ð3:107Þ

while, in this case, the second differential ordinary equation, relative to Ψc(ξ)
will be:

EJW0000
c nð Þ � SW00

c nð Þ � qAx2Wc nð Þ ¼ 0 ð3:108Þ

By imposing the generic solution:

Wc nð Þ ¼ Fekn ð3:109Þ

in differential equation (3.108), we obtain an algebraic, linear, homogenous and
parametric system in λ of the type:

k4EJ� k2S� qAx2� �
F ¼ 0 ð3:110Þ

which admits non-trivial solutions for:
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k4EJ� k2S� qAx2 ¼ 0 ð3:111Þ

from which:

k2I ¼
S�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
S2 þ 4EJqAx2

p
2EJ

) k1;2 ¼ �
ffiffiffiffiffi
k2I

q

k2II ¼
Sþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
S2 þ 4EJqAx2

p
2EJ

) k3;4 ¼ �
ffiffiffiffiffi
k2II

q ð3:112Þ

On account of the fact that k2I is always negative and k2II always positive since the
root in (3.112) is always higher than S, the solution thus becomes of the following
type:

Wc nð Þ ¼ F1 sin c1nþ F2 cos c1nþ F3 sinh c2nþ F4 cosh c2n ð3:113Þ

where

c1 ¼
ffiffiffiffiffiffiffiffiffi
�k2I

q
; c2 ¼

ffiffiffiffiffi
k2II

q
ð3:114Þ

That stationary solution, which represent free motion in a steady-state transverse
direction of the beam subjected to an axial load S, is thus given by the relation:

w n; tð Þ ¼ F1 sin c1nþ F2 cos c1nþ F3 sinh c2nþ F4 cosh c2nð Þ A sinxtþ Bcosxtð Þ
ð3:115Þ

In (3.115) constants F1, F2, F3 and F4, depend on the boundary conditions, i.e. on
the constraints assigned to the extremities of the beam. A particularly simple,
though significant, case is given by the beam simply supported on both extremities
(Fig. 3.10); in this case, the boundary conditions are:

w n; tð Þ½ �n¼0 ¼ 0 at any tð Þ ) Wc 0ð Þ ¼ 0

w n; tð Þ½ �n¼L ¼ 0 at any tð Þ ) Wc Lð Þ ¼ 0

M½ �n¼0¼ EJ
@2w

@n2


 �
n¼0

¼ 0 at any tð Þ ) d2Wc nð Þ
dn2


 �
n¼0

¼ 0

M½ �n¼L¼ EJ
@2w

@n2


 �
n¼L

¼ 0 at any tð Þ ) d2Wc nð Þ
dn2


 �
n¼L

¼ 0

ð3:116Þ

From which, as in the case outlined in the previous paragraph, we obtain:

sin c1L ¼ 0 ð3:117Þ
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from which:

c1L ¼ np n ¼ 1; 2; . . .1ð Þ ) c1n ¼
np
L

ð3:118Þ

Wc nð Þð Þx¼xn
¼ /ðnÞ nð Þ ¼ sin

np
L

� �
n

h i
¼ sin c1nn n ¼ 1; 2; . . .1ð Þ ð3:119Þ

This expression thus represents the deformation (or rather the generic normal mode
Φ(n)(ξ)) of the system analysed, in correspondence to the mode with a natural
frequency ωn which can be evaluated using simple steps such as:

x2
n ¼

n2p2

qAL2

� �
Sþ EJ

n2p2

L2

� �� �
) xn ¼ np

L

� � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Sþ EJ n2p2

L2

� �
m

vuut ð3:120Þ

If the axial load is of tensile type (i.e. S is positive according to the conventions
shown in Fig. 3.11) the natural frequency of system ωn increases; conversely, if the
static axial load is of the compression type (S < 0), the natural frequency, as shown
in the graph in Fig. 3.12, decreases.

In the case the load is:

Scrit¼ �EJp2

L2 ð3:121Þ

the natural is annulled: S has reached the limit value Scrit, or rather Eulero’s critical
load [13]. If compression load S increases above this value, the beam becomes
statically unstable. From a dynamic point of view, the critical load Scrit can thus be
defined as that limit load value due to which the first frequency of the beam tends
towards zero.

Fig. 3.12 Tensioned beam:
effect of axial compression S
on the first natural frequency
ω1 of the system
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The trend of the frequency resulting from an increase in the compressive load
shown in Fig. 3.12 can be used to evaluate the critical load without reaching it. In
fact, if by axially loading a beam we measure the first natural frequency as the load
itself increases, it is possible to extrapolate the value of the critical load without
reaching it, as briefly outlined in Fig. 3.13.

Let us now analyse the longitudinal vibrations about the static equilibrium
condition in bars, i.e. beams whose longitudinal dimension is predominant with
respect to the others (Fig. 3.14), by assuming, as in the previous paragraphs, a
homogenous beam, i.e. with transverse section A, axial stiffness EA and density ρ
all constant. Let us consider a generic infinitesimal beam element of length dξ
placed at a distance ξ from the left extremity of the beam itself: let us use u = u(ξ) to
define the displacement of the generic section. The longitudinal deformation to
which the element is subjected, at any time t, can be expressed as:

e ¼ uþ @u
@n dn� u

dn
¼ @u

@n
ð3:122Þ

ω

S

Fig. 3.13 Tensioned beam: experimental evaluation of the critical load

dξ

ξ u
u dξ

ξ
+


( , )u tξ

Fig. 3.14 Beam: axial vibrations
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According to Hooke’s law [13] stress σ found in the section is thus:

r ¼ S
A

¼ Ee ¼ E
@u
@n

ð3:123Þ

where S is the axial action present in the beam. By deriving (3.123) we obtain:

@S
@n

¼ AE
@2u

@n2
ð3:124Þ

Since we are studying a dynamic problem, generally speaking, internal axial action
S will be a function of both space and of time:

S ¼ S n; tð Þ ð3:125Þ

With regard to the same infinitesimal element, it is possible to write the dynamic
equilibrium equation at translation in a longitudinal direction ξ (Fig. 3.15) as:

�Sþ Sþ @S
@n

dn� qA
@2u
@t2

dn ¼ 0 ) @S
@n

¼ qA
@2u
@t2

ð3:126Þ

and by keeping account of (3.124):

AE
@2u

@n2
¼ qA

@2u
@t2

ð3:127Þ

Having used

C ¼
ffiffiffiffiffiffiffi
AE
qA

s
¼

ffiffiffi
E
q

s
ð3:128Þ

Z

dξ

ξ

2

2

u
m d

t
ξ

S
S

S dξ
ξ

+

Fig. 3.15 Beam: axial
vibrations—undefined
equilibrium equations
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to indicate the propagation velocity in the longitudinal direction (velocity of sound),
we thus obtain the undefined equilibrium equation for longitudinal motion
expressed in the form of

@2u

@n2
¼ 1

C2

@2u
@t2

ð3:129Þ

an expression similar to the one already seen for the transverse vibrations of the
cable. This equation, a second order partial derivatives differential equation, defines
the longitudinal motion u(ξ, t) of the beam analysed. In this case too, as with the
cable (Sect. 3.2), if we wish to study a possible stationary solution of (3.128) we
will assume a particular integral of the equation itself in the form of:

u n; tð Þ ¼ Wu nð ÞG tð Þ ð3:130Þ

By using an identical procedure to the one described in the previous paragraphs, we
will obtain the stationary solution:

u n; tð Þ ¼ F1 sin
x
C
n

� �
þ F2 cos

x
C
n

� �� �
A sinxtþ B cosxtð Þ

u n; tð Þ ¼ F1 sin
x
C
n

� �
þ F2 cos

x
C
n

� �� �
Dcos xtþ jð Þ

ð3:131Þ

This equation defines the longitudinal motion of a homogenous beam, regardless of
the boundary conditions or the initial conditions. In (3.131) constants F1 and F2

depend on the boundary conditions, i.e. on the constraints assigned to the beam
extremities: by varying the latter, the solution is obviously modified.

A particularly simple example is given by the beam constrained at its extremities
(see Fig. 3.16); in this case, the boundary conditions are the following:

u n; tð Þ½ �n¼0 ¼ 0 ) Wu 0ð Þ ¼ 0

Sn¼L ¼ AE
@u n; tð Þ
@n


 �
n¼L

¼ 0 ) @Wu

@n


 �
n¼L

¼ 0
ð3:132Þ

By imposing the boundary conditions, respectively congruence and equilibrium
conditions, it is possible to define equations which must satisfy the spatial function
Ψu(ξ) and thus define the integration constants of (3.131):

( , )u tξ

ξ L

,m EA
S

ξ

Fig. 3.16 Beam: axial vibrations—hinge-cart constraint configuration
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Wu 0ð Þ ¼ 0 ) F2 ¼ 0

@Wu

@n


 �
n¼L

¼ 0 ) x
C
F1 cos

x
C
L

� �
¼ 0

ð3:133Þ

As usual, the second equation is of the linear, algebraic homogenous and parametric
type in ω. The same equation will only admit nontrivial solutions if:

cos
x
C
L

� �
¼ 0 ) x

C
L ¼ p

2
þ n� 1ð Þp ) xn ¼ p

2
þ n� 1ð Þp

� �C
L

ð3:134Þ

By keeping account of (3.131), (3.133) and (3.134), the spatial function Ψu(ξ),
which defines the deformation assumed by the beam, considered in correspondence
to the generic natural frequency ωn, thus becomes:

Wu nð Þx¼xn
¼ /ðnÞ nð Þ ¼ sin

p
2 þ n� 1ð Þp

L

� �
n


 �
n ¼ 1; 2; . . .1ð Þ ð3:135Þ

3.4 Torsional Vibrations in Beams

In this paragraph we intend to analyse the equations of motion to describe the
torsional vibrations in beams, whose dimension, namely the longitudinal one, is
predominant with respect to the others (Fig. 3.17), by assuming, as in the previous
paragraphs, a homogenous beam, i.e. with a transverse section with constant tor-
sional stiffness GJp and density ρ. We assume that the centre of torsion coincides
with the centroid of the beam section so that the torsion can be considered
uncoupled from bending. We will introduce variable Өx(ξ, t) as an independent
variable to describe this motion. This variable describes the torsional time-space
deformation assumed by the beam itself. Let us once again consider the generic
infinitesimal element of the beam of length dξ placed at distance ξ from the left
extremity of the same beam subjected to a torsional momentMt; the relative rotation

dξ

tM

xϑ

yϑ

2

2
xI d

t

ϑ ξ∂
∂

t
t

M
M dξ

ξ
∂+
∂

Fig. 3.17 Narrow beam: torsional vibrations
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dӨx between the two sections of the extremity of the small element will be linked to
the same torsional moment by the well-known relation [13, 20]:

dHx ¼ v
Mtdn
GJp

ð3:136Þ

where Jp represents the polar area moment of the section, G is the shear modulus
and finally χ is the torsion factor: this factor [2, 11] depends, as is known, on the
type of section ( χ = 1 for a circular section).

By deriving relation (3.136) with respect to space ξ, we obtain:

@Mt

@n
¼ 1

v
GJp

@2Hx

@n2
ð3:137Þ

The dynamic equilibrium equation at rotation for the generic infinitesimal small
element becomes:

�Mt þMt þ @Mt

@n
dn� I

@2Hx

@t2
dn ¼ 0 ) 1

v
GJp

@2Hx

@n2
¼ I

@2Hx

@t2
ð3:138Þ

where I is the mass moment of inertia by unit of length (for homogenous beams
I = ρJp [10]), from which:

@2Hx

@t2
¼ 1

v
G
q
@2Hx

@n2
ð3:139Þ

Having used

C ¼
ffiffiffiffiffiffiffi
1
v
G
q

s
ð3:140Þ

To indicate the propagation velocity of the torsion wave, we thus obtain the
undefined equilibrium equation for torsional motions expressed in the usual form:

@2Hx

@n2
¼ 1

C2

@2Hx

@t2
ð3:141Þ

a similar expression to those already seen for the transverse vibrations of cables and
the longitudinal ones in beams. The stationary solution of (3.139) is calculated by
assuming, as usual, a particular integral of the same equation in the form:

Hx n; tð Þ ¼ Wh nð ÞG tð Þ ð3:142Þ

and all the considerations made for the transverse vibrations of the cables are
still valid.
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3.5 Analysis of the General Integral of the Equation
of Motion in Continuous Systems

In Sects. 3.2–3.4, for the different types of vibrations (transverse, longitudinal and
axial) to which the continuous systems analysed could be subjected (beams and
cables), we calculated the natural frequencies xn and the normal modes / nð Þ nð Þ.2
Each of these normal modes represents a particular integral of the equations of
motion. The most generic normal mode of the system is given by the linear
combination of the same normal modes, namely:

y n; tð Þ ¼
X1
n¼1

/ðnÞ nð ÞDn cos xntþ unð Þ ¼
X1
n¼1

/ðnÞ nð Þ An cosxntþ Bn sinxntð Þ

ð3:143Þ

Since we are dealing with a continuous system, the initial conditions will be defined
by two spatial functions which define the initial deformation imposed on the system
with time t = 0 and a possible spatial distribution of velocity:

y0 nð Þ ¼ y n; tð Þð Þt¼0

_y0 nð Þ ¼ @y n; tð Þ
@t

� �
t¼0

ð3:144Þ

By keeping account of (3.143) and (3.144), regardless:

• of the type of vibrations analysed (transverse, axial or torsional);
• of the type of continuous system analysed (cable or beam);
• of the constraint conditions which, as mentioned several times, only modify the

expression of the natural frequencies and the relative normal modes, we obtain:

y0 nð Þ ¼
X1
n¼1

/ðnÞ nð ÞAn ð3:145Þ

2As previously mentioned, in this chapter we will only consider continuous systems from which
we can easily obtain the analytical solution in closed form and, for which, the spatial deformation
is a function of the sole coordinate ξ. More complex continuous systems, such as circular or
rectangular plates, are also dealt with on a widespread basis in literature and for these too,
analytical solutions can be found, in which, however, the deformation is a function of two spatial
variables ξ and η. For more in-depth information regarding this problem, please refer to [12, 16,
17, 18].
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_y0 nð Þ ¼
X1
n¼1

/ðnÞ nð Þ �xnAn sinxntþ xnBn cosxntð Þ
" #

t¼0

¼
X1
n¼1

/ðnÞ nð ÞxnBn

ð3:146Þ

These expressions are nothing else but in-series developments, in variable n, of the
two functions y0 nð Þ and _y0 nð Þ in the normal modes considered. Constants Ai and Bi

(i = 1, n) can be obtained [1, 15] by means of:

Ai ¼
ZL
0

y0 nð Þ/ ið Þ nð Þdn; Bi ¼ 1
xi

ZL
0

_y0 nð Þ/ ið Þ nð Þdn ð3:147Þ

In the specific case of the simply supported cable (Sect. 3.2), the natural frequencies
xn and the relative vibratine modes /ðnÞðnÞ are (see (3.33) and (3.35)):

xn ¼ np
L

� � ffiffiffiffi
S
m

r
) /ðnÞ nð Þ ¼ sin

np
L

� �
n n ¼ 1; 2; . . .1ð Þ ð3:148Þ

The more generic free motion of the system w n; tð Þ, i.e. the response of same to an
initial perturbation, is given by the general integral defined by the linear combi-
nation of all the infinite normal modes (3.143):

w n; tð Þ ¼
X1
n¼1

sin
np
L
n

� �
An cos xntð Þ þ Bn sin xntð Þð Þ ð3:149Þ

In other words, (3.149) expresses the more generic free motion of the continuous
system as the sum of the contribution of all the modes, weighted differently. In
order to obtain a complete definition of this motion, it is necessary to define all the
constants An and Bn, functions of the initial conditions assigned to the system. As
seen in the previous paragraph, the initial conditions are defined by two spatial
functions which, with time t = 0, provide the initial deformation imposed on the
system and its initial motion:

w0 nð Þ ¼ w n; tð Þð Þt¼0

_w0 nð Þ ¼ @w n; tð Þ
@t

� �
t¼0

ð3:150Þ
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By keeping account of (3.148) and (3.147), constants Ai and Bi (i = 1, n) (3.149)
become:

Ai ¼ 2
L

Z L

0
wo nð Þ sin ipn

L

� �
dn

Bi ¼ 2
Lxi

Z L

0
_wo nð Þ sin ipn

L

� �
dn

ð3:151Þ

In this specific case, therefore, the constants are multiplicative coefficients of
the in-series developments of Fourier [1, 4] of functions w0 nð Þ and _w0 nð Þ.
Equation (3.151) allows us to calculate explicitly the constants present in the
general integral of the system’s free motion (3.149). If, for example, we assign the
following initial conditions:

w0 nð Þ ¼ sin
p
L
n

� �
; _w0 nð Þ ¼ 0 ð3:152Þ

i.e. if initially the cable is positioned exactly as its first mode and kept still, the
constants of the free motion of the system subjected to the initial condition defined
by (3.149) are:

B1 ¼ B2 ¼ � � � ¼ Bn ¼ 0

An ¼ 2
L

ZL
0

sin
p
L
n

� �
sin

np
L
n

� �
dn ) A1 ¼ 1; An n 6¼ 1ð Þ ¼ 0

ð3:153Þ

Therefore, by adopting the initial conditions (3.152), the general integral is
reduced to:

w n; tð Þ ¼ sin
p
L
n

� �
cosx1t ð3:154Þ

By assigning to the system, as initial conditions, those corresponding to the first
normal mode (this obviously applies for the generic normal mode) and null initial
velocities, the system vibrates in steady-state free motion (stationary motion)
exciting only the first (or generic) mode, i.e. maintaining the initial deformation.
When subjected to these initial conditions, the system will vibrate with its first
natural frequency x1 (or with the generic xn). Conversely, if the initial conditions
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are generic, all the normal modes will be excited: these modes will appear with non-
null coefficients in the writing the general integral (3.149): thus motion is generally
seen as a combination of normal modes of the system itself. The more general
solution will thus be aperiodic with beats3 [12, 16].

3.6 Analysis of the Particular Integral of Forced Motion

In the case of harmonic concentrated excitation forces of frequency X, the solution
can be found by imposing these excitation forces as the boundary conditions of the
domains with which it is necessary to divide the continuous system itself.

In the event, for example, of analysing a cable of length L (Fig. 3.18) excited by
an excitation force applied at a distance “a” from the left extremity, it is necessary
to divide the cable into two domains for which Eq. (3.10) with valid partial
derivatives for free motion are valid. However, should we wish to obtain the only
particular integral associated with the harmonic forced motion, the solution will be
harmonic and therefore generally of the following type:

w n; tð Þ ¼ W nð ÞG tð Þ ð3:155Þ

x

t

T

Example of beat

3When a mechanical system is excited by several excitation forces, harmonic with a similar
amplitude and slightly different frequencies [14, 19], the answer is of the type shown in the
following figure:

This particular type of motion is defined as “beat”. Each time that the amplitude has a maximum
we say that a beat has occurred, while the beat frequency is determined by two maximum
consecutive amplitudes.

278 3 Vibrations in Continuous Systems



www.manaraa.com

with4:

G tð Þ = G0eiXt ð3:156Þ

In the example cited (Fig. 3.18) in the two domains, the deformation can be
expressed as:

w1 n; tð Þ ¼ W1 nð ÞG01 tð Þ ¼ F11 sin
X
C
nþ F21 cos

X
C
n

� �
eiXt

w2 n; tð Þ ¼ W2 nð ÞG02 tð Þ ¼ F12 sin
X
C
nþ F22 cos

X
C
n

� �
eiXt

ð3:157Þ

By imposing the boundary conditions (which, as previously mentioned, can be
equilibrium and congruence conditions):

� condition I congruenceð Þ w1 n; tð Þ½ �n¼0¼ 0
� condition II congruenceð Þ w2 n; tð Þ½ �n¼ L�að Þ¼ 0
� condition III congruenceð Þ w1 n; tð Þ½ �n¼a¼ w2 n; tð Þ½ �n¼0
� condition IV equilibrium at Bð Þ
F0eiXt � S sinus þ S sinud ¼ 0 ) F0eiXt � S @w1

@n

h i
n¼a

þS @w2
@n

h i
n¼0

¼ 0

ð3:158Þ

1w

ξ

L
a

10
i tF e Ω

2w

ξ

10
i tF e Ω

S

S

sϕ dϕ

B

Fig. 3.18 Cable undergoing to a harmonic excitation force

4The real force acting on the system iso f the type fj ¼ Fj cosXt. As already seen in systems with
1 d.o.f. and 2 d.o.f. (Chap. 2), an effective resolving formalism to evaluate the steady-state
response of the system being examined is the one that uses complex numbers so that:

fj ¼ Fj cosXt ) fj ¼ FjeiXt ð4:4:1Þ

and, by using this approach, solution y n; tð Þ will obviously prove to be complex:

Yo nð ÞeiXt ð4:4:2Þ

The real response of the system will be defined by the projection on the real axis of (4.4.2):

y n; tð Þ ¼ Re Yo nð ÞeiXt� �
: ð4:4:3Þ
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by substituting (3.157) in (3.158) and by using Z to define the vector of the
constants to be calculated:

ZT ¼ F11 F12 F21 F22f g ð3:159Þ

and N the vector of known terms:

NT ¼ 0 0 0 �F0f g ð3:160Þ

we thus obtain a non-homogenous linear algebraic system of as many equations as
there are constants to define Z:

H Xð Þ½ �ZT ¼ N ð3:161Þ

where, in this case, the matrix of the real coefficients:

H Xð Þ½ � ¼

0 1 0 0

0 0 sin
X L�að Þ

C

� �
cos

X L�að Þ
C

� �
sin aX

C

� �
cos aX

C

� �
0 �1

� SX
C cos aX

C

� �
SX
C cos aX

C

� �
SX
C 0

2
6666664

3
7777775

ð3:162Þ

In the case of several external excitation forces, the domains with which the con-
tinuous systems will be divided increase and, as consequence so do the number of
constants to be defined and the boundary conditions to be imposed. As a conse-
quence, the order of vectors Z and N and of matrix H Xð Þ½ � increases. However, it is
necessary to point out that in order to evaluate the steady-state response of a
continuous system to harmonic excitation forces this approach cannot be used if:

• the excitation forces are distributed (we would need an infinite number of
domains and, consequently, of spatial-temporal functions wk n; tð Þ which
describe the deformation of the system);

• the excitation forces move their application point along the continuous system
like, for example, in the case of mobile loads (in this case, it is not possible to
impose boundary conditions in correspondence to the generic travelling load, in
that these vary in time).

Conversely, by using this approach, it is possible to keep account of springs or
dampers applied to the continuous system itself. For example, in case we want to
analyse the taut cable in Fig. 3.19, it is necessary to divide the continuous system
into 3 domains inside which the deformation is described by:
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� domain I 0\n\að Þ ) w1 n; tð Þ ¼ F11 sin X
C nþ F21 cos XC n

� �
eiXt

� domain II a\n\ aþ bð Þð Þ ) w2 n; tð Þ ¼ F12 sin X
C nþ F22 cos XC n

� �
eiXt

� domain III aþ bð Þ\n\Lð Þ ) w3 n; tð Þ ¼ F13 sin X
C nþ F23 cos XC n

� �
eiXt

ð3:163Þ

In this case, the boundary conditions (Fig. 3.20) will be:

� condition I congruenceð Þ w1 n; tð Þ½ �n¼0¼ 0
� condition II congruenceð Þ w3 n; tð Þ½ �n¼L¼ 0
� condition III congruenceð Þ w1 n; tð Þ½ �n¼a¼ w2 n; tð Þ½ �n¼a
� condition IV congruenceð Þ w2 n; tð Þ½ �n¼aþb¼ w3 n; tð Þ½ �n¼aþb

ð3:164Þ
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Fig. 3.19 Forced continuous system (taut cable example)
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Fig. 3.20 Definition of the boundary conditions
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• IV condition (equilibrium at point B, Fig. 3.20)

r
@w2

@t


 �
n¼a

þk w2 n; tð Þ½ �n¼aþS sinusB � S cosudB ¼ 0

) r
@w2

@t


 �
n¼a

þk w2 n; tð Þ½ �n¼aþS
@w1 n; tð Þ

@n


 �
n¼a

�S
@w2 n; tð Þ

@n


 �
n¼a

¼ 0

ð3:165Þ

• VI condition (equilibrium at point C, Fig. 3.20)

� F0eiXt þ S sinusC � S cosudC ¼ 0

) �F0eiXt þ S
@w2 n; tð Þ

@n


 �
n¼aþb

�S
@w3 n; tð Þ

@n


 �
n¼aþb

¼ 0
ð3:166Þ

By substituting the solution imposed (3.163) in the 6 boundary conditions (3.164),
(3.165) and (3.166) and by eliminating term eiXt on account of its being common in
all the equations, we obtain a system of algebraic equations, complete:

H Xð Þ½ �ZT ¼ N ð3:167Þ

in the 6 unknowns Z:

ZT ¼ F11 F21 F12 F22 F13 F23f g ð3:168Þ

where N is the vector of the known terms:

NT ¼ 0 0 0 0 0 F0f g ð3:169Þ

In this case, the matrix of coefficients H Xð Þ½ � proves to be complex due to the
presence of damper r.

3.6.1 Hysteretic Damping in the Case of a Taut Cable
(Direct Approach)

As seen in discrete systems, and in particular in systems with 1 d.o.f. (see Chap. 1,
Sect. 1.2.3.5) hysteretic damping can be introduced into the equations of motion of
a system only in the event of our wishing to evaluate the steady-state solution with
an external sinusoidal excitation force F ¼ F0eiXt considering a complex stiffness
[8, 9]. As regards continuous systems and, in particular, with reference to the
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example of a taut cable, hysteretic damping can be introduced, in the same way as it
was in Sect. 1.2.3.5, by considering an overall tension Sc:

Sc ¼ Sþ iSið Þ ð3:170Þ

where S represents the actual tension acting on the cable and Si repersents the
hysteretic term, proportional to the elastic forces. The partial derivatives differential
equation which defines the transverse motions of a taut cable, using this approach
(or rather for the study of the steady-state response of the system) is:

m
@2w
@t2

� �
¼ Sc

@2w

@n2

� �
ð3:171Þ

The solution of (3.171) thus becomes of the type (see Sect. 3.2.2):

w n; tð Þ ¼ Wf nð ÞG tð Þ ¼ Wf nð ÞGiXt
0 ð3:172Þ

where X is the frequency of the excitation force and therefore, at steady-state
conditions, of the induced vibration. By substituting (3.172) in (3.171) and by using
similar steps to those shown in Sect. 3.2.2, we obtain:

W00
f nð Þ þ c2Wf nð Þ ¼ 0 ð3:173Þ

having used c to indicate the complex term [3]:

c ¼ X

ffiffiffiffiffi
m
Sc

r
ð3:174Þ

This explanation reflects the one already seen in Sect. 3.2 with the use, in this case,
of complex algebra. As an example, we will analyse the cable in Fig. 3.18 con-
sidering, this time, the hysteretic damping introduced by means of (3.170). The
generic deformation w n; tð Þ, expressed in complex terms, is described by two
different spatial-temporal functions:

w1 n; tð Þ ¼ F11eicn þ F12e�icn� �
eiXt

w2 n; tð Þ ¼ F21eicn þ F22e�icn
� �

eiXt
ð3:175Þ

Similar to the operation performed previously, by imposing these four conditions
on the boundary, it is possible to obtain a system of algebraic equations, complete
in the four complex unknowns F11, F12, F21 and F22:

H Sc; cð Þ½ �Z ¼ N: ð3:176Þ
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having used Z, as usual, to indicate the vector of unknowns (which, this time, unlike
the example without damping, are complex) and N the vector of the known terms.
The response of the system will be give by the projection on the real axis of (3.175):

w1 n; tð Þ ¼ Re F11eicn þ F12e�icn� �
eiXt

� �
w2 n; tð Þ ¼ Re F21eicn þ F22e�icn� �

eiXt
� � ð3:177Þ

With regard to, by using the same procedure as that used for the taut cable, we will
introduce a complex stiffness EJc of the type:

EJc ¼ EJþ iEJið Þ ð3:178Þ

where EJ is the real bending stiffness of the beam, whereas EJi represents the
hysteretic term, proportional to the elastic forces.

3.7 Approach in Principal Coordinates

A more “hands on” approach to handling the equations of motion of continuous
systems in the presence:

• of concentrated or distributed excitation forces;
• of structural type damping

consists in using the Lagrange method to write the same equations in principal
coordinates. Although, as will be seen further on, this approach does not have any
advantages over the direct method as far as the calculation of the response of the
free system is concerned, it is fairly advantageous when it comes to handling both
forced problems as well as problems connected to damped systems. As with dis-
crete systems (Chap. 2, Sect. 2.5), even in continuous systems it is possible to
perform a transformation of the coordinates by passing from the physical coordinate
y n; tð Þ which defines the motion (transverse, longitudinal and torsional) of the
generic continuous system using the principal coordinates qi tð Þ through transfor-
mation ((3.43), Sect. 3.2.2):

y n; tð Þ ¼
Xn
i¼1

/ ið Þ nð Þqi tð Þ ð3:179Þ

where qi tð Þ represent the multiplicative coefficients of the normal modes / ið Þ nð Þ
with which deformation y n; tð Þ is approximated. By developing this summation we
obtain:
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y n; tð Þ ¼ / 1ð Þ nð Þq1 tð Þ þ � � � þ / ið Þ nð Þqi tð Þ þ � � � þ /ðnÞ nð Þqn tð Þ ð3:180Þ

In continuous systems, in which the generic normal mode / ið Þ nð Þ is expressed by a
function of space, this expression is similar to that used for discrete systems with
“n” d.o.f. (Sect. 2.5) where the same change of variables was expressed by:

xk tð Þ ¼ X 1ð Þ
k q1 tð Þ þ � � � þ X ið Þ

k qi tð Þ þ � � � þ XðnÞ
k qn tð Þ k ¼ 1; nð Þ ð3:181Þ

where X ið Þ
k is the generalized displacement of the generic k-nth d.o.f. in corre-

spondence to the generic i-nth normal mode: in matrix form, relation (3.181),
became of the type:

x ¼ U½ �q ð3:182Þ

where U½ � is the modal matrix, whose columns contain the normalized normal
modes of the system (therefore, this matrix contains constant terms). Even in
continuous systems it is convenient to express (3.180) in matrix form as:

y n; tð Þ ¼ /T nð Þq tð Þ ð3:183Þ

where by / nð Þ we intend a vector of “n” terms (as many as the normal modes
considered), each containing a function of space corresponding to the generic
normal mode:

y n; tð Þ ¼ /T nð Þq tð Þ ð3:184Þ

where q tð Þ is the vector that contains the “n” principal coordinates:

q tð Þ ¼

q1
. . .
qi
. . .
qn

8>>>><
>>>>:

9>>>>=
>>>>;

ð3:185Þ

In this way, the independent variables are only function of time t, in that the
variable space n is contained in the deformations of the natural normal modes
/ ið Þ nð Þ. Therefore, we move from a system with infinite degrees of freedom to a
system with “n” degrees of freedom. The discretization introduced by the modal
approach thus concerns the number of modes considered, while the physical
description of the spatial deformations is performed by means of the continuous
functions represented by the same normal modes / ið Þ nð Þ. Here, in relation to the
choice of the number of modes, the same considerations made for systems with “n”
degrees of freedom (Chap. 2, Sect. 2.5) are valid: obviously, in this case, the modal
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approach provides the exact solution if infinite modes are considered. In terms of
principal coordinates the equations prove to be uncoupled and this is due to the
known property of orthogonality of the normal modes (see for example [15]): in
actual fact, the equations will undoubtedly be uncoupled as far as elastic and inertia
terms are concerned while this does not necessarily apply to dissipation terms. In
order to write the equations of motion of the system in terms of principal coordi-
nates we will use Lagrange equations with which it is easy, by means of a proper
dissipation function D and the Qi i ¼ 1; nð Þ components of nonconservative forces,
to introduce both the damping (concentrated or hysteretic) and excitation force
terms. As usual, first and foremost, it is necessary to define the various forms of
kinetic Ec, potential V and dissipative energy D and the virtual work performed by
the nonconservative forces d�L as a function of variable y n; tð Þ, to be considered in
this case a physical variable, or rather of a generic spatial-temporal function which
describes the deformation assumed by the continuous system. We will then perform
the coordinate transformation defined in matrix form in (3.183) in order to express
the same forms of energy as a function of the independent coordinates q. As an
example, we will now develop this approach in the simple case of a simply sup-
ported taut cable (already analysed in Sect. 3.2.2).

3.7.1 Taut Cable Example

Let us consider the taut cable in Fig. 3.1, assuming, as a first step, the absence of
damping and external applied excitation forces. In order to write the equations of
free motion of the system in principal coordinates, in this case, we must define the
kinetic energy function Ec and the potential energy function V first and foremost as
a function of the physical variable w n; tð Þ which defines the transverse displacement
to which the infinitesimal generic element of the cable itself has been subjected.
Having used m to define the mass per unit length and _w n; tð Þ ¼ @w=@tð Þ the
absolute velocity in the transverse direction of the general infinitesimal element of
length dn, the kinetic energy dEc associated with the same small element is:

dEc ¼ 1
2
mdn _w2 ð3:186Þ

where mdn is thus the mass associated with the same small element. The energy
associated with the entire cable will thus be:

Ec ¼
ZL
0

dEc ¼ 1
2

ZL
0

m _w2dn ¼ 1
2

ZL
0

m _wT _wdn ð3:187Þ
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By keeping account of link (3.183) between the physical variable w n; tð Þ and the
independent variables principle coordinates q, we will obtain:

_w ¼ @w
@t

¼
@ /Tq
� �
@t

¼ /T _q ð3:188Þ

where vector / of the normal modes (3.35) is a function of space only. In the case
of the taut cable / becomes:

/ nð Þ ¼

sin pn
L

� �
. . .

sin ipn
L

� �
. . .

sin npn
L

� �

8>>>>><
>>>>>:

9>>>>>=
>>>>>;

ð3:189Þ

expression (3.187), by keeping account of (3.188), becomes:

Ec ¼ 1
2

ZL
0

m _qT//T _qdn ð3:190Þ

and bearing in mind that vector _q does not depend on the space variable (integration
variable):

Ec ¼ 1
2
_qT
ZL
0

m//Tdn

2
4

3
5 _q ¼ 1

2
_qT M½ � _q ð3:191Þ

where M½ � is the mass matrix, expressed in principle coordinates, and defined as:

M½ � ¼

RL
0
m/ 1ð Þ/ 1ð Þdn . . .

RL
0
m/ 1ð Þ/ ið Þdn . . .

RL
0
m/ 1ð Þ/ðnÞdn

. . . . . . . . . . . . . . .RL
0
m/ ið Þ/ 1ð Þdn . . .

RL
0
m/ ið Þ/ ið Þdn . . .

RL
0
m/ ið Þ/ðnÞdn

. . . . . . . . . . . . . . .RL
0
m/ðnÞ/ 1ð Þdn . . .

RL
0
m/ðnÞ/ ið Þdn . . .

RL
0
m/ðnÞ/ðnÞdn

2
666666664

3
777777775

ð3:192Þ

This matrix is diagonal on account of the eigensolution property which, in the
specific case of the simply supported cable and by keeping account of (3.189), is
expressed by the orthogonality of the sine functions integrated on a period or a
multiple of the period so that:
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ZL
0

m/ rð Þ/ sð Þdn ¼ mss ¼ m
1
2

per s ¼ rð Þ;
ZL
0

m/ rð Þ/ sð Þdn ¼ 0 per s 6¼ rð Þ

ð3:193Þ

The mass matrix is thus:

M½ � ¼ m
L
2
I½ � ð3:194Þ

where I½ � is the unit matrix. The generic term of the principle diagonal of the mass
matrix matrix:

mii ¼ m
L
2

ð3:195Þ

is defined as a generalized mass relative to the generic ith normal mode and retains,
obviously even in the case of continuous systems, the meaning assumed for discrete
systems. As regards potential energy, this will be defined as the work performed by
tension S (which represents the only elastic restoring force in the cable) due to the
elongation effect of the cable itself associated with the transverse displacement
w n; tð Þ. Let us consider an initial generic small element of length dn: when the cable
is deformed in generic position w n; tð Þ, this becomes of length dl (see Fig. 3.21):

dl ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
dn2 þ @w

@n
dn

� �2
s

ð3:196Þ

work dl performed by tension S thus becomes:

dL ¼ S dl� dnð Þ ¼ S

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
dn2 þ @w

@n
dn

� �2
s

� dn

0
@

1
A ð3:197Þ

where dl� dnð Þ is the elongation of section dn. Let us observe how in this work
expression, written for a constant tension S, coefficient 1=2ð Þ which normally
appears in the work of the elastic forces does not appear here: in fact, in the generic
case the elastic forces are not constant, as in this case, but vary linearly with
elongations.5 Total potential energy V can be obtained by integrating the expression

5Assuming the pull to be constant means neglecting the variations to which it is subjected due to
the effect of the transverse deformation w(ξ, t) and this is allowable if pull S is sufficiently high and
if the transverse displacements themselves are small.
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relative to the generic small element (3.197) along the entire longitudinal length of
the cable:

V ¼
ZL
0

dL ¼
ZL
0

S

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
dn2 þ @w

@n
dn

� �2
s

� dn

0
@

1
A ¼

ZL
0

S

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ @w

@n

� �2
s

� 1

0
@

1
Adn

ð3:198Þ

As can be seen, this expression of potential energy V is not a quadratic form and,

therefore, the corresponding Lagrange term @V=@q
� �

will prove to be non-linear.

In the event of us wanting to obtain linear equations of motion, in the hypothesis of
small oscillations in the neighbourhood of the static equilibrium position, it is

possible to develop the term
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ @w=@nð Þ2

q
which appears in the in-series

expression of V (3.198) up to the quadratic term, i.e.:

V ¼
ZL
0

S

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ @w

@n

� �2
s

� 1

0
@

1
Adn ¼

ZL
0

S 1þ 1
2

@w
@n

� �2

�1

 !
dn

¼ 1
2

ZL
0

S
@w
@n

� �2

dn

ð3:199Þ

Bearing in mind the fact that term @w=@nð Þ is a scalar term and that therefore
relation:

@w
@n

� �T

¼ @w
@n

� �
ð3:200Þ

applies to it, this expression can be rewritten, according to the same procedure used
for kinetic energy, as:

Z

ξ

L

dξ

w
w dξ

ξ
+( ),w tξ

dl

Fig. 3.21 Calculation of potential energy: evaluation of the elongation of the cable due to the
effect of a transverse displacement
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V ¼ 1
2

ZL
0

S
@w
@n

� �T @w
@n

� �
dn ð3:201Þ

By keeping account of the link between the physical variable w n; tð Þ and the
independent principal coordinate variables q, we will obtain:

@w
@n

¼
@ /Tq
� �
@n

¼ /0Tq ð3:202Þ

where /0 is the vector containing the derivatives of the spatial functions that define
the normal modes derived with respect to the spatial variable, i.e. in the taut cable
case analysed:

/0 nð Þ ¼

p
L
cos

pn
L

� �
. . .

ip
L
cos

ipn
L

� �
. . .

np
L
cos

npn
L

� �

8>>>>>>><
>>>>>>>:

9>>>>>>>=
>>>>>>>;

ð3:203Þ

Thus, the expression of potential energy V, in principle coordinates, becomes:

V ¼ 1
2

ZL
0

SqT/0 nð Þ/0 nð ÞTqdn ð3:204Þ

or rather, bearing in mind that vector q does not depend on the space variable n
(integration variable):

V ¼ 1
2
qT

ZL
0

S/0 nð Þ/0 nð ÞTdn
2
4

3
5q ¼ 1

2
qT K½ �q ð3:205Þ

where [K] is the stiffness matrix expressed in principle coordinates defined as:

K½ � ¼

RL
0
S/ 1ð Þ0/ 1ð Þ0dn . . .

RL
0
S/ 1ð Þ0/ ið Þ0dn . . .

RL
0
S/ 1ð Þ0/ðnÞ0dn

. . . . . . . . . . . . . . .RL
0
S/ ið Þ0/ 1ð Þ0dn . . .

RL
0
S/ ið Þ0/ ið Þ0dn . . .

RL
0
S/ ið Þ0/ðnÞ0dn

. . . . . . . . . . . . . . .
S/ðnÞ0/ 1ð Þ0dn . . . S/ðnÞ0/ ið Þ0dn . . . S/ðnÞ0/ðnÞ0dn

2
6666664

3
7777775 ð3:206Þ
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This matrix proves to be diagonal on account of the property of eigensolutions
which, in the specific case of the simply supported cable, is expressed by the
orthogonal nature of the cosine functions integrated on a period or a multiple of the
period so that, as is known:

ZL
0

S
ip
L

� �
cos

ipn
L

� �
jp
L

� �
cos

jpn
L

� �
dn ¼ S

ip
L

� �2L
2

con i ¼ jð Þ

ZL
0

S
ip
L

� �
cos

ipn
L

� �
jp
L

� �
cos

jpn
L

� �
dn ¼ 0 con i 6¼ jð Þ

ð3:207Þ

By keeping account of (3.198) the stiffness matrix is thus:

K½ � ¼ S
L
2

p
L

� �2
. . . 0 . . . 0

. . . . . . . . . . . . . . .

0 . . .
ip
L

� �2

. . . 0
. . . . . . . . . . . . . . .

0 . . . 0 . . .
np
L

� �2

2
66666664

3
77777775
¼ S

p2

2L

� �
i2
� � ð3:208Þ

where [i2] is a diagonal matrix whose generic element is given by the square of the
order of the mode considered. The generic term of the principle diagonal of the
stiffness matrix:

kii ¼
ZL
0

S
ip
L

� �2

cos2
ipn
L

� �
dn ¼ S

ip
L

� �2L
2
¼ m

L
2
x2

i ð3:209Þ

is defined as a generalized stiffness relative to the generic nth normal mode and
obviously retains, even in the case of continuous systems, the meaning assumed for
discrete systems. Thus, for a continuous system, by considering a certain
“n” number of independent coordinates, in this instance all the properties and
characteristics of the modal approach already developed for discrete systems with
2-n d.o.f., are valid. By applying the Langrange equations, always in the case of an
undamped free system:

d
dt

@Ec

@ _q

 ! !T

þ @V
@q

 !T

¼ 0 ð3:210Þ

it is possible to obtain, directly in matrix form, the equations of motion of the
continuous system in principle coordinates which will thus be:
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M½ �€qþ K½ �q ¼ 0 ð3:211Þ

which are translated into “n” uncoupled equations, each of the ordinary differential
type, in “n” unknown principal coordinates. In the case of the simply supported taut
cable, by recalling (3.195) and (3.209) these equations can be rewritten as:

mL
2

� �
€qi þ i2

Sp2

2L

� �
qi ¼ 0 i ¼ 1; 2; . . .; nð Þ ð3:212Þ

By integrating relations (3.212) we thus obtain the equation that defines the free
motion of the system in the absence of damping in the principal coordinates:

qi tð Þ ¼ Ai sinxitþ Bi cosxit i ¼ 1; 2; . . .; nð Þ ð3:213Þ

where xi is the frequency of the generic normal mode:

xi ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
i2
Sp2

2L

� �
mL
2

� �
vuuuuuut ¼ ip

L

� � ffiffiffiffi
S
m

r
ð3:214Þ

or rather it is still the natural frequency already defined by the integration of partial
derivative equations (3.10) by means of the particular integral:

wi n; tð Þ ¼ W nð Þð Þx¼xi
Gi tð Þ ¼ / ið Þ nð ÞGi tð Þ ð3:215Þ

Thus, in the case of undamped free motion, there is a coincidence between the
generic ith principal coordinate qi tð Þ and the corresponding temporal function Gi tð Þ
which defines the temporal motion of the continuous system using the direct
approach: for this reason, the study of free motion of the system in principal
coordinates is of little use. Conversely, this approach is more convenient when
dealing with the equations of motion of forced continuous systems in which
damping is also present.

3.7.1.1 Forced Vibrations in Principal Coordinates

In the case of forced vibrations, the equations of motion in principal coordinates
become:

M½ �€qþ K½ �q ¼ Q ð3:216Þ

It is necessary to calculate the Lagrangian components Qi i ¼ 1; nð Þ of the non-
conservative excitation forces applied to the system, relative to the normal modes
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considered in the transformation of the coordinates (3.183). In the specific case of
the taut cable, the generic equation of motion (always uncoupled from the others)
becomes:

mL
2

� �
€qi þ i2

Sp2

2L

� �
qi ¼ Qi i ¼ 1; 2; . . .; nð Þ ð3:217Þ

As usual we will have to evaluate the virtual work of the external forces applied to
the system and expressed first and foremost as a function of the physical coordinate
w n; tð Þ:

d�L ¼ d�L w n; tð Þð Þ: ð3:218Þ

in order to then impose the transformation of coordinates (3.183) to achieve an
expression of virtual work as a function of the independent coordinates, formally
defined by a matrix relation of the type:

d�L ¼ QTd�q ð3:219Þ

where d�q is the vector that contains the virtual displacements associated with the
principal coordinates chosen in order to define, in discrete form, the motion of the
system, Q is the vector of the Langrangian components whose generic term Qi is
given by the relation:

Qi ¼
d�L
d�qi

� �
ði ¼ 1; 2; . . .; nÞ ð3:220Þ

where d�Li is the work performed by the excitation forces for a virtual displacement
d�qi.

3.7.1.1.1 Forced Vibrations in Principal Coordinates: Concentrated
Excitation Forces

First and foremost, let us analyse the case of the taut cable excited by a single
harmonic force of the type:

f1 tð Þ ¼ F10eiXt ð3:221Þ

applied at a point of coordinate n1 (see Fig. 3.22). To calculate its Langragian
component it is necessary, as previously mentioned, to express the virtual work
performed by this force, first and foremost as a function of the physical coordinate
w n; tð Þ, a space-time function which defines the generic deformation assumed by
the system:

3.7 Approach in Principal Coordinates 293



www.manaraa.com

d�L ¼ fT1 tð Þd�w n1; tð Þ ð3:222Þ

By recalling the transformation of coordinates (3.183) the virtual displacement
expressed as a function of the new independent principle coordinates becomes:

d�w n1; tð Þ ¼ @w n; tð Þ
@q

" #
n¼n1

d�q ¼ / n1ð ÞTd�q ð3:223Þ

so that (3.222) can be expressed as:

d�L ¼ fT1 tð Þ/ n1ð ÞTd�q ¼ QTd�q ð3:224Þ

where, in this case the vector of the Lagrangian components is defined as:

Q ¼ / n1ð Þf1 tð Þ ¼

sin pn1
L

� �
. . .

sin ipn1
L

� �
. . .

sin npn1
L

� �

8>>>>><
>>>>>:

9>>>>>=
>>>>>;
f1 tð Þ ¼

Q1 tð Þ
. . .
Qi tð Þ
. . .

Qn tð Þ

8>>>><
>>>>:

9>>>>=
>>>>;

ð3:225Þ

In physical terms, the generic Lagrangian component Qi tð Þ ¼ f1 tð Þ sin ipn1=Lð Þ
represents the work that the excitation force f1 tð Þ is capable of introducing into the
generic ith normal mode for a displacement of the only coordinate qi. As Qi

increases, the work introduced in correspondence to the generic normal mode also
increases: the amplitude of Qi thus also represents the excitation force’s ability to
excite the ith mode. On the contrary, small Qi (or, at most, null, if force f1 is applied
in a vibration node, meaning that we have sin ipn1=Lð Þ ¼ 0) means that the same
applied force will only excite marginally (or not at all) the mode considered. In the
example analysed (Fig. 3.23), if the excitation force is applied in a vibration node,
the generic mode considered will not be excited, not even in resonance for X ¼ xi

in that the displacement of the application point of the excitation force is null, i.e.
Qi ¼ 0.

Z

ξ

L

1ξ ( )1f t

( ),w tξ

Fig. 3.22 Continuous system forced by a single excitation force: modal approach
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By generalizing the previous writing, if the cable is forced by “mF” excitation
forces fj tð Þ j ¼ 1; Fð Þ applied at points nj (Fig. 3.23) we will obtain:

d�L ¼
XmF

j¼1

fj tð Þd�w n; tð Þ ð3:226Þ

An expression which in matrix form:

• by organizing in vector f tð Þ the applied excitation forces

f tð Þ ¼

f1
. . .
fj
. . .
fmF

8>>>><
>>>>:

9>>>>=
>>>>;

ð3:227Þ

• by defining a vector w containing the displacements of the application points of
the excitation forces:

w ¼

w n1; tð Þ
. . .

w nj; t
� �
. . .

w nmF; tð Þ

2
66664

3
77775 ¼

/T n1ð Þ
. . .

/T nj
� �
. . .

/T nmFð Þ

2
66664

3
77775 q ð3:228Þ

can be expressed as:

d�L ¼ fT tð Þd�w ð3:229Þ

Z

1ξ ( )1f t

( )1,w tξ

jξ
mFξ

( )jf t ( )mFf t

( ),jw tξ
( ),mFw tξ

Fig. 3.23 Continuous system forced by discrete excitation forces: modal approach
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where

d�w ¼

/T n1ð Þ
. . .

/T nj
� �
. . .

/T nmFð Þ

2
66664

3
77775d�q ð3:230Þ

Equation (3.229) thus becomes:

d�L ¼

f1
. . .
fj
. . .
fmF

8>>>><
>>>>:

9>>>>=
>>>>;

T /T n1ð Þ
. . .

/T nj
� �
. . .

/T nmFð Þ

2
66664

3
77775d�q ¼ fT wq

� �
d�q ð3:231Þ

matrix wq
� �

, a rectangular matrix of “mF” lines, the same number as the excitation
forces applied to the system and “n” columns, the same number as the principle
coordinates assumed to define the motion of the system itself, correlates the
physical variables w with the independent variables. Virtual work (3.231) can be
expressed in compact form as:

d�L ¼ fT tð Þ wq
� �

d�q ¼ QT tð Þd�q ð3:232Þ

and the Lagrangian component Q of the external forces is thus:

Q ¼ wq
� �T

f tð Þ ¼ / n1ð Þ . . . / nj
� �

. . . / nmFð Þ� � f1
. . .
fj
. . .
fmF

8>>>><
>>>>:

9>>>>=
>>>>;

ð3:233Þ

3.7.1.1.2 Forced Vibrations in Principal Coordinates: Distributed Excitation
Force

In the case in which the system is forced (see Fig. 3.24) by a distributed excitation
force f n; tð Þ (force per unit of length in correspondence to generic abscissa n), the
stress acting on the generic infinitesimal small element of length dn will be given by
f n; tð Þdn. The work d�LDn performed by the excitation force distributed on the
infinitesimal generic small element will therefore be:

d�LDn ¼ f n; tð Þd�w n; tð Þdn ð3:234Þ
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The overall work as a function of the physical variable w n; tð Þ will therefore be:

d�L ¼
ZL
0

f n; tð Þd�w n; tð Þdn ð3:235Þ

By recalling relation (3.223), the same virtual work can be expressed as a function
of the principle coordinates in matrix form as:

d�L ¼
ZL
0

f n; tð Þ @w n; tð Þ
@q

 !
d�qdn ¼

ZL
0

f n; tð Þ/T nð Þd�qdn

¼
ZL
0

f n; tð Þ/T nð Þdn
8<
:

9=
;d�q

ð3:236Þ

that is:

d�L ¼ QTd�q ð3:237Þ

where, in this case, the vector of the Langrangian components Q is equal to:

Q ¼

Q1 tð Þ
. . .
Qi tð Þ
. . .

Qn tð Þ

8>>>><
>>>>:

9>>>>=
>>>>;

¼
ZL
0

/ nð Þf n; tð Þdn
8<
:

9=
; ¼

RL
0
/ 1ð Þ nð Þf n; tð Þdn

. . .RL
0
/ ið Þ nð Þf n; tð Þdn

. . .RL
0
/ðnÞ nð Þf n; tð Þdn

8>>>>>>>><
>>>>>>>>:

9>>>>>>>>=
>>>>>>>>;

ð3:238Þ
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( ),w tξ

( ),f tξ

Fig. 3.24 Continuous system forced by a distributed excitation force: modal approach
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which, in the case of the simply supported cable becomes:

Q ¼

RL
0
sin pn

L

� �
f n; tð Þdn

. . .RL
0
sin ipn

L

� �
f n; tð Þdn

. . .RL
0
sin npn

L

� �
f n; tð Þdn

8>>>>>>>><
>>>>>>>>:

9>>>>>>>>=
>>>>>>>>;

ð3:239Þ

Thus, in the hypothesis of a simply supported cable, if the distributed excitation
force is of the type:

f n; tð Þ ¼ p0e
iXt ð3:240Þ

(or rather the force per unit length po is constant with respect to space n), the
integrals of (3.238), given the particular trend of the eigenfunctions (number of
antinodes equal to “i”), become:

Qi ¼
ZL
0

sin
ipn
L

� �
p0e

iXtdn ð3:241Þ

i.e. the generic Lagrangian component Qi thus proves to be different from zero only
for modes with an odd number of antinodes: in fact, the work performed in cor-
respondence to the modes with “i” even number of antinodes becomes null overall.
On the contrary, in correspondence to an odd mode (that is if the number of
antinodes is odd) the work proves to be different from zero and equal, with the
exception of term p0e

iXt, to the area underlying the last antinode (positive or
negative), see Fig. 3.25.

A constant distributed force in space, always introduces less energy into the
system as the frequency increases, in that (always only for odd modes) the work
introduced for the generic mode (proportional to the integral on only one semi-
period) decreases. Thus with the same amplitude this work will always be smaller

Z

ξ

( ),w tξ

0
i tp e Ω   

−
+ +

0

0

sin Ω⎛ ⎞= ⎜ ⎟⎝ ⎠∫
L

i t
i

i
Q p e d

L
πξ ξ

Fig. 3.25 Continuous system excited by a distributed excitation force f n; tð Þ ¼ p0e
iXt modal

approach—physical meaning of lagrangian component Qi
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as the mode considered increases, since the wavelength decreases and, as a con-
sequence, the corresponding integral on the last semi-period. A constant distributed
force in space thus only excites the odd modes with an intensity that gradually
decreases as order “i” of the normal mode considered increases. Conversely, in the
event of the distributed force assuming a sinusoidal trend in n with a wavelength
equal to 2L=kð Þ (with k (entire) ¼ 1; n):

f n; tð Þ ¼ p0 sin
kp
L
n

� �
eiXt ð3:242Þ

i.e. in the event of f n; tð Þ proving to be sinusoidal in space and in time, it is evident
that the Lagrangian components Qi present in (3.238):

Qi ¼
ZL
0

sin
ipn
L

� �
p0 sin

kp
L
n

� �
eiXtdn ð3:243Þ

are all null (due to the known property of orthogonality of the sine functions
integrated on the natural period) with the exception of the one corresponding to the
generic kth normal mode meaning that we would obtain:

Qk ¼
ZL
0

sin
kpn
L

� �
p0 sin

kp
L

n

� �
eiXtdn ¼ p0

L
2
eiXt ð3:244Þ

In this case the only kth mode will prove to be excited by the external excitation
force. Whatever the structure of the generic Lagrangian component Qi, the equa-
tions of motion of the taut cable forced in the absence of damping will thus be of the
type:

mL
2

� �
€qi þ i2

Sp2

2L

� �
qi ¼ Qi i ¼ 1; 2; . . .; nð Þ ð3:245Þ

where the modal mass mii:

mii ¼ mL
2

� �
ð3:246Þ

is independent from the normal mode considered, while the term:

kii ¼ i2
Sp2

2L

� �
ð3:247Þ

3.7 Approach in Principal Coordinates 299



www.manaraa.com

represents generalized stiffness. If the generic Lagrangian component Qi is
harmonic:

Qi ¼ Qi0e
iXt ð3:248Þ

with frequency X ¼ xi, the generic main coordinate qi tð Þ proves to be harmonic,
with amplitudes that tend towards the infinite, for t ! 1. Generally speaking, the
explanation given with particular reference to the simple case of a taut cable can be
extended to a generic continuous system, with any boundary conditions: in prin-
cipal coordinates will always obtain a system of “n” equations (the same number as
the d.o.f. considered in the transformation of uncoupled coordinates (3.183)) of the
type:

mii€qi þ kiiqi ¼ Qi i ¼ 1; 2; . . .; nð Þ ð3:249Þ

Having solved this equation and having calculated the qi by means of relation
(3.249), it is possible to evaluate the response of the system as a function of the
physical variable w n; tð Þ which defines the space-time deformation assumed by the
system subjected to the excitation forces considered using:

w n; tð Þ ¼ /T nð Þq ð3:250Þ

3.7.1.1.3 Forced Vibrations in Principal Coordinates: Moving Load

Let us now assume the presence of a constant moving load P along the cable
translating with a constant velocity V (Fig. 3.26). This case, like the one relative to
distributed loads along the continuous system, cannot be solved by using the direct
approach, in that the extremities of the domains into which the cable can be divided
with the presence of the load itself vary as a function of time. For this reason, the
response to the moving load can be dealt with using the modal approach (or, as will
be seen further on, the finite element method).

Z

ξ

( ),w tξ

P
V

s

Fig. 3.26 Continuous system forced by a moving load

300 3 Vibrations in Continuous Systems



www.manaraa.com

Let us thus consider the generic cable in Fig. 3.26, subjected to the moving load
P which moves at velocity V (constant) and occupies position s = Vt: the equations
of motion in principal coordinates, in the absence of structural damping, thus once
again prove to be of the type:

mii€qi þ kiiqi ¼ Qi i ¼ 1; 2; . . .; nð Þ ð3:251Þ

To evaluate the Lagrangian component associated with the moving load, it is
necessary to express work d � L performed by same as a function of the transverse
displacement physical coordinate w and subsequently, by exploiting the transfor-
mation in independent coordinates (3.110) q as a function of the latter:

d � L ¼ � Pd � w s; tð Þjs¼Vt¼ � P/T sð Þd � q ¼ QT Vtð Þd � q ð3:252Þ

having indicated the vector of Lagrangian components with Q:

Q Vtð Þ ¼ � P/ Vtð Þd � L ¼ Q ¼ QðtÞ ¼¼ �P

sin pVt
L

� �
. . .:

sin ipVt
L

� �
. . .:

sin npVt
L

� �

8>>>>>>><
>>>>>>>:

9>>>>>>>=
>>>>>>>;

ð3:253Þ

Thus, in this case, the generic Lagrangian component becomes:

Qi ¼ � P sin
ipVt
L

� �
) Xi ¼ ipV

L
) Qi ¼ �P sin Xitð Þ ð3:254Þ

In principal coordinates this component thus proves to be a generic harmonic

excitation force of frequency Xi ¼ ipV
L

different from zero only in time interval

0	 t	 T ; T ¼ L=V, in which excitation force P is present on the cable: the temporal
histories of the generalized forces on the nodes have the trends shown in Fig. 3.27.

In this case, the generic generalized force is incapable of exciting the cable in
resonance since, as previously mentioned, it is different from zero only in the
interval 0� T.

The response to the moving load cannot therefore be calculated in terms of a
steady state response, but must be calculated in the time domain by numerically
integrating the equations of motion (3.251) and reconstructing the response of the
system in any point of the continuous system to generic time using the relation:

w n; tð Þ ¼ / nð ÞTq tð Þ ¼
Xnm
i¼1

sin
ipn
L

� �
qi tð Þ ð3:255Þ
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By keeping account of (3.254), it is possible to define a critical velocity Vcr in
which the frequency of the excitation force coincides with the natural frequency of
the system:

Xi ¼ xi ) ipV
L

¼
ffiffiffiffiffiffi
kii
mii

r
¼ ip

L

� � ffiffiffiffi
S
m

r
ð3:256Þ

from which:

Vcr ¼
ffiffiffiffi
S
m

r
ð3:257Þ

In the case in which the continuous system is excited by a sequence of moving
loads at distance d (Fig. 3.28) the temporal phase displacement between the
loads is:

Dt ¼ d
V

ð3:258Þ

where

T ¼ l
V

ð3:259Þ

Fig. 3.27 Trend of the generalized forces in modal coordinates due to the effect of the transit of a
moving load
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is the stay time of the single excitation force. By assuming an infinite series of
equally spaced moving loads and by keeping account of (3.254), in principal
coordinates we will obtain generalized periodic excitation forces Qi tð Þ whose trend
is shown in Fig. 3.29.

Z

ξ

( ),w tξ P

V

s

d

Fig. 3.28 Continuous system forced by a sequence of moving loads

(a)

(b)

Fig. 3.29 Lagrangian components for a sequence of moving loads: with d > L (a) and with
d < L (b)
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The periodicity is obviously given by the distance between the loads s ¼ d=V.
These generalized excitation forces Qi tð Þ can be developed in Fourier series:

QiðtÞ ¼
XN
k¼0

Qk
i cos kXotþ uk

i

� � ð3:260Þ

where

Xo ¼ 2p
s

¼ 2pV
d

ð3:261Þ

In this case we will have a resonance condition each time that:

Xi ¼ kXo ¼ xi ) k
2pV
d

¼
ffiffiffiffiffiffi
kii
mii

r
¼ ip

L

� � ffiffiffiffi
S
m

r
ð3:262Þ

from which:

Vcrð Þki¼
d
2k

i
L

� � ffiffiffiffi
S
m

r
ð3:263Þ

In reality, critical conditions of this type can be found in the case of long heavy
convoys travelling over viaducts or bridges; these critical velocities are only
potentially dangerous for the first normal modes of the deck. It is necessary to
prevent Xo (3.262) from coinciding with one of the natural frequencies of the
structure (i = 1). To avoid these resonance problems, the bridges or viaducts must
be checked during the project phase by keeping account of standard travelling
speeds. A more realistic analysis must also introduce the vehicle dynamics,
by introducing the dynamic interaction between the motion of the vehicle itself
and the motions of the infrastructures, as shown in Fig. 3.30 (a’ propos of this
see [5, 6]).

Z

V

s

Fig. 3.30 Model of vehicle-infrastructure system
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3.7.1.2 Damping in Principle Coordinates

In the hypothesis of structural damping such as a hysteretic or similar one, the
equations of motion remain uncoupled even in principal coordinates: it is, in fact,
possible to define amodal rii damping term associatedwith each normalmode/ ið Þ nð Þ.
By using this approach, the equations of motion of the generic mode thus become:

mii€qi þ rii _qi þ kiiqi ¼ Qi i ¼ 1; 2; . . .; nð Þ ð3:264Þ

or rather in matrix form once again of the type:

M½ �€qþ R½ � _qþ K½ �q ¼ Q ð3:265Þ

where [M], [R] and [K] are the diagonal matrices of mass, damping and stiffness
and respectively contain, on the principle diagonal, generic modal mass mii, modal
damping rii and modal stiffness kii, similar to what encountered with discrete sys-
tems (Chap. 2, Sect. 2.5). The value of modal damping rii, always referring to what
has been seen in discrete systems, is obtained using suitable modal identification
techniques (Chap. 8). In the case of continuous systems, it is also possible to obtain
this value by analysing the free motion of the system itself: in the example given for
the cable if, as is usually the case, the structural damping is small, the following
procedure can be adopted:

• the cable is excited in resonance in correspondence to the generic ith normal
mode;

• the excitation force is eliminated;
• the free motion of the system is analysed (Fig. 3.31).

Since the damping is small, the free motion prevalently contains the excited
mode and will be of the type shown in Fig. 3.31:

w n; tð Þ ¼ /T nð Þq ¼
Xn
j¼1

/ jð Þ nð Þqj tð Þ � / ið Þ nð Þqi tð Þ ð3:266Þ

In this case, the value of logarithmic decrement di (Chap. 2, Sect. 2.4.1.3, (2.235))
is defined by the relation:

Z

jξ

( ),jw tξ

( ),jw tξ

t

iT

Fig. 3.31 Definition of the modal damping from the free motion of the system
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di ¼ ln
w nj; t
� �

w nj; tþ Ti
� �

 !
¼ ln

qi tð Þ
qi tþ Tið Þ
� �

ð3:267Þ

where w ni; tð Þ and w ni; tþ Tið Þ are the amplitudes corresponding to two successive
peaks evaluated in a generic point of the cable of abscissa ni (see Fig. 3.31) and Ti is
the oscillation period corresponding to the excited normal mode:

Ti ¼ 2p
xi

ð3:268Þ

From (3.267) it is possible to obtain the nondimensional damping hi relative to the
generic ith normal mode by means of:

hi ¼ r
rc

� �
i
¼ di

2p
ð3:269Þ

from which:

rii ¼ 2miixihi ¼ 2miixi
di
2p

ð3:270Þ

If, on the contrary, concentrated dissipative elements, mounted on the structure,
exist, it is possible to introduce their effect, in terms of principal coordinates, by
means of the corresponding dissipative function D or, in exactly the same way as
the external excitation forces fj were introduced, by means of the virtual work d�L
performed by the dissipative forces. In the case of hysteretic damping, similar to the
procedure used both in discrete systems (Chap. 1, Sect. 1.2.3.5) and in continuous
systems using the direct approach (Sect. 3.7), if we wish to evaluate the steady state
response of the system subjected to sinusoidal excitation Qi ¼ Qi0eiXt, the equation
of motion of the generic mode (3.264) can be rewritten by introducing a complex
stiffness such as ([3], Sect. 5.10):

mii€qi þ kii þ ickiið Þqi ¼ Qi0e
iXt i ¼ 1; 2; . . .nð Þ ð3:271Þ

By analysing the taut cable, and in the only case of harmonic excitation, we will
have:

mL
2

� �
€qi þ

cS
2X

� �
i2p2

L

� �
_qi þ i2

Sp2

2L

� �
qi ¼ Qi0e

iXt ð3:272Þ

As an example, let us analyse the case of the cable equipped with a concentrated
damper of constant rj, as shown in Fig. 3.32. The normal modes to be considered,
similar to the procedure used for the external excitation forces, are those of the
system without excitation forces and dampers, or rather, in the case examined:
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/ ið Þ ¼ sin
ipn
L

ð3:273Þ

The dissipative function of the damper can be directly defined as a function of the
physical variable w nj; t

� �
which defines the displacement of the point of the cable

in which the same damper is applied:

Dj ¼ 1
2
rj _w2 nj; t

� � ¼ 1
2
rj _wT nj; t

� �
_w nj; t
� � ¼ 1

2
rj

@wj

@t

� �T @wj

@t

� �
ð3:274Þ

By keeping account of the transformation of modal coordinates:

w nj; t
� � ¼ /T nj

� �
q tð Þ ð3:275Þ

Dj can be expressed as a function of the independent variables represented by
modal displacements by means of:

Dj ¼ 1
2
rj _q

T tð Þ/ nj
� �

/T nj
� �

_q tð Þ ¼ 1
2
_qT tð Þ rj/ nj

� �
/T nj
� �h i

_q tð Þ ¼ 1
2
_qT tð Þ Rj

� �
_q tð Þ

ð3:276Þ

where Rj
� �

is the damping matrix in principle coordinates. This matrix is square of
order “n” as the number of the normal modes considered in (3.276) and is generally
full:

Rj
� � ¼ rju nj

� �
uT nj
� �h i

¼

uð1Þ nj
� �

uð1Þ nj
� �

. . . uð1Þ nj
� �

uðiÞ nj
� �

. . . uð1Þ nj
� �

uðnÞ nj
� �

. . . . . . . . . . . . . . .
uðiÞ nj
� �

uð1Þ nj
� �

. . . uðiÞ nj
� �

uðiÞ nj
� �

. . . uðiÞ nj
� �

uðnÞ nj
� �

. . . . . . . . . . . . . . .
uðnÞ nj

� �
uð1Þ nj

� �
. . . uðnÞ nj

� �
uðiÞ nj
� �

. . . uðnÞ nj
� �

uðnÞ nj
� �

2
66664

3
77775

ð3:277Þ
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Fig. 3.32 Continuous system with concentrated damper

3.7 Approach in Principal Coordinates 307



www.manaraa.com

Finally, let us analyse the case of the cable with distributed damping of constant
r nð Þ ¼ r constant, as shown in Fig. 3.33.

The normal modes to be considered, similar to the procedure used for the
external excitation forces, are those of the system devoid of excitation forces and
dampers (outlined in (3.273)). The dissipative function of the damper can be
directly defined as a function of the physical variable w n; tð Þ which defines the
displacement of a generic point of the cable:

D ¼ 1
2

ZL
0

r _w2 n; tð Þdn ¼ 1
2

ZL
0

r _wT _wdn ð3:278Þ

or rather, by keeping account of the transformation of modal coordinates (3.275):

D ¼ 1
2
_qT tð Þ

ZL
0

r/ nð Þ/T nð Þdn
2
4

3
5 _q tð Þ ¼ 1

2
_qT tð Þ R½ � _q tð Þ ð3:279Þ

where [R] is the damping matrix in principle coordinates: this matrix is diagonal
and, in the case of uniformly distributed damping, the generic term is:

Rii ¼ r
L
2

ði ¼ 1; 2; . . .; nÞ ð3:280Þ

Summary In this chapter, continuous body models (i.e. systems with infinite
degrees of freedom, governed by partial differential equations, functions of both
time and space) are introduced. As is known, closed form solutions can only be
obtained in some simple applications. For this reason, the study was conducted
mainly for educational purposes, in preparation for the discretization methods
described in the following chapter. In particular, vibrations in continuous systems,
using both the direct (the “propagative” solution) and modal approach in principal
coordinates (the “stationary” solution), have been studied. At the end of the chapter,
the bending vibrations of cables, beams and “taut beams” are shown as examples.

Z

ξ

( ),jw tξ

Fig. 3.33 Continuous system with distributed damping
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Chapter 4
Introduction to the Finite Element Method

4.1 Introduction

The increase in complexity of structures and the need for more rigorous, in-depth
structural analyses have made the development of systematic methodologies,
allowing for the discretization of continuous systems, necessary. In fact, all real
systems can be represented as continuous systems, with infinite degree-of-freedom
(d.o.f.): however, in the best case scenario, working on a continuous system means
dealing with partial derivatives differential equations (see Chap. 3) to be integrated
into different domains. If the elastic and inertia characteristics are differentiated and/
or the geometry of the system to be analysed is complex, the number of domains
necessary and the necessary relative boundary conditions are such as to immedi-
ately cause considerable difficulties in terms of calculation or, in any event, the
approach does not lend itself to a generalization of the procedure for all analysable
systems (for each system it is necessary to redefine the equations of motion of
same). It is thus possible to discretize the continuous system, or rather to make the
transition from a continuous system with infinite d.o.f. (the real system) to an
approximate discrete model with n d.o.f. (the corresponding mathematical model),
which adequately approximates its behaviour. Various techniques and approaches
can be adopted to discretize the continuous system.

• Schematization with concentrated parameters ([5, 6, 14, 17, 19,23], Chaps.
1 and 2);

• A modal approach (Chap. 3, Sect. 3.7);
• The transfer matrix method [11, 23, 24];
• The finite differences method [1];
• the finite element method;
• the boundary element method (see, for example, [7]).

In the past, the methodology most widely used was the concentrated parameters
one. This method concentrates masses, dampings and stiffnesses, in actual fact
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distributed in a continuous form on the real system, in geometric points of the
system. By adopting this scheme, it is possible to obtain discrete models with n d.o.f.
whose equations of motion can be obtained by means of dynamic equilibrium
equations, influence coefficients or Lagrange’s equations (see Chaps. 1 and 2).

As an example, in Fig. 4.1, we show the scheme that can be used to simulate the
dynamic behaviour of a rotating shaft equipped with flywheel masses: for this real
system, it is possible to obtain a discrete n d.o.f. model by concentrating the
distributed masses of the connecting sections on the flywheels and associating them
with the elasticity of the shaft while considering the stiffness of the flywheels
themselves as infinite.

Similarly, a continuous beam (real system) can be divided (Fig. 4.2) into sectors,
by attributing, to the generic sector, the sole bending stiffness and by concentrating
the mass of each sector in the centre of gravity of same (discretized model).

The concentrated parameters technique is not particularly valid because there
are not strict criteria to concentrate the parameters themselves and this methodology
does not allow for a systematic approach (i.e. one that can be retraced to logic
diagrams and standardized procedures).

At present, there is no doubt that the most effective and powerful method is the
finite element one that lends itself particularly well to the study of various problems
(static and dynamic structural calculation, fluid-dynamic, heat transmission, etc.)
whose phenomenology can be described analytically by partial derivatives differ-
ential equations. The success of this method is due to the rapid development of
digital calculators and to the considerable evolution of numeric methods for the

Fig. 4.1 Concentrated parameters schematization of a shaft with mounted flywheel masses

y
y y

y1

2 3

4

Fig. 4.2 Schematization showing the concentrated parameters of a beam for the study of bending
vibrations
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resolution of higher order systems of algebraic equations. Furthermore, its versa-
tility and power is increased by the fact that any structure, complex in any case, can
be seen as a set of simple elements (finite elements) whose elastic-inertia charac-
teristics are defined in parametric form. From a point of view of the analysis of
mechanical systems, by using a discrete n d.o.f. model of the continuous real
system, this method permits:

• determination of the static equilibrium position of the structure;
• calculation of the natural frequencies xi and of the related normal modes XðiÞ;
• evaluation of the response (static and/or dynamic) with assigned external

excitation forces.

As general independent coordinates, the Finite Element Method (indicated
hereinafter as F.E.M.) considers the displacement of geometric points of the con-
tinuous system referred to as nodes (Fig. 4.3). In the more general case, (i.e. in the
case of a spatial system) if n are the nodes of the discrete mathematical model,
which define the displacements of the system, the d.o.f. will be 3 × n, if three d.o.f.
are associated with the displacement of the node in space. This method considers
the deformation between two nodes inside the finite element as a variable dependent
on the nodal displacements: this deformation is, in fact, described by means of
analytical functions dependent on the node displacements, termed Shape Functions
(referred to hereinafter as s.f.). Once the nodal displacements have been calculated,
these functions allow for the definition of the deformation assumed by the con-
tinuous system between two nodes. The structure is, thus, divided into finite ele-
ments (see Fig. 4.3), which definite the grid constituted by the nodes of the
mathematical model. In this way, the F.E.M. reduces the continuous system to a
finite number of d.o.f., where the number of independent variables assumed is
finite, while maintaining the distribution properties of mass and elasticity of the
continuous system unaltered by means of the s.f. themselves.

Fig. 4.3 Finite element schematization of a structure
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4.2 The Shape Function

Let us consider a continuous system that occupies an assigned position in space and
let us define (using O–X–Y–Z) a left-to-right Cartesian absolute reference systems:
where x, y and z (Fig. 4.4) are the coordinates of a generic point P belonging to the

continuous system. Let us indicated with u ¼ u
!

x; y; z; tð Þ the vector that defines the
displacement of the point starting from the reference position defined previously.

By using this approach, vector u
!

x; y; z; tð Þ represents the independent variable used
to describe the motion of the continuous system.

In the model discretized using the finite element method, deformation u
!

x; y; z; tð Þ
inside the generic finite element is, on the contrary, a function dependent on the
node displacements. The problem in this case is to choose a suitable morphology of
the s.f. which allows us to define the deformations of the single finite elements and
to approximate, in the best way possible, the real deformation of the continuous
system. To facilitate calculation, the s.f. is defined with respect to a local reference
system (Oj–Xj–Yj–Zj) (see Fig. 4.4) that is integral with the jth undeformed finite
element and displacement u is defined with respect to the local reference system.
The behaviour of the points inside each finite element can be formulated according
to different form functions:

• polynominal s.f.;
• trigonometric s.f.;
• s.fs. that are linear combinations of several polynomials etc.

Z

Y

X

Oj

    Xj

      Yj

Z j

w

u

v

u

P

O

Fig. 4.4 Definition of global and local reference system, definition of the position (x, y, z) of the
generic node and its displacement components ~u x; y; z; tð Þ
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which are calculated by leaving, first and foremost, a certain number of undefined
parameters, subsequently determined by imposing the nodal displacement relative
to the finite element considered on the s.fs. themselves, as boundary conditions.

Consequently, the number of parameters to be determined must necessarily be
equal to the number of d.o.f. associated with each finite element, equal to the
product between the number of interconnecting nodes with the rest of the model
and the number of d.o.f. of each node.

Since the F.E.M uses shape functions that are clearly an approximation of the
actual distribution of internal point displacements, it offers an approximate solution
to the problem.

To satisfy all the above mentioned requirements, in terms of s.fs., if analytically
known, we generally use the static deformation of the single finite element, seen as
a subject with forces concentrated on the nodes since, otherwise, we would obtain a
static deformation, also a function of the load distribution inside the element and not
only of the type of element.

Assuming that we adopt a good s.f. (for some continuous systems these are
known and analytically defined while, for others (see Sect. 4.6) such as plates and
membranes this does not occur) it is obvious that the good quality of the F.E.M.
schematization increases as the number of nodes considered increase, that is with
the thickening of the mesh. To facilitate calculation, during a first phase, the nodal
displacements for the generic finite element are defined in the local reference
system (Oj–Zj–Yj–Xj), which is different from element to element. Only subse-
quently are all the displacement expressed as a function of a single global reference
system (O–Z–Y–X).

In the paragraphs that follow, mainly for didactic-explanatory purposes, we will
show the definition of the s.f.s assumed for the taut cable finite element (Sect. 4.2.1)
and for the beam finite element (Sect. 4.2.2). Finally, in Sect. 4.6 we will describe
the procedure for a generic two-dimensional or three-dimensional finite element.

4.2.1 Shape Function for the Taut Cable Element

In a first approximation, a cable is devoid of bending and torsional stiffness, i.e. it
does not react to applied external torques.1

Based on these assumptions, it is not necessary to introduce, into the mathe-
matical model, the section rotations as independent variables.

The taut cable finite element is thus limited by only two nodes: in the spatial
case (Fig. 4.5) each node has 3 d.o.f. (the three displacement components) and each
element, considered rectilinear, thus has 6 d.o.f. and its deformation between two

1In actual fact, a real cable has a bending stiffness EJ and a torsional stiffness GJx. If, however, the
static tension So is high and the area of the transverse section is limited, these effects are, in actual
fact, negligible. If this were not the case, as a finite element it would be necessary to use the taut
beam which will be described in Sect. 4.5.

4.2 The Shape Function 315



www.manaraa.com

nodes will be defined through the 6 nodal displacement independent coordinates.
By initially limiting, for didactic purposes, the study of motion to only one plane,
each node of the generic jth element only has 2 d.o.f. and its deformation is
associated with 4 independent coordinates (Fig. 4.5). The local reference system
(Oj–Zj–Yj–Xj) is defined by a reference frame of Cartesian axes where axis Xj

coincides with the longitudinal axis that connects the two end nodes and axis Zj is
perpendicular to Xj, lying in the plane considered and, finally, Yj perpendicular to
the two previous ones oriented in such a way that the local reference frame proves
to be right handed. The physical coordinates that define the displacements of the
generic section P of the cable, placed at a distance n measured starting from the left
end of the finite element, are functions wjðn; tÞ ¼ wðn; tÞ which define the trans-
verse displacement components of the section in direction Zj (a function of space
and time, as in the continuous system) and function ujðn; tÞ ¼ uðn; tÞ which defines
the axial displacement of the same section in direction Xj.

2

As independent variables, we choose the local displacement of the two nodes in
longitudinal directions (Xsl and Xdl) and in a direction that is normal to the point of
connection of the nodes themselves (Zsl and Zdl)

3: these displacements (indepen-
dent variables) are grouped in a vector X jl:

Zj

Zsl Xsl Xj

w(ξ,t) 

u(ξ,t) 

Zdl

Xdl

dξ
ξ

lj 

Fig. 4.5 Taut cable finite element

2As already seen in Sect. 3.2, relative to the analysis of the cables schematized as continuous
elements, the transverse behaviour of the cable is independent from the plane considered: for this
reason, further one, we will consider the plane problem, or rather we will only consider plane Zj–
Xj.
3Both here and further on, in order not to make the formalism and the writing of the various
equations more complex, often for amplitudes relative to the generic jth finite element (different
from element to element and thus identifiable with the subscript j) this index will be omitted. For
example, in relation (4.1), we will omit Xsl ¼ Xsjl; Ysl ¼ Ysjl; Xjl ¼ Xl, etc.
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Xjl ¼ Xl ¼
Xsl

Zsl

Xdl

Zdl

8>><
>>:

9>>=
>>; ð4:1Þ

It is now necessary to define the link between the deformation assumed by the
continuous system inside the generic finite element defined by the two components
uðn; tÞ ¼ ujðn; tÞ and wðn; tÞ ¼ wjðn; tÞ and the vector of the nodal displacements in
the local reference system Xl ¼ Xjl (4.1). The static deformation of a cable sub-
jected to loads concentrated on nodes is a broken line: to describe this configura-
tion, it is possible to assume a linear s.f. for the single taut cable finite element both
for the transverse displacements and the longitudinal displacements:

w n; tð Þ ¼ a1n + b1
u n; tð Þ ¼ a2n + b2

ð4:2Þ

These s.f. contain the four undefined parameters a1, a2, b1 and b2 which are
determined by imposing the boundary conditions on the single finite element, i.e.
by imposing that the functions u(ξ, t) and w(ξ, t) coincide, in correspondence to the
end nodes, with the displacements sustained by the Xl themselves (4.1), variables
assumed regardless of the method:

w n; tð Þjn¼0 ¼ Zsl tð Þ; w n; tð Þjn¼lj ¼ Zdl tð Þ
u n; tð Þjn¼0 ¼ Xsl tð Þ; u n; tð Þjn¼lj ¼ Xdl tð Þ

ð4:3Þ

where lj is the length of the generic finite element.
By solving the system we obtain:

a1 ¼ Zdl � Zsl

lj
; a2 ¼ Xdl � Xsl

lj
; b1 ¼ Zsl; b2 = Xsl ð4:4Þ

The complete writing of the physical variables w(ξ, t) and u(ξ, t) (4.2) which
describe the motion of the continuous system as a function of the independent
variables Xl (4.1) becomes, in matrix form and keeping account of (4.4):

w n; tð Þ ¼ fTwðnÞX1 tð Þ ) wj n; tð Þ ¼ fTwjðnÞXj1 tð Þ
u n; tð Þ ¼ fTu ðnÞX1 tð Þ ) uj n; tð Þ ¼ fTujðnÞXj1 tð Þ ð4:5Þ

having used fw(ξ) and fu(ξ) to indicate the shape functions:

fwðnÞ ¼
0

1� n
lj

0
n
lj

8>>><
>>>:

9>>>=
>>>;; fuðnÞ ¼

1� n
lj

0
n
lj
0

8>>><
>>>:

9>>>=
>>>; ð4:6Þ
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The shape function depends parametrically on the length of the finite element, see
(4.5), and on the spatial generic coordinate ξ. Each element of the vectors fw(ξ) and
fu(ξ) represents the internal deformation assumed for a unit displacement assigned
to the generic component of the nodal displacement (Fig. 4.6). By exploiting (4.5),
once the displacement of the end nodes Xl are known, it is possible to trace the
origin of the internal deformation.

4.2.2 The Shape Function for the Beam Element

Let us now consider a finite beam element, i.e. a finite element that schematizes the
inertial elastic behaviour of a narrow, rectilinear beam with a constant transverse
section. To simplify our explanation, in this first phase we will assume:

• uncoupled bending, torsional and axial motions (shear centre coinciding with
the centroid of the section);

• stress state due to pure bending (bending moment vector parallel to a main axis
of inertia of the section);

• effects of order higher than the first are negligible (like the effect of an axial
force on the bending behaviour).

Furthermore, let us consider the specific case of bending motion in the plane
(Fig. 4.7). As in the case of the taut beam, we assume a local reference system
defined by a reference frame of Cartesian axes where axis Xj coincides with the
longitudinal axis that connects the two end nodes and axis Zj is perpendicular to Xj

lying in the plane considered and, finally, Yj is perpendicular to the two previous
one oriented in such a way that the reference frame (Oj–Xj–Yj–Zj) proves to be right
handed. The motion of the generic section, placed at distance ξ from the left end,
can be described by the only physical variable wj(ξ, t) = w(ξ, t) (a function, as in the
continuous system, of space ξ and of time t) which defines the transverse dis-
placements (Fig. 4.7) of the beam itself.

Zs l=1
Zd l=1ffs=1-

lj

ξ
ffd=

lj

ξ

ξ ξ

lj lj

Fig. 4.6 Meaning of the shape function fw(ξ) for the taut cable element
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The local transverse displacements of the two end nodes Zsl and Zdl and the
rotations θysl and θydl of the nodal sections of the beam are chosen as independent
variables: these displacements and rotations are grouped in a vector Xjl ¼ Xj:

Xjl ¼ Xl ¼
Zsl

hysl
Zdl

hydl

8>><
>>:

9>>=
>>; ð4:7Þ

It is now necessary to define the link between the transverse deformation w n; tð Þ
assumed by the continuous system inside the generic finite element and the vector
of the nodal displacement of the finite beam element in the local reference system
Xl. The shape function chosen is a cubic one, since this is the shape of the static
deformation of a beam that is not subjected to distributed or concentrated loads
between node and node [10, 26]:

w n; tð Þ ¼ a1n
3 þ a2n

2 þ a3nþ a4 ð4:8Þ

Constants a1, a2, a3 and a4 can be determined by imposing the boundary conditions
(bearing in mind the sign conventions adopted, Fig. 4.7) on deformation w n; tð Þ:

w n; tð Þjn¼0 ¼ Zsl tð Þ; @w n; tð Þ
@n

����
n¼0

¼ �hysl tð Þ

w n; tð Þjn¼lj ¼ Zdl tð Þ; @w n; tð Þ
@n

����
n¼lj

¼ �hydl tð Þ
ð4:9Þ

where lj is the length of the generic finite element.
The expression of the physical variables that describe the motion of the continuous

system as a function of the independent variables that describe the nodal displace-
ments thus becomes (in matrix form and keeping account of (4.7), (4.8), (4.9)):

Z j

Z sl Xsl Xj

w(ξ,t) 

u(ξ,t) 

Z dl

X dl

dξ
ξ

lj 

θy sl

θy dl

Fig. 4.7 Finite beam element
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w n; tð Þ ¼ fTwðnÞX l tð Þ ) wj n; tð Þ ¼ fTwjðnÞXjl tð Þ ð4:10Þ

having indicated the shape function for the beam element and for the bending
motions in plane Xj–Zj with fwðnÞ:

fwðnÞ ¼ fwjðnÞ ¼

2
l3j
n3 � 3

l2j
n2 þ 1

� 1
l2j
n3 þ 2

lj
n2 � n

� 2
l3j
n3 þ 3

l2j
n2

1
l2j
n3 � 1

lj
n2

8>>>>>>><
>>>>>>>:

9>>>>>>>=
>>>>>>>;

ð4:11Þ

Each term of this vector fw represents the internal deformation of the finite element
for a unit displacement associated with the generic d.o.f. (Fig. 4.8).

4.2.3 Shape Function for Generic Finite Elements

Given a generic finite element with no nodes (Fig. 4.9), by assuming an arbitrary
local reference system of axes Xj–Yj–Zj and by considering vector Xjl of the nodal
displacements defined in the local reference system:

Fig. 4.8 Cubic shape function in the bending deformation of a beam element
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Xjl ¼

Xj1;1

Yj1;1

Zj1;1

Xj2;1

Yj2;1

Zj2;1

. . .

. . .

. . .
Xjno;1

Yjno;1

Zjno;1

8>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>:

9>>>>>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>>>>>;

ð4:12Þ

it is possible to write the three functions that provide the displacement in three
directions in the local reference system of generic point P inside the finite element.
These are:

uj n; g; f; tð Þ ¼ fTuj n; g; fð ÞXjl tð Þ
wj n; g; f; tð Þ ¼ fTwj n; g; fð ÞXjl tð Þ
vj n; g; f; tð Þ ¼ fTvj n; g; fð ÞXjl tð Þ

ð4:13Þ

where fujðn; g; fÞ; fwjðn; g; fÞ and fvjðn; g; fÞ are the shape functions that describe
the deformations between two nodes.

As previously mentioned various s.f. can be used: among these, the most
common is the polynomial one so that expressions (4.13) can be expressed as:

uj n; g; f; tð Þ ¼ a0 þ a1nþ b1gþ c1fþ a2n
2 þ b2g2 þ c2f

2 þ � � � þ aigfþ � � � þ cnf
n

wj n; g; f; tð Þ ¼ d0 þ d1nþ e1gþ f1fþ d2n
2 þ e2g2 þ f2f

2 þ � � � þ digfþ � � � þ fnf
n

vj n; g; f; tð Þ ¼ g0 þ g1nþ h1gþ p1fþ g2n
2 þ h2g2 þ p2f

2 þ � � � þ gigfþ � � � þ pnf
n

ð4:14Þ

Xji,L

Zji,L

Yji,L

wj

vj
uj

Fig. 4.9 Generic finite
element
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The higher the number of terms considered, the greater the number of nodes in the
model and d.o.f. associated with them and thus, obviously, the better the approx-
imation obtained. As previously mentioned, the number of constants is equal to the
number of d.o.f. of the finite element, i.e. to the product of the number of nodes for
the d.o.f. associated with each node.

The s.f. are then fully defined. In the specific case of polynomial s.f. the con-
stants a1, b1, c1, …, cn, fn, pn are determined by assuming the nodal displacements
of the element considered as boundary conditions: in this way, the s.f. are
unequivocally defined as a function of coordinates ξ, η and ζ. In Sect. 4.6 these
concepts, applied to finite elements with 2 or 3 dimensions, will be resumed.

4.3 The Equations of Motion of the System

As previously mentioned, the finite element approach is of the Lagrangian type:
displacements Xt of the nodes of schematization (Fig. 4.3) are chosen as inde-
pendent coordinates (Lagrangian coordinates). As a function of Xt it is possible to
define the displacements of the continuous system uj(ξ, η, ζ, t), wj(ξ, η, ζ, t) and vj(ξ,
η, ζ, t) inside the jth finite element by means of known links constituted by the
shape functions fwjðn; g; fÞ; fujðn; g; fÞ, and fvjðn; g; fÞ (4.13). The various forms of
energy that appear in the Lagrange’s equations, expressed as a function of the
independent coordinates nodal displacements Xt, can be obtained from the defor-
mation of the continuous system to obtain the equation of motion:

d
dt

@Ectot

@ _Xt

� �� �T

� @Ectot

@Xt

� �T

þ @Dtot

@ _Xt

� �T

þ @Vtot

@Xt

� �T

¼ Ft ð4:15Þ

with:

d�Ltot ¼ FTt d
�Xt ð4:16Þ

where d�Ltot is the virtual work performed by the external forces acting on the
system which are neither inertial nor elastic nor viscous, for a virtual displacement
d�Xt. In (4.15) Ectot and Vtot are respectively the kinetic energy and the potential
energy of the complete system, defined as the sum of contributions associated with
the jth finite element Ecj and Vjðj ¼ 1; 2; . . .;mÞ:

Ectot ¼
Xm
j¼1

Ecj; Vtot ¼
Xm
j¼1

Vj ð4:17Þ

and Dtot is the corresponding dissipation function. By applying Lagrange’s equa-
tions (4.15), based on the hypothesis, often valid in reality, of linearizing the
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problem relative to the inertial and elastic terms, we obtain the equations of motion
of the mathematical model of the structure and finite elements in the form:

Mtot½ �€Xt þ Rtot½ � _Xt Ktot½ �Xt ¼ Ft ð4:18Þ

where, let us remember, Mtot½ � is the mass matrix of the complete finite element
model, Ktot½ � the relative stiffness matrix, Rtot½ � the damping matrix and, finally, Ft is
the vector of the generalized forces. Examples of a nonlinear approach will be
described further on (Sect. 4.7). We will now analyse, making reference for the sake
of convenience to specific application examples, the procedure used to obtain the
equations of motion of the complete system formally defined in (4.18).

4.4 Taut Cable Finite Element (an Application Example)

As a first example, let us consider the F.E.M. of a span, fitted out with a conductor
for aerial power lines (Fig. 4.10), whose main data are shown in Table 4.1.

This structure can be schematized with finite elements of the taut cable type
whose characteristics and relative shape function have already been described in
Sect. 4.2.1. In the analysis we will only consider motion in the plane, i.e. transverse
and axial vibrations of the conductor about the static equilibrium configuration,
assumed to have been assigned.4 We will outline the procedure to be followed to
schematize any type of structure using the finite element method. However, the
considerations made will be integrated, at each step, with references to the guide
example in Fig. 4.10.

4.4.1 Discretization of the Structure

The first step is the choice of the type of finite elements to be used and the number
of nodes of the schematization (i.e. the definition of the mesh of the model). In the
case proposed, by assuming that the bending stiffness is negligible, one can adopt
the taut cable finite element, previously described in Sect. 4.2.1.

Having chosen a suitable type (or types of finite elements) to represent the real
behaviour of the system to be analysed, it is then necessary to fix a global reference
O–X–Y–Z and divide the structure in finite elements, identifying the position of the
nodes, i.e. the connecting points between adjacent elements. The choice of the
number of elements and, therefore, of the number of nodes of the mesh must
guarantee that the schematization used does not have any flaws, i.e. it must ensure

4In Sect. 4.7 the methodologies required to solve the static problem (normally not linear) to define
this configuration will be analyzed.
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that the hypotheses adopted in the definition of the single finite element are
satisfied:

• use of a specific shape form (for the taut cable element, this function, see
Sect. 4.2.1, is linear and, for this reason, valid in the static field);

• use of constant elastic and inertial characteristics inside the single element (for
the taut cable this involves assuming as constant, inside the jth finite element,
tension Sj, mass by unit of length mj and the area of the transverse section Aj).

In order to ensure that these hypotheses are able to satisfy the above mentioned
requisites, it will be necessary to use sufficiently small finite elements in order to
reproduce the variations of these parameters along the cable. In this example, the
variable parameter is the tension. Furthermore, the length of the single element must
be such to ensure that, during the vibrations of the cable, it maintains an almost
static behaviour.5 It is, thus, necessary that the first natural frequency of the generic
element ωelj is distinctly higher than the field of frequencies involved in the analysis
performed. As a first approximation formula to calculate xelj it is possible to use the
one that defines the natural frequency of a taut cable restrained at the ends by two
supports (already described in Chap. 3, Sect. 3.2.2):

xelj ¼ p
lj

ffiffiffiffiffi
Sj
mj

s
ð4:19Þ

Fig. 4.10 Span of an electric
line constituted by a single
conductor

Table 4.1 Data relative to an
electric line constituted by a
single conductor

Span length L = 200 m

Linear mass m = 2.0 kg/m

Horizontal stretch component S = 30,000 N

5The shape function adopted is the static one: for this reason, the behavior of the finite element
model will be similar to that of the real system, all the more so because the dynamic behavior of
the single finite element will be similar to the static one.
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By assuming, for example, a field of analysis included between 0 and
Ωmax = 10 rad/s we will obtain:

xelj � 1:5Xmax ¼ 15 rad/s ) lj � p
15

ffiffiffiffiffi
Sj
mj

s
¼ 25:65m ð4:20Þ

By making reference to the structure in Fig. 4.10, it is thus possible to consider 9
nodes and to schematize the structure as shown in Fig. 4.11. In reality, during the
vibrations, tension Sj varies with respect to static value Soj: in fact, axial defor-
mations are associated to the longitudinal and transverse displacements of the cable
and, therefore, variations of tension ΔSj present in the jth finite element
(Sj = Soj + ΔSj) and, additionally longitudinal and transverse displacements are
coupled, making the problem nonlinear, with serious analytical complication (in
Sect. 4.7 you will see how it is possible to consider these effects nonlinear). If
however [2, 10, 12, 25, 26], the initial static tension Soj = So is sufficiently high, the
variation of tension ΔSj only relative to the transverse behaviour of the cable, can be
disregarded and it is thus possible, we repeat only for the transverse motions, to
consider the tension constant.
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Z9

A
C

D

E

F

G

H

lj

Xs,1

Zs,1
Xd,1
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Fig. 4.11 Schematization with taut cable finite elements: absolute reference system, local
reference systems

4.4 Taut Cable Finite Element (an Application Example) 325



www.manaraa.com

4.4.2 Definition of the Stiffness [Kj] and Mass [Mj] Matrix
of the Taut Cable Finite Element in the Local
Reference System

Let us express the potential energy Vj and kinetic energy Ecj associated with the
generic jth cable finite element (recalling that these energies will be expressed as a
function of the independent coordinates that define the disturbed motion about the
static equilibrium configuration. Having assumed, for the only transverse compo-
nent of the displacements, tension Sj constant and equal to the static value Soj inside
the jth element and not considering the elastic couplings between the longitudinal
motions and the transverse motions, the calculation diagram becomes linear and it is
possible to apply the superposition of the effects. The potential energy relative to
the jth finite element Vj can be evaluated as the sum of two contributions:

Vj ¼ Vjtr þ Vja ð4:21Þ

where Vjtr is associated with the transverse displacements wj(ξ, t) (normal to the
longitudinal axis of the cable) and Vja is associated with the longitudinal dis-
placements uj(ξ, t) (Fig. 4.5). Vjtr is the potential energy, already defined for the
cable subject to transverse motion alone, analysed with the continuous systems
(Sect. 3.2.2), depending on static cable tension Soj, assumed as constant, and cor-
responds physically to the contribution of potential energy due to deflection of the
cable6:

Vjtr ¼ 1
2
S0j

Zlj
0

@wj n; tð Þ
@n

� �2

dn ð4:22Þ

Conversely, potential energy Vja is defined by the work of the stresses due to the
variations in length associated with the axial displacements and proves to be [10]:

Vja ¼ 1
2
EAj

Zlj
0

@uj n; tð Þ
@n

� �2

dn ð4:23Þ

6We suppose a linear stress-strain relationship, otherwise potential energy would not have a
quadratic form and, consequently, equations of motion would be nonlinear.
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The potential energy associated with the generic jth finite element is thus7:

Vj ¼ Vjtr þ Vja ¼ 1
2
Soj

Zlj
0

@wj n; tð Þ
@n

� �2

dnþ 1
2
EAj

Zlj
0

@uj n; tð Þ
@n

� �2

dn

¼ 1
2
Soj

Zlj
0

@wj n; tð Þ
@n

� �T @wj n; tð Þ
@n

� �
dnþ 1

2
EAj

Zlj
0

@uj n; tð Þ
@n

� �T @uj n; tð Þ
@n

� �
dn

ð4:24Þ

Similar to the case of potential energy Vj, kinetic energy Ecj associated with the
generic finite element proves to be defined by the sum of the two contributions,
corresponding respectively to transverse motion wj(ξ, t) and axial motion uj(ξ, t):

Ecj ¼ Ecjtr þ Ecja ¼ 1
2
mj

Zlj
0

@wj n; tð Þ
@n

� �2

dnþ 1
2
mj

Zlj
0

@uj n; tð Þ
@n

� �2

dn

¼ 1
2
mj

Zlj
0

@wj n; tð Þ
@n

� �T @wj n; tð Þ
@n

� �
dnþ 1

2
mj

Zlj
0

@uj n; tð Þ
@n

� �T @uj n; tð Þ
@n

� �
dn

ð4:25Þ

in which wj(ξ, t) and uj(ξ, t) represent the two components of absolute velocity of
the generic infinitesimal element in plane Xj–Zj and mj(ξ) = mj constant is the mass
by unit of the length of the cable (mj dξ represents the mass associated with the
generic infinitesimal section). Having assumed the shape functions fwj and fuj
which correlate the transverse wj n; tð Þ and axial uj n; tð Þ displacements (to which the
generic point inside the generic finite element has been subjected) to the dis-
placements of the end nodes of the same:

wj n; tð Þ ¼ fTwjðnÞXjl

uj n; tð Þ ¼ fTujðnÞXjl

ð4:26Þ

7Given a generic scalar quantity p it is always possible to express its square as:

p2 ¼ pTp ð4:7:1Þ

This will be useful in the matrix form expressions that will follow, as already seen for the
continuous systems (Chap. 3).
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potential energy Vj (4.24) and kinetic energy Ecj can be expressed as a function of
the independent variables Xjl, which represent the nodal displacements to which the
end nodes of the generic cable element in the local reference system have been
subjected as:

Ecj ¼ 1
2
_X
T
jl mj

Zlj
0

fwjf
T
wjdfþmj

Zlj
0

fujf
T
ujdf

2
64

3
75 _Xjl ¼

1
2
_X
T
jl Mjl
� 	

_Xjl

Vj ¼ 1
2
XT

jl Soj

Zlj
0

f 0wjf
0T
wjdfþ EAj

Zlj
0

f 0ujf
0T
uj df

2
64

3
75Xjl ¼

1
2
XT
jl Kjl
� 	

Xjl

ð4:27Þ

having indicated with:

f 0
wj
¼

@f
wj

@n
¼

0
� 1

lj
0
1
lj

8>><
>>:

9>>=
>>;; f 0

uj
¼

@f
uj

@n
¼

� 1
lj

0
1
lj
0

8>><
>>:

9>>=
>>; ð4:28Þ

In (4.27) Mjl
� 	

is the mass matrix in the local reference system of the generic taut
cable finite element:

Mj1
� 	 ¼ Zlj

0

mjfwjf
T
wjdnþ

Zlj
0

mjfujf
T
ujdn

2
64

3
75
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Rlj
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1� n
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¼ ljmj
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6
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3 0

0 1
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2
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3
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ð4:29Þ
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½Kjl� is the relative stiffness matrix, always defined in the local reference system:

Kjl
� 	 ¼ S0j

Zlj
0

f 0wjf
0T
wjdnþ EAj

Zlj
0

f 0ujf
0T
uj dn

2
64

3
75

¼

EAj
Rlj
0

� 1
lj


 �2
dn 0 EAj
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0

� 1
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 �
1
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0 S0j
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0

� 1
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dn 0 S0j

Rlj
0

� 1
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1
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1
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� 1
lj


 �
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0

1
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0

0 S0j
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0 � S0j

lj

�EAj

lj
0 EAj

lj
0

0 � S0j

lj
0 S0j
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2
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3
7777777775

ð4:30Þ

As it was possible to foresee, by studying a conservative system, ½Kjl� is symmetric
and singular (corresponding to the real situation of the free taut cable element in
space).

Let us observe that the product between the ith line of matrix ½Kjl� and vector Xjl

expresses the Lagrangian component of the elastic forces of the system according to
the ith local free coordinate, while the generic term Kjlðr; cÞ (rth line and cth
column) represents the generalized elastic force that is created according to the rth
d.o.f. due to a unitary displacement relative to the cth d.o.f. The fact that Mjl

� 	
and

½Kjl� are 4 × 4 matrices depends on the d.o.f. attributed to each node. If, for example,
we consider a cable element in space, we have to attribute 3 d.o.f. to each of the two
end nodes: in this case, we would have 6 × 6 matrices. In the case of the beam,
where rotations Mjl

� 	
and ½Kjl� are also assumed as independent variables, this

would have 12 × 12 size.

4.4.3 Transformation of Coordinates: Local Reference
System, Absolute Reference System

Having defined the schematization of the structure (or mesh) according to the
criteria outlined in Sect. 4.4.1 and having evaluated (as shown in Sect. 4.4.2) the
stiffness ½Kjl� and mass Mjl

� 	
matrices of the taut cable finite element in the local
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reference system, it is now necessary to define the stiffness ½Kjl� and mass Mjl
� 	

matrices of the single finite elements in the sole global reference system and to
assemble suitably the matrices of all the elements in order to define the equations of
motion of the complete system. The position of the nodes (Fig. 4.11) is defined by
the static equilibrium configuration assumed by the cable which, as is known, is a
catenary (this static configuration must, in any case, be determined previously). In
this way, each finite element assumes a different spatial orientation, as can clearly
be seen in Fig. 4.11, and each finite element will be subjected to a different static
tension Soj (this means that the stiffness matrices ½Kjl� of the various finite elements
are different). To write the equation of motion, a Lagrangian approach is adopted
and it will, thus, be necessary to define the total kinetic energy Ectot and the total
potential elastic energy Vtot of the structure, given by the sum of the single con-
tributions Ecj and Vj of all the m finite elements that make up the structure itself.
These functions, keeping account of (4.27), become:

Ectot ¼
Xm
j

Ecj ¼ 1
2

Xm
j

_X
T
jl Mjl
� 	

_Xjl

Vtot ¼
Xm
j

Vj ¼ 1
2

Xm
j

XT
jl Kjl
� 	

Xjl

ð4:31Þ

In these calculations, the local coordinates relative to a generic node are different,
depending on whether they belong to the right or left finite element of the node
itself (see Fig. 4.12). As previously mentioned, it is thus convenient to perform a
coordinate transformation by passing from a generic system of local coordinates
(Oj–Xj–Yj–Zj) to a system of absolute coordinates (O–X–Y–Z), so that only one set
of coordinates that define the displacement exist for each node. Let

s.r.a. Xj+1 1
Xj 1

Yi 

Xi 

Fig. 4.12 Different systems of local coordinates for the generic node

330 4 Introduction to the Finite Element Method



www.manaraa.com

• Xjl be the displacements of the end nodes of the generic finite element in the
local reference system (Fig. 4.13):

XT
jl ¼ Xsl Zsl Xdl Zdlf g ð4:32Þ

• X j the displacements expressed in the absolute reference system:

XT
j ¼ Xs Zs Xd Zdf g ð4:33Þ

In general, the link between the displacements Xjl of the end nodes of a jth
element in the local reference system and the corresponding displacements Xj

expressed in the global absolute reference system:

Xjl ¼ Kj
� 	

Xj ð4:34Þ

is given by the coordinate transformation matrix Kj
� 	

formed by directory cosines
in the local reference frame with respect to the global one.

In the case of the cable element in space equipped with six d.o.f. if~iL;~jL and~kL
are unit vectors of the local reference frame of the generic element (Fig. 4.14) and
~i;~j, and ~k are the unit vectors relative to the global absolute reference frame, the
transformation matrix [Λj] [2, 10, 26] is formed by two sub-matrices kj

� 	
which, in

their lines, have the direction cosines of the unit vectors of the local reference frame
~iL;~jL, and ~kL, with respect to the global reference frame:

XsB

XsB1ZsB1

ZsB

2

3 X dB

ZdB1

ZsB

XsB1

αB

Fig. 4.13 Coordinate transformation: plane case
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Kj
� 	 ¼ kj

� 	 ½0�
½0� kj

� 	� 
! kj
� 	 ¼ li mi ni

lj mj nj
lk mk nk

2
4

3
5 ð4:35Þ

where

• li, mi and ni are the direction cosines of unit vector~iL with respect to the axes of
the global reference frame;

• lj, mj and nj are the direction cosines of unit vector~jL;
• lk, mk and nk are the direction cosines of unit vector ~kL.

In the plane case analysed, this matrix is easily evaluated: let us consider, for
example, finite element B of Fig. 4.13 (the same considerations could be made for
all the other finite elements in the diagram). Let us look for the geometric link that
enables us to correlate the independent generalized coordinates XBl, that express the
end node displacements in the local reference system (OB–XB–YB–ZB), with the
generalized coordinates XB expressed in the global reference system O–X–Y–Z:

XBl ¼
XsB;l

ZsB;l

XdB;l

ZdB;l

8>><
>>:

9>>=
>>;; XB ¼

XsB

ZsB

XdB

ZdB

8>><
>>:

9>>=
>>; ¼

X2

Z2

X3

Z3

8>><
>>:

9>>=
>>; ð4:36Þ

From an analysis of Fig. 4.13, it is possible to easily express this link in scalar form
as:

XsB;1 ¼ X2 cos aB þ Z2 sin aB
XsB;1 ¼ �X2 sin aB þ Z2 cos aB ) XBl ¼ KB½ �XB

XdB;1 ¼ X3 cos aB þ Z3 sin aB
XdB;1 ¼ �X3 sin aB þ Z3 cos aB

ð4:37Þ
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Fig. 4.14 Coordinate
transformation: spatial case
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where KB½ � is the coordinate transformation matrix of element B defined as:

KB½ � ¼ kB½ � ½0�
½0� kB½ �

� 
¼

cos aB sin aB 0 0
� sin aB cos aB 0 0

0 0 cos aB sin aB
0 0 � sin aB cos aB

2
664

3
775 ð4:38Þ

Similarly it is possible to obtain the coordination transformation matrix Kj
� 	

rela-
tive to the jth finite element constituting the overall model of the structure. The
terms of kB½ � are the direction cosines of the local reference frame with respect to
the absolute reference frame.

4.4.4 Definition of the Stiffness [Kj] and Mass [Mj] Matrix
of the Taut Cable Element in the Global Reference
System

By introducing the coordinate transformation (4.34) into the expression of kinetic
energy Ectot and potential energy Vtot (4.31) we obtain:

Ectot ¼
Xm
j

1
2
_X
T
j Kj
� 	T

Mjl
� 	

Kj
� 	

_Xj ¼
Xm
j

1
2
_X
T
j Mj
� 	

_Xj ð4:39Þ

Vtot ¼
Xm
j

1
2
XT

j Kj
� 	T

Kjl
� 	

Kj
� 	

Xj ¼
Xm
j

1
2
XT

j Kj
� 	

Xj ð4:40Þ

having respectively used Mj
� 	

and Kj
� 	

to indicate the matrices of mass and
stiffness of the finite element referring to the global coordinates:

Mj
� 	 ¼ Kj

� 	T
Mjl
� 	

Kj
� 	

Kj
� 	 ¼ Kj

� 	T Kjl
� 	

Kj
� 	 ð4:41Þ

In (4.39) and (4.40) vectors Xj contain the 4 d.o.f. of the nodes of the jth element
defined in the global reference system.

4.4.5 Assembly of the Complete Structure

Let us now indicate with Xt the vector that contains all the d.o.f. of the structure
analysed, assumed, for the time being, as free in space. In the example analysed,
(see Fig. 4.11) we will have:
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Xt ¼

X1

Z1

..

.

Xi

Zi

..

.

X9

Z9
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>>>>>>>>>>>>:

9>>>>>>>>>>>>=
>>>>>>>>>>>>;

ð4:42Þ

The generic term of kinetic energy Ecj or potential energy Vj can thus be redefined
as:

Ecj ¼ 1
2
_X
T
j Mj
� 	

_Xj ¼
1
2
_X
T
t Mj
� 	

_Xt

Vj ¼ 1
2
XT

j Kj
� 	

Xj ¼
1
2
XT

t Kj
� 	

Xt

ð4:43Þ

this procedure is defined as “expansion to the dimensions of the complete model”.
In expressions (4.43) the matrices Mj

� 	
or Kj
� 	

are singular matrices except in
correspondence to the terms present in the corresponding reduced matrices Mj

� 	
and Kj

� 	
as shown in Fig. 4.15.

Fig. 4.15 Expansion
procedure of the matrices to
total dimensions
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In other words, with the expression shown in (4.43), the generic form of energy
of the generic finite element is expressed as a function of displacements Xt relative
to all the nodes of the overall model. The kinetic and overall potential energy (4.39)
and (4.40) can, in this way, keeping account of the formalism shown in (4.43), be
expressed as:

Ectot ¼ 1
2

Xm
j

_X
T
t Mj
� 	

_Xt ¼
1
2
_X
T
t

Xm
j

Mj
� 	" #

_Xt ¼
1
2
_X
T
t Mtot½ � _Xt

Vtot ¼ 1
2

Xm
j

XT
t Kj
� 	

Xt ¼
1
2
XT

t

Xm
j

Kj
� 	" #

Xt ¼
1
2
XT

t Ktot½ �Xt

ð4:44Þ

Mtot½ � ¼
Xm
j

Mj
� 	" #

; Ktot½ � ¼
Xm
j

Kj
� 	" #

ð4:45Þ

respectively the matrices of mass and stiffness of the complete structure (still devoid
of constraints): these matrices are thus defined through the assembly operation, i.e.
the sum of the expanded matrices relative to the single elements.

To obtain the complex matrices Ktot½ � and Mtot½ � it is not, however, necessary,
nor even convenient, to use the complete expression of kinetic energy Ectot and
potential energy Vtot according to formulation (4.44). By analysing the assembly
procedure shown in Fig. 4.16, it is easy to observe how the generic term
Mtot r; cð Þ; Ktot r; cð Þ, of the global mass Mtot½ � and stiffness Ktot½ � matrices of (4.45)

Fig. 4.16 Procedure of
operative assembly
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is obtained by adding up the contribution Mj r; cð Þ and Kj r; cð Þ due to the single
matrices ½Mj� and Kj

� 	
relative to the same d.o.f. r and c:

Mtot r; cð Þ ¼
Xm
j¼1

Mjðr; cÞ; Ktotðr; cÞ ¼
Xm
j¼1

Kjðr; cÞ ð4:46Þ

It is thus clear how the matrices Ktot½ � and Mtot½ � of the complete model can be
easily obtained by means of a suitable assembly of the single matrices Kj

� 	
and

Mj
� 	

relative to the single finite elements (defined in the global reference system)
without resorting to the expansion of these matrices in Kj

� 	
and Mj

� 	
. The assembly

operation is thus performed by algebraically adding up the single contributions
Kj i,lð Þ and Mj i,lð Þ directly in the final matrices of the complete structure Ktot½ � and
Mtot½ �, as shown in Fig. 4.16.

4.4.5.1 Damping Matrix [Rtot]

Damping is introduced into a finite element model as seen in n d.o.f. systems
(Chap. 2) through the dissipation function:

Dtot ¼ Dd þ Dc ¼ 1
2
_X
T
t Rd½ � _Xt þ

1
2
_X
T
t Rc½ � _Xt ¼

1
2
_X
T
t Rtot½ � _Xt ð4:47Þ

where Rtot½ � is the damping matrix of the complete system. Generally speaking this
matrix is defined by the sum of the two different contributions associated with the
distributed structural damping Rd½ � and possible concentrated dampers present in
the structure Rc½ �. As regards structural damping, it is not possible to define a
dissipation function Dd expressed in analytical form from which the damping terms
can be obtained (similar to the procedure used for the kinetic energy and the
potential energy). In fact, it is customary to define an equivalent viscous damping
[12, 13, 22, 25, 26] proportional to speed, by means of matrix Rtot½ �. This matrix is
assumed proportional to the mass and stiffness matrix8:

Rd½ � ¼ a Mtot½ � þ b Ktot½ � ð4:48Þ

Coefficients a and b are linked to the critical damping of the generic ith normal
mode by means of relation:

hi ¼ r
rc

� �
i
¼ a

2xi
þ bxi

2
ð4:49Þ

8According to this, the damping matrix in principal coordinates is diagonal. Its generic term can be
expressed as rii ¼ amii þ bkii, thereby obtaining (4.49), see also Chap. 2.
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It is, thus, possible to determine a and b:

• in a deterministic manner, i.e. by imposing the critical damping value (obtained
experimentally) in correspondence to two specific natural frequencies;

• by imposing, in the frequency field of interest 0 < ωi < Ωmax, different values of
hi as a function of the natural frequencies ωi, thus obtaining coefficients a and b
using a least squares approach.9

Conversely, as regards the dissipative function Dc associated with concentrated
elements, this is expressed by using a procedure similar to the one used for the
elastic and kinetic energy relative to the finite elements. Dissipative function Dcj

relative to the generic damper (Fig. 4.17):

Dcj ¼ 1
2
rj _Dl2rj ¼

1
2
rj _Z2

sl � _Z2
dl

� � ð4:50Þ

is expressed, first and foremost, in a system of local coordinates Xjl in which Z is
oriented following the longitudinal axis of the damper (Fig. 4.17):

Zdl

Xdl

Zsl

Xsl

Zd

Xd

Zs

Xs

Fig. 4.17 Introduction of a dissipation element in a finite element diagram

9In this case, coefficients a and b are defined minimizing the root mean square error function:

f a; bð Þ ¼
Xnf
1

hi � a
2xi

þ bxi

2

� �2

¼ min ð4:9:1Þ

i.e. by imposing:

@f
@a

¼ 0;
@f
@b

¼ 0: ð4:9:2Þ
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XT
jl ¼ Xsl Ysl Zsl Xdl Ydl Zdlf g ð4:51Þ

Defined by the position of the generic dissipation element (Fig. 4.17), applied to the
nodal points:

Dcj ¼ 1
2
_X
T
jl Rsl½ � _Xjl ð4:52Þ

where Rsl½ � is the damping matrix of the generic damper:

Rsl½ � ¼

0 0 0 0 0 0
0 0 0 0 0 0
0 0 rj 0 0 �rj
0 0 0 0 0 0
0 0 0 0 0 0
0 0 �rj 0 0 rj

2
6666664

3
7777775 ð4:53Þ

Subsequently, the coordination transformation is performed from the local reference
system (i.e. from variables Xsl of (4.50) to the global one coordinates Xs):

XT
j ¼ Xs Ys Zs Xd Yd Zdf g ð4:54Þ

Through the coordinates transformation matrix Ksj
� 	

:

Xjl ¼ Ksj
� 	

Xj ¼ kj
� 	 ½0�
½0� kj

� 	� 
Xj ð4:55Þ

Formed by directory cosines in the local reference frame with respect to the global
one. By introducing the coordinates transformation (4.55) into the dissipation
function expression Dcj (4.51) we obtain:

Dcj ¼ 1
2
_X
T
j Ksj
� 	T Rsl½ � Ksj

� 	
_Xj ¼

1
2
_X
T
j Rs½ � _Xj ð4:56Þ

where ½Rs� is the damping matrix in global coordinates:

½Rs� ¼ Ksj
� 	T

Rsl½ � Ksj
� 	 ð4:57Þ
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The overall dissipation function Dc associated with mr concentrated elements is thus
given by the sum of the single contributions:

Dc ¼ 1
2

Xmr
s¼1

_X
T
j ½Rs� _Xj ¼

1
2

Xmr
s¼1

_X
T
t Rs
� 	

_Xt

¼ 1
2
_X
T
t

Xmr
s¼1

Rs
� 	" #

_Xt ¼
1
2
_X
T
t Rc½ � _Xt

ð4:58Þ

4.4.6 Calculation of the Generalized Forces

To define the vector of the generalized forces Ft due to external forces (4.18), it is
necessary to evaluate the virtual work d�Ltot performed by same for a virtual
displacement of the independent variables d�X t which, in this case, are the node
displacements of the finite element schematization. By following the systematic
approach, already used both for the discrete systems (Chap. 2, Sect. 2.2), first and
foremost, we will define the virtual work as a function of the virtual displacement of
the application point of the excitation force, a displacement to be considered as a
physical variable.

We will subsequently correlate this physical variable with the local independent
variables, i.e. nodal displacements X jl, by means of the natural shape functions of
the generic finite element used, and, therefore, with the nodal displacements X j

through the transformation matrices Kj
� 	

(4.55). The treatment that follows is
independent of whether it is a question of dealing with a static (in which the forces
do not depend on time) or dynamic problem (in which, conversely, the forces
depend on time). The type of excitation force (static or dynamic) will only influence
the techniques necessary to solve the resulting equations of motion. Finally, it is
necessary to remember that since the structure is still free in space, it will also be
necessary to express the virtual work of the constraint reactions FV.

4.4.6.1 Forces Concentrated at the Nodes

First and foremost, let us examine the simpler case of mF concentrated forces
applied in the nodal points of the structure analysed (Fig. 4.18). In this case, the
virtual work performed by these forces is:

d�Ltot ¼
XmF

k¼1

d�Lk ð4:59Þ
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where d�Lk is the virtual work of the generic concentrated force ~Fk k ¼ 1;mFð Þ
applied in generic node k of the schematization of the span for the virtual dis-
placement d�wk of the application point of the same force:

d�Lk ¼ Fk d
�wk ð4:60Þ

Let us consider vector Fk, containing the components of the generic kth force ~Fk in
the absolute reference (Fig. 4.16):

Fk ¼
Fkx
Fky

Fkz

8<
:

9=
;) Fk ¼ iFkx þ jFky þ kFkz ð4:61Þ

Having used Xk:

Xk ¼
Xkx

Xky

Xkz

8<
:

9=
;) wk ¼ iXx þ jXy þ kXz ð4:62Þ

to indicate the vector containing the 3 displacement components of the generic kth
node, defined by the absolute reference system, work d�Lk of the external force
acting on the generic kth node can be expressed as:

d�Lk ¼ FTkd
�Xk ð4:63Þ

For the sake of convenience, similar to the procedure adopted for the assembly of
the total stiffness Ktot½ � and Mtot½ � matrices, let us consider a vector Fk having the
same dimensions as the number of d.o.f. of the system, consisting of the elements of

Fig. 4.18 Concentrated force in the generic kth node
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vector Fk placed in correspondence to the d.o.f. relative to the kth node, where the
other terms of the same vector are null:

Fk ¼

0
0
. . .
Fk
. . .
0
0

8>>>>>>>><
>>>>>>>>:

9>>>>>>>>=
>>>>>>>>;

ð4:64Þ

The virtual work performed by the generic kth concentrated force acting on the
generic kth node can be rewritten as:

d�Lk ¼ FTkd
�Xk ¼ FTkd

�Xt ð4:65Þ

in which Xt is the vector that contains all the d.o.f. of the structure (4.42). Let us
consider all the mF concentrated forces applied to the structure, the total work is the
sum of contributions of each element affected by the concentrated forces:

d�Ltot ¼
XmF

k¼1

d�Lk ¼
XmF

k¼1

FTkd
�Xt ¼

XmF

k¼1

FTk

( )
d�Xt ¼ FTt d

�Xt ð4:66Þ

Having used Ft to define the vector as a sum of the single contributions:

Ft ¼
XmF

k¼1

Fk ð4:67Þ

As seen in Sect. 4.4.5 in relation to the mass and stiffness matrices (Eq. (4.45);
Fig. 4.16), this procedure is anything but convenient. The complete vector Ft of the
forces is defined by directly adding up the single contributions Fk in correspon-
dence to the d.o.f. relative to the corresponding node (Fig. 4.19), using the meth-
odology already described in Sect. 4.4.5 and in Fig. 4.18, without passing through
the expansion of Fk in vector Fk.

4.4.6.2 Distributed Forces

In the case in which the finite element is subjected to the distributed forces~pðnÞ of
components pvðnÞ; puðnÞ, and pwðnÞ (projected in the local reference system (Oj–

Xj–Yj–Zj), see Fig. 4.20, the virtual work performed by these forces can be defined
as:
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d � L ¼
Zlj
0

puðnÞd�u dnþ
Zlj
0

pvðnÞd�v dnþ
Zlj
0

pwðnÞd�wdn ð4:68Þ

By means of the shape form vectors (4.6), (4.5), it is possible to express the virtual
displacements in the local reference, as a function of the d.o.f. of the element,
always in the local reference:

Fig. 4.19 Operative
assembly procedure of the
vector of the generalized
forces Ft

Fig. 4.20 Distributed forces
pw in local reference
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d�u ¼ fTu ðnÞd�Xjl

d�v ¼ fTv ðnÞd�Xjl

d�w ¼ fTwðnÞd�Xjl

ð4:69Þ

Let us now calculate the work performed by the distributed forces as a function of
the independent variables nodal displacements Xjl of the generic jth finite element
in the local reference system:

d�Lj ¼
Zlj
0

puðnÞfTu ðnÞdnþ
Zlj
0

pvðnÞfTv ðnÞdnþ
Zlj
0

pwðnÞfTwðnÞdn

2
64

3
75d�Xjl ¼ FTjld

�Xjl

ð4:70Þ

Let us recall that the vectors of the shape functions have as many elements as the d.
o.f. of the finite element so that, as a consequence, vector Fjl defined in (4.70) has
the same number of elements. The elements of vector Fjl assume the meaning of
generalized nodal forces (in the local reference system), energetically equivalent to
the distributed forces applied to the element itself. By means of the coordinate
transformation matrix Kj

� 	
(4.35) which correlates the independent coordinates

relative to the jth generic finite element in the local reference system and those in
the absolute reference system Xj (4.34), the virtual work expressed as a function of
the independent coordinates in the global reference is:

d�Lj ¼ FTjld
�Xjl ¼ FTjl Kj

� 	
d�Xjl ¼ FTj d

�Xj ð4:71Þ

where Fj is a vector of the dimensions equal to the number of d.o.f. of the generic
finite element that contains the generalized forces concentrated at the nodes of the
discretized finite element model defined in the global reference system:

Fj ¼ Kj
� 	TFjl ð4:72Þ

As already seen in Sect. 4.4.6.1, (4.66), by considering a vector Fj having the same
dimensions as the number of d.o.f. of the system, consisting only of elements of
vector Fj placed in correspondence to the d.o.f. relative to the jth element, in this
way, the total work is the sum of the contributions of each element affected by the
distributed forces:

d�Lt ¼
Xm
j¼1

F
T
j d

�Xt ¼
Xm
j¼1

F
T
j

( )
d�Xt ¼ FTt d

�Xt ð4:73Þ
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As already observed in the two previous paragraphs, the assembly of these forces Fj
in the overall vector of the generalized external excitation forces Ft is performed by
algebraically adding up the single terms of vector Fj in correspondence to the
relative d.o.f. The extension to the calculation of the generalized forces due to
concentrated forces applied inside the generic finite element is a particular appli-
cation of the more general case of distributed forces.

4.4.6.3 Moving Loads

Let us now consider the case, already tackled using the modal method, applied to
continuous systems (Chap. 3, Sect. 3.7.1.1.3) of a moving load acting on the
structure. To simplify matters, we will refer to a simply supported beam traversed by
a moving load of constant module P, travelling with a constant velocity V (Fig. 4.21).
The assembly of the mass, stiffness and damping matrix of the system considered is
obviously taken for granted, while we will now analyse the question regarding
calculation of the Lagrangian component of the moving force. At the generic instant
of time t, the load is found inside the jth finite element (see Fig. 4.21): for this reason,
the vector of the generalized forces on the free nodes of the structure will obviously
be completely null, except in correspondence to the d.o.f. of the end nodes of the
generic jth finite element.

For this reason, the work performed by the moving load can be evaluated as a
function of the physical variable wj n ¼ Vt� Dlj�1

� �
which represents the dis-

placement of the application point of the force itself:

d�L ¼ �P d�wjðn ¼ Vt� Dlj�1Þ ð0� n� ljÞ ð4:74Þ

evaluated at n (which changes in time),

Z

ξ

( ),jw tξ P

V

s

jlΔlj-1

Fig. 4.21 Moving loads on a beam schematized with finite elements
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wjðnÞ ¼ fTwðnÞXjlðtÞ ð4:75Þ

By keeping account of the link between the physical variable wj and displacement
Xjl of the end nodes of the finite element considered in the local reference system

(defined by means of the shape function fTw, see (4.75), Fig. 4.22) (4.74) can be
rewritten as:

d�L ¼ �PfTw f ¼ Vt� Dlj�1
� �

d�Xjl ¼ FTjl tð Þd�Xjl 0� f� lj
� � ð4:76Þ

having used:

Fjl tð Þ ¼ �Pfw f
� � ð4:77Þ

to indicate the vector of the generalized forces in the local reference system.
By keeping account of the transformation from a local reference to a global

system (4.78) defined by the coordinate transformation matrix Kj
� 	

(in this partic-
ular case an identity matrix):

Xjl ¼ Kj
� 	

Xjg ð4:78Þ

(4.76) becomes:

d�L ¼ FTjl tð Þd�Xjl ¼ FTjl tð Þ Kj
� 	

d�Xjg ¼ FTjg tð Þ d�Xjg 0� f� lj
� � ð4:79Þ

having used

Fjg ¼ Kj
� 	TFjl ð4:80Þ

to indicate the vector of the generalized forces with the generic instant of time.

Z

ξ

( ),jw tξ

s

jlΔlj-1

Xjl

Fig. 4.22 d.o.f. X jl of the generic finite element
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This vector must subsequently be assembled with vector Ftot of the overall
system. Obviously, because the moving load is travelling along the beam, instant by
instant, this will affect the different finite elements, and the vector of the generalized
forces, relative to the jth generic finite element in which the load finds itself, will
also vary over time. The numerical integration of the equations of motion of the
system will provide the dynamic response of same to the moving load. Particular
attention [8, 9] should be paid in terms of correctly locate the finite elements of the
structure, keeping account of the introduction of a fictitious periodicity of the
generalized force introduced by the very discretization of the system in finite ele-
ments. As far as the approach that uses finite elements is concerned, all the con-
siderations made in Chap. 3, Sect. 3.7.1.1.3 obviously apply, due to the need to
often simulate the moving load (in the event of this representing a road or rail
vehicle) using a dynamic discrete model.

4.4.7 Imposition of Constraints (Boundary Conditions)

Thus, as shown in Sect. 4.4.5, having obtained the stiffness Ktot½ �, mass Mtot½ � and
damping Rtot½ � matrices of the total structure and having defined the vector of the
Lagrangian components of non-conservative forces Ft, as shown in Sect. 4.4.6, it is
possible to express the various forms of energy as a function of the sole inde-
pendent coordinates represented by nodal displacements:

Ectot ¼ 1
2
_X
T
t Mtot½ � _Xt

Vtot ¼ 1
2
XT

t Ktot½ �Xt

Dtot ¼ 1
2
_X
T
t Rtot½ � _Xt

ð4:81Þ

In this way, by applying the Lagrange equations (Sect. 4.3, (4.15)):

d
dt

@Ectot

@ _Xt

� �� �T

� @Ectot

@Xt

� �T

þ @Dtot

@ _Xt

� �T

þ @Vtot

@Xt

� �T

¼ Ft ð4:82Þ

it is possible to write the equations that govern the motion of the structure sche-
matized with finite elements [2, 26]:

Mtot½ �€Xt þ Rtot½ � _Xt þ Ktot½ �Xt ¼ Ft ð4:83Þ

where, as we recall, Mtot½ � is the mass matrix of the complete finite element model
(Sect. 4.4.5), Ktot½ � the relative stiffness matrix (Sect. 4.4.5, (4.45)), Rtot½ � the
damping matrix (Sect. 4.4.5.1, (4.47)) and, finally, Ft the vector of the generalized
external forces of the discretized finite element model (Sects. 4.4.6.1 and 4.4.6.2).
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Equations (4.83) represent the equations of motion of the system analysed, dis-
cretized with finite elements, still free in space, since, as yet, no constraint condition
has been imposed: for this reason, for example, the overall stiffness matrix Ktot½ � is
singular, in that, at this point, rigid motions of the structure are still possible.
Having chosen the constraints of the structure towards the outside world, it is
necessary to re-number the equations of the system (4.83) by reorganizing the
vector of the generalized coordinates Xt in a form divided as follows:

Xt ¼ XL
XV

� �
ð4:84Þ

having used:

• XL to indicate the vector relative to the actual d.o.f. of the structure;
• XV to indicate the vector relative to the “constrained” d.o.f., i.e. of those d.o.f.

whose displacement value is known on account of having been imposed.

The displacements of the constraints, defined by the terms present in vector XV,
can be specifically:

• null, in the case of structures with fixed constraints;
• different from zero in the case of motion imposed on the constraints as, for

example, occurs in simulations of the behaviour of a structure with seismic
excitation.

Given the new order imposed on the independent variables in vector Xt (4.84),
the global matrices Mtot½ �; Rtot½ �, and Ktot½ � must be re-ordered in such a way that the
system of initial equations (4.83) coincides with that obtained after the renumbering
of the variable inside vector Xt: this can be obtained by re-ordering the lines and the
columns of the initial matrices with the same new order associated with vector Xt
(4.84). In this way, the re-ordered matrices can be assumed, in turn, as divided into
sub-matrices and the initial equations (4.83) can be rewritten as10 [2, 10, 13, 22]:

MLL½ � MLV½ �
MVL½ � MVV½ �

� 
€XL
€XV

� �
þ RLL½ � RLV½ �

RVL½ � RVV½ �
� 

_XL
_XV

� �
þ KLL½ � KLV½ �

KVL½ � KVV½ �
� 

XL
XV

� �
¼ FL

FV þ RV

� �
¼ FL

FV

� �
ð4:85Þ

10From a practical operative point of view, the assembly of the different structural matrices and of
the vector of the generalized external forces is, in actual fact, always performed directly in the split
form of Eq. (4.96) without passing through vector Xt.
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In (4.85):

• matrix MLL½ � thus represents the inertia forces on free d.o.f. XL due to a unitary
acceleration €XL of the d.o.f. themselves;

• matrix MLV½ � represents the inertia forces on free d.o.f. XL due to a unit
acceleration €XV imposed on the constrained d.o.f.;

• matrix MVL½ � represents the inertia forces on the constrained d.o.f. XV due to a
unit acceleration €XL;

• matrix MVV½ � represents the inertia forces on the constrained d.o.f. XV due to a
unit acceleration €XV and so forth.

In the same equation:

• FL is used to indicate the vector (known) of the generalized forces acting on the
free d.o.f. due to active external stresses;

• FV is used to indicate the vector (known) of the generalized forces acting on the
constrained d.o.f. due to the active external stresses (these forces will be off-
loaded directly on the constraints);

• RV is used to indicate the vector (unknown) of the restrained reactions.

Using this formalism, it is possible to highlight the unknowns of the problem,
i.e. the displacement of the independent d.o.f. XL (and their derivatives) and the
restrained forces RV contained in vector FV together with the part of generalized
forces relative to the constrained d.o.f. FV. For a better manipulation of these
equations it is convenient to consider this system as decomposed into two matrix
subsystems.

MLL½ �€XL þ MLV½ �€XV þ RLL½ � _XL þ RLV½ � _XV þ KLL½ �XL þ KLV½ �XV ¼ FL ð4:86Þ

MVL½ �€XL þ MVV½ �€XV þ RVL½ � _XL þ RVV½ � _XV þ KVL½ �XL þ KVV½ �XV ¼ FV þ RV

ð4:87Þ

The product of vector XV and its derivatives for the respective matrices
KLV½ �; RLV½ �, and MLV½ �, which appear in (4.86), represent the forces acting on the
unrestrained d.o.f. of the structure due to the motion imposed on the constraints:
these forces are known in that the displacements of constraints XV themselves are
known. For this reason, expressions (4.86) and (4.87) can be rewritten as:

MLL½ �€XL þ RLL½ � _XL þ KLL½ �XL ¼ FL � MLV½ �€XV � RLV½ � _XV � KLV½ �XV ¼ FL
ð4:88Þ

RV ¼ MVL½ �€XL þ MVV½ �€XV þ RVL½ � _XL þ RVV½ � _XV þ KVL½ �XL þ KVV½ �XV � FV
ð4:89Þ
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where FL is the vector containing the overall forces acting on the structure,
inclusive of both the applied external forces FL and the effects of the displacements
of the constraints (this result was already highlighted in the systems with 2 d.o.f.,
Chap. 2, Sect. 2.4.3.4, subjected to constraint displacements). In Eq. (4.88)
MLL½ �; RLL½ �, and KLL½ � represent the overall matrices of the unrestrained d.o.f.:
these matrices, if referred to perturbed motion about the static equilibrium position,
assumed stable, of a dissipation system, prove to be symmetric and are positive
definite. Having assigned the imposed motion to constraints XV and having eval-
uated the generalized forces FL acting on the structure, by solving Eq. (4.88), it is
possible to calculate the response of the system in terms of displacements relative to
unrestrained d.o.f. XL. Having introduced this solution into (4.89) and since the
motion imposed on the constraints is known, it is possible to evaluate the constraint
reactions RV. The two matrix Eqs. (4.88) and (4.89) obtained in this way are
nothing other but the generalized equations of dynamic equilibrium relative to the
free nodes (4.88) and to the constrained nodes (4.89). Let us now return to the
example considered (Fig. 4.11): in this case, the d.o.f. relative to the constraints are:

XT
V ¼ X1 Z1 X9 Z9f g ð4:90Þ

while those of the free nodes are the remaining ones:

XT
L ¼ X2 Z2 . . . X7 Z7 X8 Z8f g ð4:91Þ

It is, thus, possible to renumber vector Xt (4.42) as:

Xt ¼
XL
�
XV

8<
:

9=
;XT

L ¼

X2

Z2

. . .
X8

Z8

�
X1

Z1

X9

Z9

8>>>>>>>>>>>>>><
>>>>>>>>>>>>>>:

9>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>;

ð4:92Þ

The overall stiffness matrix of the free structure in space, already assembled in
Sect. 4.4.5, ((4.45); Fig. 4.15), must be re-ordered Ktot½ �, keeping account of the
new order of variables in the divided vector Xt (4.92) as shown in Fig. 4.23. The
same division must be made to obtain the damping Rtot½ � and mass Mtot½ � matrix and
the vector of the generalized forces Ft.

It goes without saying that the assembly of the single matrices of stiffness and
mass, as well as the generalized forces on the nodes, can be performed by directly
assembling the matrices of the single finite elements Mj

� 	
; Kj
� 	

, and Fj (defined in
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the absolute reference system, Sect. 4.4.4, (4.39) and (4.40) in matrices Mtot½ �; Ktot½ �,
and in vector Ft by making direct reference to the new numbering of vector Xt of
(4.92).

4.4.8 Solving the Equations of Motion

Having defined the methods for the calculation of the generalized forces, in the
most usual cases (concentrated and distributed forces), we will now consider all the
different types of linear analysis that can be tackled using the finite element method
and more specifically:

• Static linear analyses (Sect. 4.4.8.1);
• Dynamic analyses

(a) calculation of natural frequencies and normal modes (Sects. 4.4.8.2.1 and
4.4.8.2.2);

(b) steady-state response of a structure with an applied external excitation
force (Sect. 4.4.8.2.3);

(c) steady-state response of a structure with impressed constraint
displacements.

The analysis of the nonlinear, static and dynamic type, will be dealt with in
Sect. 4.7. In particular, we will show how to tackle static nonlinear problems while

=][ AK A1 A2

A3 A4

x2 z2 x3 z3 x4 z4 x5 z5 x6 z6 x7 z7 x8 z8 x1 z1 x9 z9

x2

z2

x3

z3

x4

z4

x5

z5
x6

z6

x7

z7

x8

z8

x1

z1

x9
z9

[KVV]

H2

A2

H3

A1

H4[KLV]

A4 A3

H1

[KLL]

[KLv]

[Kj]

Fig. 4.23 Division of the stiffness matrix
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for nonlinear dynamic analyses we suggest that you refer to Chap. 5, relative to
nonconservative force fields (see also [2, 4, 18, 21]).

4.4.8.1 Static Linear Analyses

In order to analyse the static behaviour of the structure schematized with finite
elements subjected to constant external forces FL ¼ F0, it is necessary to impose the
constraints with the outside world on same:

€XV ¼ _XV ¼ XV ¼ 0 ð4:93Þ

and, since we are carrying out a static analysis, we will also have11:

€XL ¼ €X ¼ 0
_XL ¼ _X ¼ 0

ð4:94Þ

By keeping account of (4.94) and (4.95), the equations that allow us to evaluate the
response of the structure and the relative constraint reactions (4.88), (4.89) are
reduced, in this case, to:

KLL½ �X0 ¼ F0 ) K½ �X0 ¼ F0 ) X0 ¼ ½K��1F0
R0V ¼ �F0V þ KVL½ �X0

ð4:95Þ

Once the generalized forces F0 applied to the free nodes are known, the first matrix
equation enables us to obtain the static displacements X0 to which this is subjected,
while the second, having obtained displacements X0 from (4.95), enables us to
determine the constraint reactions R0V. Let us remember that if, as a shape function,
we have assumed the static deformation of the element subject to forces applied
only at the nodes, the static solution shown here is rigorous when the forces are
applied only at the nodal points.

4.4.8.2 Dynamic Analyses

4.4.8.2.1 Calculation of the Natural Frequencies and Normal Modes

To study the undamped free motion of the structure it is necessary to trace back the
complete equations (4.86), as seen for discrete n d.o.f. systems, to the characteristic
homogenous equation:

11Further on and unless otherwise indicated, in order not to complicate the symbology, we will
omit the subscripts meaning that we will thus use XL ¼ X;FL ¼ F; ½KLL� ¼ ½K�; ½MLL� ¼ ½M�, etc.
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M½ �€Xþ K½ �X ¼ 0 ð4:96Þ

The calculation of the natural frequencies of system xi and of the relative normal
modes XðiÞ is traced back, as already seen for 2-n d.o.f. systems, Chap. 2, Sect. 2.3.1,
to the calculation of the eigenvalues and the eigenvectors of matrix M½ ��1 K½ �. In the
event of our wishing to study the damped free motion of the structure, it is nec-
essary to evaluate the solutions of the characteristic homogenous equation:

M½ �€Xþ R½ � _Xþ K½ �X ¼ 0 ð4:97Þ

in other words, it is necessary to obtain the natural frequencies of system ki ¼
ai þ ixi (complex conjugates) and the relative normal modes XðiÞ. It is possible to
trace this problem back (always see Chap. 2, Sect. 2.4.2.2.1) to the calculation of
the eigenvalues and eigenvectors of matrix A½ � ¼ �½B��1 C½ �, having used ½B� and
C½ � to define:

½B� ¼ M½ � R½ �
½0� I½ �

� 
; C½ � ¼ ½0� K½ �

� I½ � ½0�
� 

ð4:98Þ

4.4.8.2.2 Response of the Structure to External Applied Excitation Forces

Let us now consider the case of a structure, with fixed constraints (i.e. with Xv = 0),
subjected to external concentrated or distributed excitation forces generally of time:
in this case it is necessary to once again return to (4.86) in its complete form [3]:

M½ �€Xþ R½ � _Xþ K½ �X ¼ F tð Þ ð4:99Þ

MVL½ �€Xþ RVL½ � _Xþ KVL½ �X� FVðtÞ ¼ RV ð4:100Þ

The solution of (4.99) can be obtained analytically or, more frequently, numeri-
cally: having thus defined the values of X; _X, and €X, the constraint reactions RV can
be obtained from (4.100). In the specific case of applied harmonic excitation forces:

F ¼ FðtÞ ) F ¼ Foe
iXt; FV ¼ FV ðtÞ ) FV ¼ FVoe

iXt ð4:101Þ

the steady-state solution will be of the following type:

X ¼ X0e
iXt ð4:102Þ
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which when placed in (4.98) gives:

X0 ¼ �X2 M½ � þ iX R½ � þ K½ �� 	�1
F0 ð4:103Þ

By substituting (4.102) in (4.99) it is possible to evaluate the constraint reactions
which, in complex terms, are given by the following relation:

�X2 MVL½ � þ iX RVL½ � þ KVL½ �� 	
X0 � FV0

� �
eiXt ¼ RV0e

iXt ð4:104Þ

Solution X0 of (4.103) is a vector of complex numbers: the module of each element
represents the vibration amplitude of the generic d.o.f., while the phase represents
the phase lag with respect to the excitation force.

4.4.8.2.3 Response of the Structure to Imposed Constraint Displacements

If we assume that the constraints (or some of them) are subjected to imposed
displacements, i.e. XV 6¼ 0; _XV 6¼ 0; €XV 6¼ 0, from (4.86) and (4.87) we will obtain:

M½ �€Xþ R½ � _Xþ K½ �X ¼ � MLV½ �€XV � RLV½ � _XV � KLV½ �XV ¼ FL ð4:105Þ

RV ¼ MVL½ �€Xþ MVV½ �€XV þ RVL½ � _Xþ RVV½ � _XV þ KVL½ �Xþ KVV½ �XV � FV
ð4:106Þ

where the terms FL on the right hand side of the equal sign in the first matrix
equation are all known since the displacements XV imposed on the constraints are
known. The solution of these equations can thus be traced back to the solutions of
the equations of the previous case.

4.4.9 A Numerical Example

For the mathematical model, discretized with finite elements, of a span of a high
tension line already described in Sect. 4.4, Figs. 4.10 and 4.11, using the procedures
previously described, it is thus possible to calculate the natural frequencies ωi and
the response of the system to an external excitation.

The first natural frequencies are shown in Fig. 4.24 and a marked continuous line
is used to show the associated modes (in the vertical plane) evaluated in the absence
of damping. As can be seen, the first normal mode does not show an antinode in the
middle: this is due to the stiffening caused by the particular geometric configuration
assumed by the cable in the static equilibrium position (or rather by the presence of
the coordinate transformation matrices Kj

� 	
of the single finite elements that intro-

duce axial stiffness effect of the cable into the vertical plane). The same model was
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subjected to a sinusoidal excitation force F7 ¼ F7j jeiXt with a constant amplitude
( F7j j ¼ 100 da N) applied to node 7 of the model (see Fig. 4.11) in a field of

frequencies 0Hz�X=2p� 1:5Hz. The damping matrix, defined as reported in (4.48)
was assumed in order to obtain a critical damping r=rc equal to approximately 1–2 %
in the field of frequencies analysed. As an example, Fig. 4.25 shows the trend,
resulting from the variation of the excitation frequency X, of module Z3j j and of
phase /3 of the vertical displacement of node 3 where Z3ðtÞ ¼ Z3j j cos Xt þ /3ð Þ:
the frequency response shows three resonance peaks, corresponding to the first three
natural frequencies excited by the force applied in the field of frequencies considered
(note the simultaneous shift to 90° of the phase angle).

Fig. 4.24 Deformations of the first four vertical normal modes calculated

Fig. 4.25 Frequency response of the vertical d.o.f.: node 3 of the structure
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Figure 4.26 shows the trend of module Z5j j and of the relative displacement
phase /5 of the central point (node 5, see Fig. 4.11) when the frequency varies. As
it was possible to foresee from an analysis of the natural frequencies and, above all,
of the relative normal modes of the structure shown in Fig. 4.24, only two peaks are
visible for point 5, that correspond to the second and third natural frequency.

Conversely, a peak in correspondence to the first frequency is not shown in the
graph because as far as this is concerned point 5 is a nodal point (see Fig. 4.24).
Always for the forced case considered, Fig. 4.27 shows the trend of module Z2j j and
Z8j j and of phases /2 and /8 (relative to the excitation force) of the vertical

Fig. 4.26 Frequency response of the vertical d.o.f.: node 5 of the structure

Fig. 4.27 Frequency response of the vertical d.o.f. of nodes 2 and 8 of the structure

4.4 Taut Cable Finite Element (an Application Example) 355



www.manaraa.com

displacements of node 2 and 8. The transition through the first natural frequency
occurs with a relative phase shift /r ¼ /2 � /8 of approximately 180°, while at the
second resonance (corresponding to the third normal mode) the relative phase /r is
null: as can be verified, this is congruent with the deformations of the normal modes
shown in Fig. 4.24: in fact, in the first normal mode Z2 and Z8 are in counter-phase
(/r ¼ 180�), while in the third mode Z2 and Z8 are in phase with each other
(/r ¼ 0).

4.5 An Application Example: Finite Beam Element

As a second example, let us now analyse the case of a spatial frame (Fig. 4.28),
consisting of beams. This structure must obviously be schematized with beam-type
finite elements. In this analysis, we will consider the perturbed motion about the
static equilibrium configuration, assumed, in this application, as assigned.12 In this
paragraph, we will illustrate the general procedure to be followed, and to simplify
matters, the considerations made will be integrated, step-by-step, with references to
the pilot example used.

4.5.1 Discretization of the Structure

The first step concerns the choice (arbitrary) of an absolute global reference system
(X–Y–Z) with respect to which the equations of motion can be written: as inde-
pendent variables we assume the displacements and the rotations of the sections in
correspondence to the single nodes in the reference system.

The second step concerns the choice of types of finite elements to be used and
the choice of the number of nodes in the schematization (i.e. the choice of the mesh
of the model). In this case, as previously mentioned, we will choose the beam finite
element that allows us to represent the static and dynamic behaviour of a prismatic
rod (a body with one dimension that is dominant with respect to the other two) that
reacts at moments applied in the two planes orthogonal to the centroid axis, both
torsionally and axially.

Let us consider a local reference system of axes x, h and z connected with the
generic beam as shown in Fig. 4.29 and let us use Xjl to indicate the vector that
contains the 12 d.o.f. associated with the end nodes of the beam (dependent on time
alone) defined in this reference system:

12Suitable procedures to define an unknown initial static equilibrium configuration of a structure
will be illustrated in Sect. 4.7, valid for structures of linear or nonlinear behaviour.
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XT
jl ¼ Xsl Ysl Zsl hxsl hysl hzsl Xdl Ydl Zdl hxdl hydl hzdl

� �
ð4:107Þ

It will then, subsequently, be necessary to divide the structure into finite elements,
identifying the position of the nodes, i.e. of the connecting points between adjacent
elements. The choice of the number of elements and thus of the number of nodes of
the mesh must be such to ensure that the schematization used does not have any
shortcomings, i.e. the hypotheses, adopted in the definition of the single finite
elements, must be satisfied. These can be summarized as:

z

x

1
2 3

4

5 6 7 9

8

l15 =2.8 m 

l59 =4.0 m 

m =6.0 kg/m 

EJ =0.5E6 Nm2

EA =5.0E10 N 

Fig. 4.28 Spatial frame: finite element schematization

Ysl

θysl

θxsl

θzsl

Zsl

Xsl
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Xdl
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Z dl
θzdl

η

ζ

ξ

Fig. 4.29 Nodal d.o.f. of the beam element
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• assumption of a specific shape function, valid for the beam element in the static
field;

• assumption of the elastic (EA axial stiffness, EJ bending stiffness) and inertia (m
mass per unit length) characteristics, constant inside the single element.

This involves the need to:

• always place a node in correspondence to each discontinuity of the continuous
system, including the points that will become constraints points;

• use finite elements that are small enough to allow for the consideration of their
distributed mass and constant stiffnesses.

Furthermore, the length of the single element must be such as to allow it to
maintain an almost static behaviour during vibration of the system: the first natural
frequency of the generic jth element xelj must be considerably higher than the
maximum frequency present in the frequency range involved in the analysis con-
ducted 0�X�Xmax. In the case of the beam (and for bending motion), as a first
approximation formula, it is possible to use the one that defines the first natural
frequency of a beam constrained at both ends by two supports (already described in
Sect. 3.3):

xelj ¼ p
lj

� �2
ffiffiffiffiffiffi
EJj
mj

s
ð4:108Þ

It is now necessary to define the stiffness ½Kjl� and mass Mjl
� 	

matrix of the beam
finite element in space, considering the transverse displacements according to two
planes parallel to the main axes of inertia, the axial displacements and the torsional
rotations.13

4.5.2 Definition of the Stiffness [Kl] and Mass [Ml] Matrix
of the Beam Element in the Local Reference System

In order to define the stiffness ½Kjl� ¼ Kl½ � and mass Mjl
� 	 ¼ Ml½ � matrix of the

generic beam finite element it is first necessary to define a local reference system: as
previously mentioned, for reasons of convenience we will assume a specific ref-
erence system, with axis x parallel to the longitudinal axis of the beam itself and
axes η and ζ perpendicular to the first and parallel to the main axes of inertia of the
section (Fig. 4.29). This choice is conditioned by being able to consider the bending

13In the part that follows, as with the beam, in order not to complicate the matrix notation, when
referring to amplitudes relative to the generic j-nth beam, we will use the subscript “j” also
necessary to highlight the fact that these same amplitudes change when the element considered
varies (for example lj ¼ l;EAj ¼ EA; . . .;Xjl ¼ Xl; . . .; ½Kjl� ¼ K½ � etc.).
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separately in the two planes ξ–η and ξ–ζ. Additionally, we will also consider the
case of the centroid of the section coincident with the bending centre in order to
consider the bending motions uncoupled from the torsional motions. Finally, by
assuming small displacements and rotations, we will also assume the axial motions
uncoupled. By choosing this reference system and based on these assumptions it is
possible to consider separately:

• the two bending motions in two planes (Fig. 4.30) defined respectively by two
space-time functions w n; tð Þ ¼ wj n; tð Þ and v n; tð Þ ¼ vj n; tð Þ;

• the torsional motion described by function θx(x, t) = θxj(x, t);
• the axial motion, defined by function u n; tð Þ ¼ uj n; tð Þ.

To simplify matters we will subdivide vector Xjl ¼ Xj (4.1) which contains the
twelve d.o.f. of the two end nodes of the beam, into four sub-vectors: let us thus use
Xw to define the vector relative to only those d.o.f. affected by transverse dis-
placements in plane (ξ–ζ) (Fig. 4.30):

Xw ¼
Zsl

hysl
Zdl

hydl

8>><
>>:

9>>=
>>; ð4:109Þ

Xv the vector relative to only those d.o.f. affected by the transverse displacements in
plane (ξ–η) (Fig. 4.30):

Xv ¼
Ysl

hzsl
Ydl

hzdl

8>><
>>:

9>>=
>>; ð4:110Þ

ξ ξ

ξ

ζ

Zsl

Zdlw(ξ,t)

θy(ξ,t) θ ydl

ξ

η

Ysl

Ydlv(ξ,t)

θz(ξ,t) θzdlθzsl

Xsl Xdl
u(ξ,t) θxsl θ(ξ,t) θxdl

Fig. 4.30 Definition of the d.o.f. of the beam in different directions
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Xu the vector of the axial displacements (Fig. 4.30):

Xu ¼ Xsl

Xdl

� �
ð4:111Þ

and Xhx the vector of the torsional rotations around axis x (Fig. 4.30):

Xhx ¼ hxsl
hxdl

� �
ð4:112Þ

First and foremost, it is necessary to define the link between the physical variables
w n; tð Þ; v n; tð Þ; hx n; tð Þ and u n; tð Þ, dependent on both space and time, that define
the generic deformation (axial, torsional and bending) inside the finite element as a
function of the displacements of the end nodes Xjl assumes as independent
variables.

4.5.2.1 Shape Function

4.5.2.1.1 Shape Functions for Axial Motion fuðnÞ

Similar to the procedure used for the cable, Sect. 4.2.1, in the case of the beam, in
order to describe axial motion we assumed the physical coordinate u n; tð Þ, while Xsl

and Xdl represent the longitudinal displacements of respectively the left and right
node of the generic element grouped together in a vector Xu (4.111) (see Fig. 4.31).
The deformation assumed by the continuous system inside the generic finite ele-
ment is still of the type (4.2):

u n; tð Þ ¼ a2nþ b2 ð4:113Þ

By imposing the boundary conditions, of the type (4.3):

u n; tð Þjn¼0¼ Xsl tð Þ; u n; tð Þjn¼lj¼ Xdl tð Þ ð4:114Þ

the link between the physical variable u n; tð Þ and the independent variables Xu thus
become of the type:

u n; tð Þ ¼ fTu ðnÞXu tð Þ ¼
1� n

lj
n
lj

8<
:

9=
;

T

Xsl

Xdl

� �
ð4:115Þ

having used fuðnÞ to indicate the vector of the shape functions for the axial
displacements.
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4.5.2.1.2 Shape Functions for Torsional Motion fThxðnÞ

The torsional rotations to which the generic section of the beam, positioned at n, is
subjected are defined by function hxj n; tð Þ ¼ hx n; tð Þ: this function is assumed to be
linear, or rather of the type:

hx n; tð Þ ¼ b1nþ b2 ð4:116Þ

The boundary conditions must be such that hx n; tð Þ coincides, in correspondence to
the end nodes of the generic finite element, with rotations hxsl and hxdl assumed as
independent variables (Fig. 4.34):

hx n; tð Þjn¼0¼ hxsl tð Þ; hx n; tð Þjn¼lj¼ hxdl tð Þ ð4:117Þ

The link of the physical variables hx n; tð Þ and the independent variables Xhx (tor-
sional rotations of the end nodes) thus become in matrix form:

hx n; tð Þ ¼ fThxðnÞXhx tð Þ ð4:118Þ

having used fhxðnÞ to indicate:

fhxðnÞ ¼
1� n

lj
n
lj

8<
:

9=
; ð4:119Þ

MODO n. 1 - 44.741 [Hz]

MODO n. 3 - 145.7788 [Hz]

MODO n. 2 - 64.9867 [Hz]

MODO n. 4 - 180.5299 [Hz]

Fig. 4.31 Deformations of the first four vertical normal modes calculated
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4.5.2.1.3 Shape Functions for Transverse Motion fTwðnÞ

The function that describes the deformation inside the generic beam element in
terms of a transverse displacement in plane ξ–ζ has already been obtained in
Sect. 4.2.2, Eq. (4.10):

w n; tð Þ ¼ fTwðnÞXw tð Þ ð4:120Þ

where fwðnÞ is the vector of the shape functions (4.11).

4.5.2.1.4 Shape Functions of Transverse Motion fTv ðnÞ

The function that describes the deformation inside the generic element in terms of
transverse displacements in plane (ξ–η) can be calculated, similar to the procedure
used in the other plane (Sect. 4.2.2), by imposing the following boundary condi-
tions (see Figs. 4.29 and 4.30)

v n; tð Þjn¼0¼ Ysl tð Þ; @v n; tð Þ
@n

����
n¼0

¼ hzsl tð Þ ð4:121aÞ

v n; tð Þjn¼lj¼ Ydl tð Þ; @v n; tð Þ
@n

����
n¼lj

¼ hzdl tð Þ ð4:121bÞ

on function v n; tð Þ, which describes the transverse displacement in the plane con-
sidered. The link between the physical variable v n; tð Þ, which describes the motion
of the continuous system inside the generic element and the independent variables
(displacements and rotations of the end nodes of the same element) thus becomes,
in matrix form:

v n; tð Þ ¼ fTv ðnÞXv tð Þ ð4:122Þ

where fvðnÞ is the vector shape function:

fvðnÞ ¼

2
l3j
n3 � 3

l2j
n2 þ 1

� � 1
l2j
n3 þ 2

lj
n2 � n

� �
� 2
l3j
n3 þ 3

l2j
n2

� 1
l2j
n3 þ 1

lj
n2

8>>>>>>>><
>>>>>>>>:

9>>>>>>>>=
>>>>>>>>;

ð4:123Þ
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With respect to the shape function defined in plane ξ–ζ, only the terms depending
on the rotation proved to have changed their sign, because unlike what happens in
plane ξ–ζ, the positive convention for θzs and θzd is in agreement with the derivative
of displacement v n; tð Þ, with respect to the current coordinate n.

4.5.2.2 Definition of the Mass and Stiffness Matrices in Local
Coordinates

To define the stiffness Kl½ � ¼ Kjl
� 	

and mass Ml½ � ¼ Mjl
� 	

matrix of the generic jth
complete final beam element, it is necessary to define the potential energy Vj and
the kinetic energy Ecj associated with the same element. In particular, as regards the
elastic potential energy, the sum of the single contributions [10, 21, 26]:

V ¼ Vu þ Vw þ Vv þ Vhx

¼ 1
2

Zlj
0

EA
@u
@n

� �T
@u
@n

� �
dnþ 1

2

Zlj
0

EJy
@2w

@n2

� �T
@2w

@n2

� �
dn

þ 1
2

Zlj
0

EJz
@2v

@n2

� �T
@2v

@n2

� �
dnþ 1

2

Zlj
0

GJx
@hx
@n

� �T
@hx
@n

� �
dn

ð4:124Þ

where Jx; Jy and Jz are the inertia moments of the area of the section with respect to
axes ξ–η–ζ, A the area of the section and E and G respectively the module of
normal and tangent elasticity. Where kinetic energy is in question, both the
translational kinetic energy and that due to torsional motion are considered [10]:

Ec ¼ Ecu þ Ecw þ Ecv þ Echx

¼ 1
2

Zlj
0

m
@u
@n

� �T
@u
@n

� �
dnþ 1

2

Zlj
0

m
@w
@n

� �T
@w
@n

� �
dn

þ 1
2

Zlj
0

m
@v
@n

� �T @v
@n

� �
dnþ 1

2

Zlj
0

Ix
@hx
@n

� �T @hx
@n

� �
dn

ð4:125Þ

where Ix is the mass moment of inertia per unit length with respect to longitudinal
axis xj. Let us now separately examine the single contributions associated with the
axial, bending and torsional displacements of the potential energy and the kinetic
energy.
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4.5.2.2.1 Axial Motion

Once the links given by the shape functions (4.115) have been introduced, the
expression of elastic potential energy associated with the axial deformation of the
beam becomes:

Vu ¼ 1
2

Zlj
0

EA
@u
@n

� �T @u
@n

� �
dn ¼ 1

2

Zlj
0

EAXT
u f

0
uðnÞf 0Tu ðnÞXudn ð4:126Þ

by removing the vectors of the axial d.o.f. that only depend on time from the
integral sign, we highlight the stiffness matrix according to the components of the
same vector:

Vu ¼ 1
2
XT

u

Zlj
0

EAf 0uðnÞf 0Tu ðnÞdn

2
64

3
75Xu ¼

1
2
XT

u Ku½ �Xu ð4:127Þ

In (4.127) vector f 0uðnÞ contains the first derivatives of the shape functions with
respect to the current coordinate n:

f 0uðnÞ ¼
@fuðnÞ
@n

� �
¼

� 1
lj

1
lj

( )
ð4:128Þ

The stiffness matrix ½Ku� is of order 2 and similar to that obtained for the cable
(4.30), Sect. 4.4.2:

Ku½ � ¼ EA
1
lj

� 1
lj

� 1
lj

1
lj

" #
ð4:129Þ

By introducing the links given by the shape functions, the kinetic energy proves to
be:

Ecu ¼ 1
2

Zlj
0

m _X
T
u fuðnÞfTu ðnÞ _Xudn

¼ 1
2
_X
T
u

Zlj
0

mfuðnÞfTu ðnÞdn

2
64

3
75 _Xu ¼

1
2
_X
T
u Mu½ � _Xu

ð4:130Þ
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where

Mu½ � ¼ m
lj
3

lj
6

lj
6

lj
3

" #
ð4:131Þ

4.5.2.2.2 Torsional Motion

Once the links given by the shape functions have been introduced, the expression of
elastic potential energy Vhx associated with the beam torsion, becomes:

Vhx ¼ 1
2

Zlj
0

GJx
@hx
@n

� �T
@hx
@n

� �
dn ¼ 1

2

Zlj
0

GJxXT
hxf

0
hxðnÞf 0ThxðnÞXhxdn

¼ 1
2
XT

hx GJx

Zlj
0

f 0hxðnÞf 0ThxðnÞdn

2
64

3
75Xhx ¼

1
2
XT

hx Khx½ �Xhx

ð4:132Þ

In (4.132) f 0hx represents the vector that contains the first derivatives with respect to
the current coordinate n of vector fhx and Khx½ � is the stiffness matrix for the torsion:

Khx½ � ¼ GJx

1
lj

� 1
lj

� 1
lj

1
lj

" #
ð4:133Þ

By introducing the shape functions (4.118), kinetic energy Echx, proves to be:

Echx ¼ 1
2
_X
T
hx

Zlj
0

IxfhxðnÞfThxðnÞdn

2
64

3
75 _Xhx ¼

1
2
_X
T
hx Mhx½ � _Xhx ð4:134Þ

Mhx½ � in (4.134) represents the mass matrix relative to the torsional d.o.f.:

Mhx½ � ¼ Ix
lj
3

lj
6

lj
6

lj
3

" #
ð4:135Þ

4.5.2.2.3 Bending Motion

Let us now consider the transverse vibrations wðn; tÞ in plane ξ–ζ of the beam,
defined about the static equilibrium configuration (Fig. 4.30). To determine the
stiffness matrix of the finite element for transverse motion only, it is necessary to
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define the potential energy Vw associated with it which, as already seen, proves to
be defined as:

Vw ¼ 1
2
EJy

Zlj
0

@2w

@n2

� �2

dn ¼ 1
2
EJy

Zlj
0

@2w n; tð Þ
@n2

� �T
@2w n; tð Þ

@n2

� �
dn ð4:136Þ

Similarly, as regards the kinetic energy Ecw ¼ Ecwj of the generic beam element
associated with the bending motion in the plane considered, by neglecting the
inertias associated with the rotations of the sections (these terms will be introduced
subsequently in Sect. 4.5.2.3.1), this will be:

Ecw ¼ 1
2
mj

Zlj
0

@w n; tð Þ
@t

� �2

dn ¼ 1
2
EJy

Zlj
0

@w n; tð Þ
@t

� �T
@w n; tð Þ

@t

� �
dn ð4:137Þ

where m ¼ mj is the mass per unit length of the beam, meaning that the product mj

dξ represents the mass associated with the generic infinitesimal section. By keeping
account of the transformation of coordinates (4.10) and by thus introducing the
shape function vector fwðnÞ (4.11), we obtain:

Ecw ¼ 1
2
_X
T
w

Zlj
0

mfwðnÞfTwðnÞdn

2
64

3
75 _Xw ¼ 1

2
_X
T
w Mw½ � _Xw

Vw ¼ 1
2
XT

w EJy

Zlj
0

f 00wðnÞf 00Tw ðnÞdn

2
64

3
75Xw ¼ 1

2
XT

w Kw½ �Xw

ð4:138Þ

having used f 00w to indicate the vector of the second derivatives of fw with respect to
the current coordinate n along the beam:

f 00w ¼ d2fwðnÞ
dn2

� �
¼

12
l3j
n� 6

l2j
� 6
l2j
nþ 4

lj
� 12

l3j
nþ 6

l2j
6
l2j
n� 2

lj

8>>>>>><
>>>>>>:

9>>>>>>=
>>>>>>;

ð4:139Þ

As regards the transverse motion in plane ζ–ξ, in (4.138) Mw½ � is the mass matrix,
defined in the local reference system of the generic finite element beam
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Mw½ � ¼ m
Zlj
0

fwðnÞfTwðnÞdn

2
64

3
75 ¼ mlj

13
35 � 11

210 lj
9
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13
420 lj

� 11
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l2j
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140

9
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13
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11
210 lj

13
420 lj � l2j

140
11
210 lj

l2j
105

2
66664

3
77775
ð4:140Þ

Conversely, in (4.138) Kw½ � is the relative stiffness matrix always defined in the
local reference system:

Kw½ � ¼ EJy

Zlj
0

f 00wðnÞf 00Tw ðnÞdn

2
64

3
75 ¼ EJy
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l3j

� 6
l2j

� 12
l3j

� 6
l2j

� 6
l2j

4
lj
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2
lj

� 12
l3j

6
l2j

12
l3j

6
l2j

� 6
l2j

2
lj

6
l2j

4
lj

2
666666664

3
777777775

ð4:141Þ

As foreseeable, by studying a conservative system, Kw½ � proves to be symmetrical
and singular (corresponding to the real situation of the beam element which is still
free in space: this condition will only disappear when the constraints are imposed
on the fully assembled structure). Matrices Kv½ � and Mv½ � relative to plane ξ–η, are
the same as Kw½ � and Mw½ � defined in plane ξ–ζ: given the sign difference present in
some terms of the shape functions fvðnÞ (4.122) and fwðnÞ (4.26) matrices Kv½ � and
Mv½ � will differ from the same ones only in terms of the signs of the mixed terms
which depend on the rotations θzl.

4.5.2.3 Definition of the Overall Mass and Stiffness Matrices

By resuming (4.124) and (4.125) we can write the elastic potential and kinetic
energy in matrix form as the sum of bending, axial and torsional contributions:

V ¼ Vw þ Vv þ Vu þ Vhx ¼ 1
2
XT

w Kw½ �Xw þ 1
2
XT

v Kv½ �Xv

þ 1
2
XT

u Ku½ �Xu þ 1
2
XT

hx Khx½ �Xhx

ð4:142Þ

Ec ¼ Ecw þ Ecv þ Ecu þ Echx ¼ 1
2
_XT
w Mw½ � _Xw þ 1

2
_XT
v Mv½ � _Xv

þ 1
2
_XT
u Mu½ � _Xu þ 1

2
_XT
hx Mhx½ � _Xhx

ð4:143Þ

By gathering the sub-vectors Xw;Xv;Xu and Xhx in one single vector Yl:
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Yl ¼
Xw
Xv
Xu
Xhx

8>><
>>:

9>>=
>>; ð4:144Þ

and, a consequence, by ordering the stiffness matrices relative to each sub-vector,
we obtain the overall 12 × 12 stiffness KY½ � and mass MY½ � matrix of the beam
element, relative to all the d.o.f. assumed:

KY½ � ¼
Kw½ �

Kv½ �
Ku½ �

Khx½ �

2
664

3
775 MY½ � ¼

Mw½ �
Mv½ �

Mu½ �
Mhx½ �

2
664

3
775

ð4:145Þ

By using this change of variables, kinetic energy Ecj ¼ Ec and potential energy
Vj ¼ V of the generic jth finite element can be expressed as:

Ec ¼ 1
2
_Y
T
l MY½ � _Yl

V ¼ 1
2
YT

l KY½ �Yl

ð4:146Þ

In general, however, it is preferable to order the d.o.f. of the beam element
according to vector Xl (4.107), or rather by gathering, in an orderly way, the
displacements and rotations of the first node in the first six locations and the
amplitudes relative to the second node of the beam in the subsequent locations:

Yl ¼ ½B�Xl ð4:147Þ

where ½B� is the following matrix:

½B� ¼

0 0 1 0 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0 0 1 0
0 1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 1
1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0

2
6666666666666666664

3
7777777777777777775

ð4:148Þ
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The kinetic and potential energy can thus be defined as:

Ecj ¼ Ec ¼ 1
2
_XT
l ½B�T MY½ �½B� _Xl ¼ 1

2
_XT
jl Mjl
� 	

_Xjl

Vj ¼ V ¼ 1
2
XT

l ½B�T KY½ �½B�Xl ¼ 1
2
XT

jl Kjl
� 	

Xjl

ð4:149Þ

4.5.2.3.1 Inertia Effects Associated with Rotation Inertia

By keeping account of the rotational inertia (neglected in the explanation given
until now), the kinetic energy of the beam in its complete form becomes:
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2

Zlj
0

m
@u
@t
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� �T @hz
@t

� �
dn

ð4:150Þ

where

hy ¼ @

@t
@w
@n

� �� �
¼ f 0Tw ðnÞ _Xw tð Þ ð4:151Þ

hz ¼ @

@t
@v
@n

� �� �
¼ f 0Tv ðnÞ _Xv tð Þ ð4:152Þ

By keeping account of these relations, the two additional terms in the kinetic energy
expression become:

Echy ¼ 1
2
_X
T
w

Zlj
0

Iyf 0wðnÞf 0Tw ðnÞdn

2
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3
75 _Xw ¼ 1

2
_X
T
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_Xw

Echz ¼ 1
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v
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2
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3
75 _Xv ¼

1
2
_X
T
v Mhz½ � _Xv

ð4:153Þ
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These matrices add up, according to the order of vector Yl (4.144), in the global
matrix MY½ � (4.145) which thus becomes:

MY½ � ¼
Mhy
� 	þ Mw½ �

Mhz½ � þ Mv½ �
Mu½ �

Mhx½ �

2
664

3
775 ð4:154Þ

Table 4.2 shows the mass matrix Mjl
� 	

of the beam element in its most complete
formulation.

4.5.2.3.2 Effect of the Static Axial Pre-load in the Beam: Taut Beam Finite
Element

In some structures, the single beam, in the static equilibrium position, proves to be
axially loaded by a force S0 (of either traction or compression). As with the example
of the cable (Sect. 4.4.2, (4.24)), this axial load changes the terms of potential
energy for bending motions [26]: in this case, the potential elastic energy Vj

becomes:

Table 4.2 Elements of the mass matrix [Mjl] in complete form
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The additional terms due to the presence of axial action So can, using similar steps
to those performed in Sect. 4.4.2, be defined as:

VSw ¼ 1
2
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@n
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2
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v KSv½ �Xv

ð4:156Þ

where KSw½ � and KSv½ � are the stiffness matrices, always defined in the local ref-
erence system, which define the linearized elastic forces due to the presence of the
axial action in the transverse motion. Potential energy Vj of the generic taut beam is
thus:

V ¼ Vu þ Vw þ VSw þ Vv þ VSv þ Vhx

¼ 1
2
XT

u Ku½ �Xu þ
1
2
XT

w Kw½ �Xw þ 1
2
XT

w KSw½ �Xw

þ 1
2
XT

v Kv½ �Xv þ
1
2
XT

v KSv½ �Xv þ
1
2
XT

hx Khx½ �Xhx

ð4:157Þ

According to vector Yl (4.144), the stiffness matrix KY½ � (4.145), in its complete
form, thus becomes:

KY½ � ¼
Kw½ � þ KSw½ �

Kv½ � þ KSv½ �
Ku½ �

Khx½ �

2
664

3
775 ð4:158Þ

In Table 4.3 we show the complete stiffness matrix Kjl
� 	

of the taut beam element
(i.e. the beam element in its most general configuration). As can be noted, the effect
of an axial static pre-load of traction (So positive) increases the bending stiffness of
the beam, while an axial action of compression (So negative) reduces the stiffness
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(see (4.158); Table 4.3). In the chapter that follows, we will always refer, unless
otherwise stated, to the beam element with two complete mass (Table 4.2) and
stiffness (Table 4.3) matrices. Having thus defined the mass and stiffness matrices
of the generic beam expressed in the local reference system, we will now return to
the initial example (Fig. 4.28) and proceed with the writing of the equations of
motion.

4.5.3 Definition of the Stiffness [Kj] and Mass [Mj] Matrix
of the Beam Element in the Global Reference System

Having defined the schematization of the structure according to the criteria
described in Sect. 4.5.1 and having calculated the stiffness Kjl

� 	
and mass Mjl

� 	
matrices of the single finite elements of the local reference system (Sect. 4.5.2), it is
possible to define the total kinetic energy Ectot and the total elastic potential energy
Vtot of the structure given by the sum of the single contributions Ecj and Vj of all the
m finite elements that make up the structure itself [2, 10]:
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Xm
j

Ecj ¼ 1
2

Xm
j

_X
T
jl Mjl
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_Xjl

Vtot ¼
Xm
j
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Xm
j

XT
jl Kjl
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Xjl

ð4:159Þ

Table 4.3 Elements of the taut beam stiffness stiffness [Kjl] matrix
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In order to sum the effect of each finite element on the generic node of the model, it
is necessary to perform a transformation of the coordinates that enable us to express
the link between the displacements Xjl of the end nodes of the generic finite beam
element in the local reference system (Fig. 4.28) and the displacements Xj

expressed in the absolute reference system:

XT
j ¼ Xs Ys Zs hxs hys hzs Xd Yd Zd hxd hyd hzd

� � ð4:160Þ

The link between displacements Xjl of the end nodes of a generic jth beam element
in the local reference system and the corresponding displacements Xj expressed in
the absolute global reference system is given by the transformation matrix of
coordinates Kj

� 	
:

Xjl ¼ Kj
� 	

Xj ð4:161Þ

where

Kj
� 	 ¼

kj
� 	

kj
� 	

kj
� 	

kj
� 	

2
664

3
775 ð4:162Þ

being kj
� 	

(see (4.35)) the matrix (3 × 3) formed by the directory cosines of the
local reference system with respect to the global one [10, 21, 26]. By introducing
the transformation of coordinates (4.161) into the expression of kinetic Ectot and
potential Vtot (4.159) energy:
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Xm
j

_X
T
j Kj
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Mjl
� 	

Kj
� 	

_Xj ¼
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_Xj
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� 	
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j
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j Kj
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ð4:163Þ

having respectively used Mj
� 	

and Kj
� 	

to indicate the matrices of mass and
stiffness of the generic jth finite element referring to the global coordinates:

Mj
� 	 ¼ Kj

� 	T
Mjl
� 	

Kj
� 	

Kj
� 	 ¼ Kj

� 	T
Kjl
� 	

Kj
� 	 ð4:164Þ

In (4.163) vectors Xj contain the 12 d.o.f. of the nodes of the generic jth element,
defined in the global reference system.
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4.5.4 Writing of the Equations of Motion and Their Solution

The writing of the equations of motion of the structure schematized with finite beam
element obviously follows the same procedure as that performed for the cable
element: matrices Mj

� 	
and Kj

� 	
of (4.164) are assembled in the overall matrices

Ktot½ � and Mtot½ � as shown in Sect. 4.4.5. In this case too, the equations of motion are
of the type:

Mtot½ �€Xt þ Rtot½ � _Xt þ Ktot½ �Xt ¼ Ft ð4:165Þ

Having used Xt to indicate the vector that contains all the d.o.f. of the structure
analysed, assumed, for the time being, as free in space, organized in a distributed
form as follows:

Xt ¼ XL
XV

� �
ð4:166Þ

where XL is once again the vector relative to the actual d.o.f. of the structure and
XV the vector relative to the constrained d.o.f. The method used to solve these same
Eq. (4.165) is widely described in Sect. 4.4.8.

4.5.5 A Numerical Example

As regards the discretized mathematical model with finite elements analysed,
Fig. 4.28, using the procedures described in the previous paragraphs the first natural
frequencies xi (Fig. 4.31) were calculated. The same model was subjected to a
sinusoidal excitation force F8 ¼ F8j jeiXt with a constant amplitude
( F8j j ¼ 5 � 104 daN) applied to node 8 of the model (see Fig. 4.28) in a frequency
range 1Hz�X� 200Hz. As an example, in Fig. 4.32 you can see the trend of the
module Z7j j and of the phase U7 relative to the excitation force of the vertical
displacement of node 7, while Fig. 4.33 shows the trend of module Z8j j and of
phase U8 (always relative to the excitation force) of the displacement of node 8
when the frequency varies.

4.6 Two-Dimensional and Three-Dimensional Finite
Elements (Brief Outline)

The cable and beam finite elements, analysed in Sects. 4.4 and 4.5, can only
simulate the behaviour of the structural elements in which one dimension pre-
dominates with respect to the others. Generally speaking, the real structures also
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have elements with physical dimensions that are comparable in all directions. The
aim, prevalently for study purposes, of this paragraph is to give a general overview
of the subject to facilitate the reading of numerous specialized texts on the subject
(Sect. 4.8, for example [2, 10, 21, 26]) by introducing some basic notions about
two-dimensional and three-dimensional finite elements. For obvious reasons, the

0 20 40 60 80 100 120 140 160 180
-200

-100

0

Φ
7

0 20 40 60 80 100 120 140 160 180
0

0.5

1

1.5

2

2.5

3

3.5

|Z
7|

[Hz]

Fig. 4.32 Frequency response of the vertical d.o.f. of node 7 of the structure
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Fig. 4.33 Frequency response of the vertical d.o.f. of node 8 of the structure
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information given in this section will not be exhaustive. In particular, reference will
be made to the main characteristics of:

• membrane finite elements (termed plain stress, plain strain element);
• plate or shell finite elements (thin plate);

In all cases we will assume small displacements and small deformations (so that
it is possible to consider linear links between these amplitudes) as well as a linear
link between deformations and stresses.

Before analysing the characteristics of the single finite elements, we will briefly
recall the steps of the procedure adopted to analyse a generic continuous system
using the finite elements approach:

• the continuous system is separated by means of imaginary lines or imaginary
surfaces in a finite number of finite elements (Fig. 4.34);

• the generic jth finite element is interconnected to the adjacent ones with a
discrete number of nodal points placed on the boundary of same;

• the displacements of only the end nodes Xjl (expressed in a suitable local
reference system) are assumed as independent variables;

XT
jl ¼ X11 Y11 Z11 . . . . . .f g ð4:167Þ

• a suitable set of functions fj
� 	

(termed shape functions, generally organized in
matrix fj

� 	
) are chosen and unequivocally correlate the displacement of the

generic point inside finite element uj:

uTj ¼ u v wf g ð4:168Þ

with nodal displacements Xjl;

y

x

j Xj

Yj

Fig. 4.34 Schematization
with finite elements
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• the shape functions fj
� 	

thus unequivocally define the state of deformation
inside the generic finite element (Fig. 4.35):

uj ¼ fj
� 	

Xjl ð4:169Þ

Subsequently, a Lagrangian approach is used: first and foremost, the various
forms of energy (kinetic Ec, potential V) are defined and the virtual work d�L
performed by the external forces applied to the system as a function of the
physical variables uj;

• a link is imposed between the physical variables uj (4.169) and the independent
variables Xjl (4.167) nodal displacements thus allowing us to define the various
forms of energy, relative to the same element, as:

Vj ¼ 1
2
XT

jl Kjl
� 	

Xjl

Ecj ¼ 1
2
_X
T
jl Mjl
� 	

_Xjl

d�Lj ¼ FTjld
�Xjl

ð4:170Þ

• finally a coordinate transformation is performed to express this energy in one
single absolute reference system:

Xjl ¼ Kj
� 	

Xj ð4:171Þ

• we assemble the various stiffness Kj
� 	

and mass Mj
� 	

matrices and the vector of
the Lagrangian components of the applied external forces Qj expressed in the

absolute reference system:

Kj
� 	 ¼ Kj

� 	T
Kjl
� 	

Kj
� 	

Mj
� 	 ¼ Kj

� 	T
Mjl
� 	

Kj
� 	

Fj ¼ Kj
� 	TFjl

ð4:172Þ

Fig. 4.35 Shape function
meaning

4.6 Two-Dimensional and Three-Dimensional Finite Elements (Brief Outline) 377



www.manaraa.com

• independent variables Xt, displacements of all the nodes of the model, are
assumed so that:

Mtot½ �€Xt þ Ktot½ �Xt ¼ Ft ð4:173Þ

in this way, the real mechanical system, with infinite d.o.f., on account of being
a continuous system, is discretized using a n d.o.f., i.e. the same number of d.o.f.
Xt associated with the nodes of the finite element model adopted.

As seen, by using the finite element approach, we introduce approximations
connected to the discretization of the continuous system adopted and to the type of
shape function assumed: having concentrated the generalized forces (elastic,
external and inertial) on the nodes, the equilibrium conditions are only satisfied in a
general sense, i.e. they might not be respected inside each element or on the
boundary of same:

• in the choice, among other things arbitrary, of the shape functions, it is not
always possible to respect the equations of continuity between adjacent elements
along the boundary.

In order to reduce, as far as is possible, the errors introduced using this method,
it is necessary to increase the number of finite elements or to use more refined shape
functions. The choice of the shape functions must, in any case, satisfy the con-
vergence conditions that may be summarized as follows [3, 26]:

• fj
� 	

must be such in order to define, within the generic finite element, a con-
tinuous field of displacements;

• the shape functions fj
� 	

must be such to ensure that no deformations are
introduced inside the generic finite element in the event of this being subjected
to a rigid motion;

• the shape functions fj
� 	

must be such as to allow us to reproduce a constant
deformation state;

• the elements must be compatible, i.e. there should not be any slacks or over-
lapping of nodes (no sudden variations in slope must be allowed either in the
beams or in the plates) in the beams and in the plates.

4.6.1 Definition of the Generic Shape Function

To evaluate matrix fj
� 	

(4.169) it is necessary:

• to define a certain shape function, usually a polynomial containing an n number
of multiplicative constants to be determined as equal to the d.o.f. associated with
the end nodes of the generic finite element analysed (i.e. equal to the number of
elements of vector Xjl):

378 4 Introduction to the Finite Element Method



www.manaraa.com

uj ¼ uj x; y; zð Þ ¼ a0 þ a1xþ a2yþ � � �
vj ¼ vj x; y; zð Þ ¼ b0 þ b1xþ b2yþ � � �
wj ¼ wj x; y; zð Þ ¼ c0 þ c1xþ c2yþ � � �

ð4:174Þ

or rather in matrix form:

uj ¼ Pj
� 	

aj ð4:175Þ

where vector aj contains the n constants to be determined:

aTj ¼ a0 b0 c0 . . . . . . . . .f g ð4:176Þ

• to impose the congruence of these functions, which define the displacements
inside the generic finite element, in correspondence to the end nodes:

Xjl ¼ Cj
� 	

aj ð4:177Þ

where Cj
� 	

is a known matrix that contains the coordinates relative to the single
nodes of the finite element considered.

Having used (4.177) to evaluate the constants of the functions (4.174), it is
possible to express (4.175) in matrix form as:

uj ¼ Pj
� 	

Cj
� 	�1

Xjl ¼ fj
� 	

Xjl ð4:178Þ

where fj
� 	 ¼ Pj

� 	
Cj
� 	�1

is the matrix (3 × n) of the shape functions being looked
for [26].

4.6.2 General Definition of the Stiffness and Mass Matrices
of the Generic Three-Dimensional Finite Element

At this point, it is convenient to introduce a generalization in terms of the meth-
odology necessary to define the stiffness ½Kjl� and mass Mjl

� 	
matrices of a generic

three-dimensional finite element and of the relative generalized forces Fjl

(expressed in the local reference system). For this purpose, we will briefly recall the
basic concepts relative to the stress-deformation and deformation-displacement
links. Let us consider the generic jth three-dimensional finite element in space and,
more specifically, an infinitesimal generic element of volume dV inside this same
finite element: the relation that will correlate the position of the deformed Rj and
undeformed Rj0 element is given by:
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Rj ¼
x
y
z

8<
:

9=
; ¼ Rj0 þ uj ¼

x0
y0
z0

8<
:

9=
;þ

u
v
w

8<
:

9=
; ð4:179Þ

where uj is the vector containing the displacement components along the three axes
of the reference system assumed. As is known [4, 15, 20, 21, 26] the link between
strains and displacements is given, assuming small deformations, by the relations:

exx ¼ @u
@x

; eyy ¼ @v
@y

; ezz ¼ @w
@z

; cxy ¼
@u
@y

þ @v
@x

;

cyz ¼
@v
@z

þ @u
@y

; czx ¼
@u
@z

þ @w
@x

ð4:180Þ

Having used e to define the vector that contains the deformation components:

eT ¼ ex ey ez cxy cyz czx
� � ð4:181Þ

and d½ � a 6 × 3 matrix of differential operators defined as:

d½ � ¼

@
@x 0 0
0 @

@y 0

0 0 @
@z

@
@y

@
@x 0

0 @
@z

@
@y

@
@z 0 @

@x

2
666666664

3
777777775

ð4:182Þ

Equation (4.180) can be rewritten in matrix form as:

e ¼ d½ �u ð4:183Þ

The relation, for isotropic material, between stresses and strains, becomes, in matrix
form [3, 26]:

r ¼ ½E�e ð4:184Þ

where r is the vector of the stresses:

rT ¼ rx ry rz cxy cyz czx
� � ð4:185Þ
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and ½E� is the matrix that correlates the stresses to the strains:

½E� ¼ E
1þ mð Þ 1� 2mð Þ

1� mð Þ 0 0 0 0 0
0 1� mð Þ 0 0 0 0
0 0 1� mð Þ 0 0 0
0 0 0 1�2m

2

� �
0 0

0 0 0 0 1�2m
2

� �
0

0 0 0 0 0 1�2m
2

� �

2
6666664

3
7777775

ð4:186Þ

being E the Young’s modulus of the material and ν the Poisson’s ratio. Keeping
account of Eqs. (4.178), (4.183) and (4.184), stresses and strains can be directly
expressed as functions of nodal displacements, i.e.:

e ¼ d½ � fj
� 	

Xjl ¼ Bj
� 	

Xjl ð4:187Þ

r ¼ ½E�e ¼ ½E� Bj
� 	

Xjl ð4:188Þ

where Bj
� 	

is a 6 × n matrix containing the space derivatives of the shape functions
fj
� 	

(n is the number of d.o.f of the generic finite element in use). It is then possible
to define, for the generic three-dimensional finite element (of volume Vol) the
potential energy Vj related to elastic forces, the kinetic energy Ecj and the virtual
work d � Lj performed by external forces p(x, y, z, t), generally distributed on the
finite element, as:

Vj ¼ 1
2

Z
Vol

rTedVol

Ecj ¼ 1
2

Z
Vol

q _uTj _ujdVol

d � Lj ¼
Z
Vol

p
j
x; y; z; tð ÞTd � ujdVol

ð4:189Þ

being q the material density, so that q dVol is the mass of the infinitesimal element.
It has to be observed that _uj is a column matrix containing the three components of
the geometric velocity vector of the infinitesimal element of mass q dVol. In (4.189)
d�uj is the vector containing the virtual displacement components of the generic
point of application of a force:

d�uTj ¼ d�u d�w d�vf g ð4:190Þ
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and p
j
is the vector of the corresponding force components:

pT
j
¼ px py pz
� � ð4:191Þ

Equation (4.189) can be expressed, keeping account of (4.188) and (4.187), as
functions of nodal displacement coordinates:

Vj ¼ 1
2
XT

jl

Z
Vol

Bj
� 	T½E� Bj

� 	
dVol

2
4

3
5Xjl ¼

1
2
XT

jl Kjl
� 	

Xjl

Ecj ¼ 1
2
_X
T
jl

Z
Vol

q fj
� 	T

fj
� 	

dVol

2
4

3
5 _Xjl ¼

1
2
_X
T
jl Mjl
� 	

_Xjl

d�Lj ¼
Z
Vol

p
j
x; y; z; tð ÞT fj x; y; zð Þ� 	

dVol

8<
:

9=
;d�Xjl ¼ FTjld

�Xjl

ð4:192Þ

where Kjl
� 	

:

Kjl
� 	 ¼ Z

Vol

Bj
� 	T½E� Bj

� 	
dVol

2
4

3
5 ð4:193Þ

is the generic stiffness matrix; Mjl
� 	

is the mass matrix:

Mjl
� 	 ¼ Z

Vol

q fj
� 	T fj

� 	
dVol

2
4

3
5 ð4:194Þ

and, finally, Fjl is the vector of the generalized forces:

Fjl ¼
Z
Vol

p
j
x; y; z; tð ÞT fj x; y; zð Þ� 	

dVol

8<
:

9=
; ð4:195Þ

The dimensions of these matrices obviously change when the number of d.o.f.
associated with the generic element varies, despite their morphology remaining
unchanged. When the type of finite element varies, the matrices of the shape
functions fj

� 	
change. Let us now analyse some of the main types of two-dimen-

sional and three-dimensional finite elements.
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4.6.3 Two-Dimensional Elements (Membrane)

4.6.3.1 The Triangular Flat Element

Figure 4.36 shows a classical triangular element (defined as a linear triangular
element with 3 nodes), in which, as independent variables, we assume the 6 dis-
placements of the 3 end nodes:

XT
jl ¼ X1 Y1 Z1 X2 Y2 Z2f g ð4:196Þ

By using this element, it is possible to simulate the behaviour of a system subjected
to plane stresses and strains. The displacement components u and v of the generic
infinitesimal element inside the generic finite element are defined unequivocally by
these 6 displacements: a simpler representation is given by linear shape functions of
the type:

u ¼ a1 þ a2xþ a3y
v ¼ b1 þ b2xþ b3y

ð4:197Þ

or rather in matrix form:

u ¼ u
v

� �
¼ Pt3½ �at3 ¼ 1 x y 0 0 0

0 0 0 1 x y

�  a1
a2
a3
b1
b2
b3

8>>>>>><
>>>>>>:

9>>>>>>=
>>>>>>;

ð4:198Þ

x

y

X1

X2

X3

Y1

Y3

Y

Fig. 4.36 Linear triangular
element with a constant
deformation
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The 6 constants in (4.198) can be defined by 6 boundary conditions:

X1 ¼ u x1; y1ð Þ ¼ a1 þ a2x1 þ a3y1
Y1 ¼ v x1; y1ð Þ ¼ b1 þ b2x1 þ b3y1
X2 ¼ u x2; y2ð Þ ¼ a1 þ a2x2 þ a3y2
. . .

ð4:199Þ

which, always in matrix form, become:

Xjl ¼

X1

Y1

X2

Y2

X3

Y3

8>>>>>><
>>>>>>:

9>>>>>>=
>>>>>>;

¼ Ct3½ �at3 ¼

1 x1 y1 0 0 0
0 0 0 1 x1 y1
1 x2 y2 0 0 0
0 0 0 1 x2 y2
1 x3 y3 0 0 0
0 0 0 1 x3 y3

2
6666664

3
7777775

a1
a2
a3
b1
b2
b3

8>>>>>><
>>>>>>:

9>>>>>>=
>>>>>>;

ð4:200Þ

By imposing relations (4.198), using the same procedure as that used for the finite
beam and cable element, it is possible to define the generic displacement vector of
the generic infinitesimal element inside the finite element as:

u ¼ u
v

� �
¼ Pt3½ � Ct3½ ��1Xjl ¼ ft3 x; yð Þ½ �Xjl ð4:201Þ

where ft3 x; yð Þ½ � is a matrix consisting of 2 lines and 6 columns, a function of only
the spatial coordinates x and y. Using the general formulation shown in (4.193), this
expression enables us to evaluate the stiffness Kt3½ � and mass Mt3½ � matrix of the
same triangular finite element with a constant strain. From an operative point of
view, in order to define ft3½ � the approach presently defined is not convenient. On
the contrary, it is advisable to use another set of coordinates, termed area coor-
dinates (see [26]).

In order to decrease the d.o.f. necessary to define the behaviour of a real structure
by increasing the order of the polynomial relative to the shape function, in practice
we also use other types of triangular elements (Fig. 4.37):

• quadratic (6 nodes, 12 d.o.f.) in which the shape function is of the type:

u ¼ a1 þ a2xþ a3yþ a4x2 þ a5xyþ a6y2

v ¼ b1 þ b2xþ b3yþ b4x2 þ b5xyþ b6y2
ð4:202Þ

• cubic (10 nodes, 20 d.o.f.) for which the shape function becomes:

u ¼ a1 þ a2xþ a3yþ a4x2 þ a5xyþ a6y2 þ a7x3 þ a8x2yþ a9xy2 þ a10y3

v ¼ b1 þ b2xþ b3yþ b4x2 þ b5xyþ b6y2 þ b7x3 þ b8x2yþ b9xy2 þ b10y3

ð4:203Þ
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As an example, Fig. 4.38 shows a finite element model to simulate the strain and
stress state (static and dynamic) in the neighbourhood of a hole in the event of plane
stresses.

4.6.3.2 Rectangular Plane Element (Membrane)

Another two-dimensional finite element is the linear rectangular one with 4 nodes
(Fig. 4.39) for which, as independent variables, the displacement of the 4 end
nodes:

XT
jl ¼ X1 Y1 X2 Y2 X3 Y3 X4 Y4f g ð4:204Þ

The components of the generic displacement u and v of the generic infinitesimal
element inside the generic element are defined unequivocally by these 8 dis-
placements with bilinear functions of the type:

3

56

241

3

7

69

8

10

1 4 5 2

(a) (b)

Fig. 4.37 Other types of triangular plane elements: a triangular quadratic element; b triangular
cubic element

Fig. 4.38 Triangular finite
element: an application
example
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u ¼ a1 þ a2xþ a3yþ a4xy

v ¼ b1 þ b2xþ b3yþ b4xy
ð4:205Þ

The 8 constants in (4.205) can be defined by the 8 boundary conditions:

X1 ¼ u x1; y1ð Þ ¼ a1 þ a2x1 þ a3y1 þ a4x1y1
Y1 ¼ v x1; y1ð Þ ¼ b1 þ b2x1 þ b3y1 þ b4x1y1
X2 ¼ u x2; y2ð Þ ¼ a1 þ a2x2 þ a3y2 þ a4x2y2
. . .

ð4:206Þ

The shape function matrix fr4 x; yð Þ½ � can be obtained directly by using the
Lagrange’s interpolation formulae [26] and a local reference system, of axes n, g
and origin in the centre of rectangle xc and yc (Fig. 4.39):

n ¼ x� xc
b

g ¼ y� yc
c

ð4:207Þ

These new coordinates n and g, termed natural or intrinsic, allow us (in the same
way as the coordinates of area defined for the triangular element and the current
coordinate ξ for the finite beam or cable element) to define the characteristics of the
finite element, regardless of its spatial orientation: furthermore, the use of natural
coordinates allows for an easy extension to the treatment of curved isoparametric
elements [3, 26]. By imposing relations (4.207) in (4.205) it is possible to express
the displacements u and v as a function of the new natural coordinates ξ and η: in
this way, the functions u n; g; tð Þ and v n; g; tð Þ prove to be independent from the
dimension and spatial position assumed by the generic finite element.

y

x

Y4

X

Y3

X3

Y1

X1

Y

X2

C

η

ξ

Fig. 4.39 Linear rectangular
finite element: definition in
reference system x–y and in
reference system ξ–η (natural
coordinates)
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By imposing the boundary conditions (4.206) in the new variables, the shape
function matrix fr4½ � can immediately be evaluated as ([26], Sect. 5.4):

fr4½ � ¼ f1 0 f2 0 f3 0 f4 0
0 f1 0 f2 0 f3 0 f4

� 
ð4:208Þ

where

f1 ¼ 1
4

1� nð Þ 1� gð Þ

f2 ¼ 1
4

1þ nð Þ 1� gð Þ

f3 ¼ 1
4

1þ nð Þ 1þ gð Þ

f4 ¼ 1
4

1� nð Þ 1þ gð Þ

ð4:209Þ

4.6.4 Three-Dimensional Elements (Brick Elements)

Analysis of the three-dimensional stress obviously encompasses all cases of prac-
tical interest although a two-dimensional analysis often provides a suitable and
economic approximation. Similar to the triangular element in the two-dimensional
analysis, the simpler three-dimensional finite element is a tetrahedron (Fig. 4.40): in
order to define accurately the actual stress and strain state in a generic continuous
system it is necessary to use a large number of these elements, thereby involving
problems related to the occupation of storage space and calculation times. For this
reason, we introduced other types of three-dimensional finite elements, with more
complex shape functions, which do, however, allow us to reduce the overall number
of d.o.f.

Fig. 4.40 Three-dimensional tetrahedral finite elements: a linear (4 nodes); b quadratic tetrahedral
finite elements (8 nodes); c cubic tetrahedral element (20 nodes)
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4.6.4.1 Tetrahedral Finite Element

In the linear tetrahedron with 4 nodes (Fig. 4.40), the displacements of the 4 end
nodes are assumed as independent variables:

XT
jl ¼ x1 y1 z1 x2 y2 z2 x3 y3 z3 x4 y4 z4f g ð4:210Þ

Components u, v and w of the displacement of the infinitesimal generic element
inside the tetrahedron generic element are defined completely by these 12 dis-
placements: in this case, as a shape function, we assume a linear shape function of
the type:

u ¼ a1 þ a2xþ a3yþ a4z

v ¼ b1 þ b2xþ b3yþ b4z

w ¼ c1 þ c2xþ c3yþ c4z

ð4:211Þ

Other tetrahedral-type finite elements can have (see Figs. 4.40 and 4.41) 9 nodes
(quadratic elements) and 20 nodes (cubic elements), with shape functions, obvi-
ously, of a higher order.

4.6.4.2 Brick Elements Consisting of Tetrahedrons with 8 Nodes

A more convenient representation (from a point of view of visualization of the mesh
and numeration of the nodes) could be that in which the real continuous system is

Fig. 4.41 A systematic approach of dividing the continuous system into brick elements with 8
nodes composed by several tetrahedrons
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divided into brick elements with 8 nodes, each of which can subsequently be
divided into 2 or more tetrahedral-type elements as shown in Fig. 4.41: this
approach is useful to implement automatic schematization procedures.

4.6.4.3 Rectangular Prisms with 8 Nodes

Another three-dimensional finite element that can be used to analyse a generic state
of spatial stress is the rectangular prismatic element (Fig. 4.42a) with 8 nodes. Other
rectangular prismatic-type elements can have (see Fig. 4.42b) 20 nodes (quadratic
elements) and 32 nodes (cubic elements), with shape functions of a higher order. As
an example, in Fig. 4.43 we show other possible types of triangular prismatic-type
finite elements, respectively linear (with 6 nodes), quadratic (with 8 nodes) and
cubic (with 26 nodes).

Fig. 4.42 a Linear prism finite element with 8 nodes; b quadratic element; c cubic element

Fig. 4.43 Triangular prism finite elements: a linear, b quadratic and c cubic
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4.6.5 Plate Elements and Shell Elements

In the previous paragraphs, the relations between stresses and strains were given in
their exact form: conversely, in the classic plate approach [3, 26] we introduce
approximations to simplify the problem (in reality three-dimensional) to a problem
with two dimensions: the hypothesis normally introduced is that of considering the
stress and strain variation linear in the normal direction to the plane of the plate and
this hypothesis is valid for narrow plates and small strains. The strain state can thus
be defined by the only transverse displacement wðx; y; zÞ of the medium plane of
the plate, also imposing continuity on the derivative of this amplitude.

4.6.5.1 Rectangular Plate Element

Figure 4.44 shows the plate finite element with 4 nodes: associated with each node
are 3 d.o.f. corresponding to the vertical displacement w, to rotation hxi around axis
x and to rotation hyi around axis y:

XT
i ¼ wi hxi hyi

� � ð4:212Þ

for a total of 12 d.o.f.:

XT
ji ¼ XT

1 XT
2 XT

3 XT
4

� � ð4:213Þ

in this case, the shape function is an incomplete polynomial form of the fourth order
[26] of the type:

w x; yð Þ ¼ a1 þ a2xþ a3yþ a4x2 þ a5xyþ a6y2 þ a7x3 þ a8x2yþ a9xy2

þ a10y3 þ a11x3yþ a12xy3

ð4:214Þ

w(x,y)

X

Y

b

a

wi

yi

1 4

i2 xi

Fig. 4.44 Rectangular plate
finite element with 4 nodes
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As can be seen, the displacement with x = constant or y = constant is cubic and, in
particular, on the boundaries: since a cubic function, as with the beam, is defined by
4 constants that are completely defined by imposing displacements and rotations on
the ends, the 12 constants can be defined by imposing the 12 boundary conditions
on the nodes:

wi ¼ a1 þ a2xi þ a3yi þ � � �

� @w
@y

� �
i
¼ hxi ¼ �a3 � a5xi þ � � �

� @w
@x

� �
i
¼ hyi ¼ �a2 � 2a4xi þ � � �

ð4:215Þ

The relative stiffness Kp
� 	

and mass Mp
� 	

matrix of the plate element can, at this
point, be obtained from (4.193) and (4.194).

4.6.5.2 Shell Element (Shell)

A shell structure has both a membrane (Sect. 4.5.3.2) and plate-type structure in
that it reacts both to in-plane forces and to bending stresses. The shell element is
thus used to simulate the behaviour of these structures which, from a geometric
point of view, have curved surfaces. To this purpose, it is possible to use:

• a plane shell element (4 nodes with 5 d.o.f. per node, Figs. 4.45 and 4.46)

XT
k ¼ xk yk zk hxk hyk hzk

� �
k ¼ 1; 2; 3; 4ð Þ ð4:216Þ

a combination of a plate element and a membrane element: although this shell
has a simple formulation it does not offer a high level of accuracy;

• a curved shell element, deriving from the theory of shells: when using this
approach, we introduce many d.o.f. often with derivatives of a higher order than
the first;

• a solid (or degenerated solid) element similar to the plate elements or isopara-
metric plate elements [3, 26].

4.6.6 Isoparametric Elements

The increase in the number of the nodes of the generic finite element causes a
refinement of the shape function of same and therefore necessitates a lower number
of d.o.f. in order to schematize suitably the generic continuous system. In order to
simulate a relatively complex shape, using a limited number of finite elements, the
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Fig. 4.45 Shell finite elements

Fig. 4.46 Shell finite
elements: an application
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use of isoparametric elements (Fig. 4.47)14 might prove to be necessary. Their main
characteristic is the fact that they have curvilinear boundaries that are able to clearly
define solids with curved boundaries and reduce or thicken the mesh, e.g. in those
areas that have high stress gradient values (Fig. 4.48). For more details reference
should be made to the bibliography.

z
y

x

m

i j

k

z

y

x

1

2

4

i
Xi

Yi
Zi θyi

θxi

Fig. 4.47 Isoparametric elements

14The coordinates of a generic point inside a generic finite element can be defined as a function of
the coordinates of the end nodes of same as:

xp ¼
xp
yp
zp

8<
:

9=
; ¼ Np

� 	
C ¼ Np

� 	
x1
y1
z1
. . .
xm
ym
zm

8>>>>>>>><
>>>>>>>>:

9>>>>>>>>=
>>>>>>>>;

ð4:14:1Þ

This expression is formally the same as that used to define the link between the displacements of
the same point P as a function of displacements Xjl of the end nodes (4.95). In relations (4.14.1)
both Np

� 	
, and the shape function matrix fj

� 	
prove to be dependent on the spatial coordinates:

an element is termed “isoparametric” if Np
� 	

and fj
� 	

are identical [10].
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4.7 Nonlinear Analysis in Structures Using the Finite
Element Method (Brief Outline)

Until now, we have analysed the dynamic behaviour of structures in the linear field,
in other words we assumed a linear relationship between stresses and strains and we
analysed small oscillations about a pre-established equilibrium position: when these
assumptions are not verified, the equations of motion obviously become nonlinear.
Several of the behaviours of the structure can be classified as nonlinear:

• nonlinearity of material, caused by a specific link between stresses and strains
(both dependent and not dependent on time);

• nonlinearity correlated to the effect of large displacements or rotations;
• nonlinearity due to variations in constraint conditions; in particular parts of the

structure can slide relatively and clearances in connections may open or close.

In the latter two cases we generally talk about geometric nonlinearity. Often, the
most common structural problems can be solved by using linear algorithms in that,
generally speaking, materials work in an elastic field and the strains that can be
supported by mechanical systems are small: furthermore, small nonlinearities do not
basically change a basic project defined in a linear field. Conversely, when non-
linearities become significant, a nonlinear analysis, which is also more complicated
from a computational point of view, is necessary. This is also due to the fact that, in
this case, the numerical procedures have not yet been completely standardized.
Often, one of the disadvantages of this approach is the difficulty of interpreting
results and the fact that it does not allow for analyses of either sensitivity or

Fig. 4.48 An example of the
application of an
isoparametric application
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optimization in engineering times. The aim of this paragraph is simply to provide a
brief outline of the main problems related to nonlinear (static and dynamic) anal-
ysis, with an application targeted at nonlinear techniques in finite elements: in this
case it is necessary to point out that, in Sects. 1.5 and 2.3.2, the methodologies for
the analysis of nonlinear 1 or n d.o.f. systems, consisting of mutually coupled rigid
bodies, have already been described. The explanation given in this paragraph is not
exhaustive and we therefore suggest that reference is made to the detailed biog-
raphy on the subject [2, 3, 10, 18, 21, 26]. In chapter,15 we will analyse, more
specifically, geometric nonlinearities. In order to simplify matters, we will base our
explanation on an application example.

4.7.1 Introduction to the Non-linear Problem

In the previous paragraphs, we wrote the equations of motion of a generic system
discretized with finite elements, based on the assumption of the linear behaviour of
same and obtaining a matrix equation of the type:

M½ �€Xþ R½ � _Xþ K½ �X ¼ F tð Þ ð4:217Þ

Relation (4.217) was obtained by assuming that:

• the material always works in a linear field, in other words a linear link between
stresses r and strains e is assumed;

• displacements X of the complete model of the structure which, as previously
mentioned, represent a disturbed motion about the static equilibrium position,
are small and thus incapable of introducing geometric nonlinearities;

• the constraint conditions remain unaltered during the application of loads.

15In relation to the finite element method, the Newton-Raphson method was developed in a
particular form based on two different approaches [2, 10, 26]:

• A Lagrangian approach (termed “stationary Lagrangian” or “total Lagrangian”;
• A Eulerian approach (defined as “updated Lagrangian”).

In the first approach, the reference system remains the absolute one regardless of how big the
rotations or displacements become: as the displacements gradually become bigger, it is necessary
to add stresses and strains to the link, nonlinear terms that give rise to stiffness matrices, additional
linear, quadratic, etc. functions of the same independent variables. Conversely, in the Eulerian
approach, a local reference system, connected to each finite element (and, therefore, different from
element to element) is used. The position of each local reference system is re-updated as a function
of the new configuration XðiÞ reached by the system.

The advantages of one method with respect to the other mainly depend on the type of
application and there are no set rules for the choice of one or other algorithm. In the explanation
that follows, we will only refer to the Eulerian formula (“updated Lagrangian”) which, generally
speaking, lends itself better to the analysis of geometric nonlinearities.
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When these conditions are not verified, the behaviour of the system is nonlinear.
In this case, the equations of motion formally become16:

Fi X; _X; €X
� �þ Fs X; _X

� �þ Fe Xð Þ ¼ F tð Þ ð4:218Þ

where

• F tð Þ is the vector of the external forces;
• Fi is the vector of the generalized inertia forces, nonlinear functions of dis-

placements X, velocity _X and accelerations €X of the system;
• Fs is the vector of the generalized dissipation forces, nonlinear functions of

displacements X and of velocity _X of the system;
• Fe finally, is the vector of the elastic forces, also generally nonlinear functions of

displacements X.

The direct integration of these equations (4.218) is performed by using step-by-
step numerical integration methods: this approach to the problem is necessary when
one needs to evaluate the motion in large of the nonlinear system. Often the motion
of the system occurs as the result of small displacements about the static equilib-
rium position. In this case, it is, however, necessary to first evaluate the static
equilibrium position X0 by solving the nonlinear static problem:

Fe X0ð Þ ¼ Fc ð4:219Þ

where Fc was used to indicate the constant part of the constant external forces
applied to the system. About this position it is subsequently possible to linearize the
equations of motion (4.218). After adding and subtracting Fc we obtain:

M0½ �€Xþ R0½ � _Xþ Fe X0ð Þ þ K0½ � X� X0f g ¼ F tð Þ � Fcf g þ Fc ð4:220Þ

where, respectively:

M0½ � ¼ @Fi
@ €X

� 
x¼x0

; R0½ � ¼ @Fs
@ _X

� 
x¼x0

; K0½ � ¼ @Fe
@X

� 
x¼x0

ð4:221Þ

M0½ � is the mass matrix of the system, evaluated about the static equilibrium
position, R0½ � is the relative damping matrix and finally K0½ � is the tangent stiffness
matrix. By keeping account of the static equilibrium equation (4.219) and per-
forming a change of variables:

X ¼ X0 þ X ð4:222Þ

16These equations can be obtained by means of Lagrange’s equations: in particular, it is important
to remember that the terms will be nonlinear if the various forms of energy are not quadratic
functions (a propos of this, see Chap. 2, Sect. 2.4.2).
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having used X to indicate the vector that defines the disturbed motion about the
static equilibrium position X0, relation (4.220) can be rewritten as:

M0½ �€�Xþ R0½ � _�Xþ K0½ ��X ¼ F tð Þ � Fcf g ¼ �F tð Þ ð4:223Þ

This equation proves to be linear.

4.7.2 Linearization of the Equations of Motion About
the Equilibrium Position

The methodology necessary to linearize the equations of motion about the static
equilibrium position has already been described in depth in Chaps. 1 and 2, with
particular emphasis on discrete systems generally with n d.o.f. We will now
describe the methodology necessary to define the static equilibrium position of a
nonlinear system, with particular reference to the finite element technique.

4.7.2.1 Nonlinear Static Analysis

Equation (4.219) which defines the configuration assumed by the system under
static conditions can be obtained from the Lagrange’s equations, by annulling the
terms of velocity and acceleration. Generally speaking, this equation is nonlinear
and its solution must be looked for using specific numerical procedures: among the
methods used, the most common is the Newton-Raphson method, with its
numerous variants. From a didactic point of view, in order to simplify the expla-
nation, we will now refer to the highly frequent and particularly simple example of
constant external forces F tð Þ ¼ P from which we obtain:

Fe Xð Þ ¼ P ð4:224Þ

We will analyse this method applied, first and foremost, to a system with only one
d.o.f. (for which it is also possible to give a significant geometric interpretation of
the algorithm), in order to subsequently (Sect. 4.7.2.1.2) generalize the approach for
generic n d.o.f. systems.

4.7.2.1.1 The Newton-Raphson Method Applied to One-Degree-of-
Freedom Systems

The equation that defines the static equilibrium position in a nonlinear one d.o.f.
system, can thus be rewritten as:
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Fe xð Þ ¼ P ð4:225Þ

in which we have also kept account of the fact that the external forces P are constant
and where the only free coordinate of the system has been indicated by x. An
iterative approach can be used when looking for the solution, for example, by using
the Newton-Raphson method, expanding in a Taylor series, about an initial trial
solution (defined by prime(0)) Eq. (4.225):

Fe xð0Þ

 �

þ @Fe
@x

� �
x¼xð0Þ

x� xð0Þ

 �

¼ P ð4:226Þ

Equation (4.226) can be rewritten as:

@Fe
@x

� �
x¼xð0Þ

x� xð0Þ

 �

¼ P� Fe x 0ð Þ

 �

) Kð0ÞDxð0Þ ¼ DRð0Þ ð4:227Þ

where the term:

DRð0Þ ¼ P� Fe xð0Þ

 �

ð4:228Þ

can be interpreted as a static unbalance associated with the fact that the position of
the first attempt does not represent the real static solution (otherwise, this term
would, obviously, be null). In (4.227) the term:

Kð0Þ ¼ @Fe
@x

� �
x¼xð0Þ

¼ @2V
@x2

� �
x¼xð0Þ

ð4:229Þ

represents the tangent stiffness evaluated about the chosen first trial position: this
term generally proves to be variable with the chosen xð0Þ position (its geometric
meaning is highlighted in Fig. 4.49). Finally, the term:

Dxð0Þ ¼ x� xð0Þ

 �

ð4:230Þ

represents the difference between the first trial position xð0Þ and solution x which
derives from the linearized expression of Fe xð Þ: this amplitude is an index of error
in the estimation of the equilibrium position. This method foresees the calculation
of Dxð0Þ by solving (4.230) and by assuming, as the next new position (i = 1):

xð1Þ ¼ xð0Þ þ Dxð0Þ ð4:231Þ
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by once again solving:

@Fe
@x

� �
x¼xð1Þ

x� xð1Þ

 �

¼ P� Fe xð1Þ

 �

) Kð1ÞDxð1Þ ¼ DRð1Þ ð4:232Þ

where Kð1Þ represents the tangent stiffness, unlike the previous case on account of
being evaluated in correspondence to a different xð1Þ strain. The procedures con-
tinues in an iterative way by using the generic ith step to define the trial solution as:

xðiÞ ¼ x i�1ð Þ þ Dx i�1ð Þ ¼ xð0Þ þ
Xi�1

k¼0

Dx kð Þ ð4:233Þ

and solving:

@Fe
@x

� �
x¼xðiÞ

x� xðiÞ

 �

¼ P� Fe xðiÞ

 �

) KðiÞDxðiÞ ¼ DRðiÞ ð4:234Þ

From the first Eq. (4.233) we obtain a value of xðiÞ which, after being inserted into
the second Eq. (4.234), provides a better approximation of the solution been looked
for. The solution is found when, for a certain value of xðiÞ, DxðiÞ proves to be null:
this condition is not normally reached and, in actual fact, the iterative procedure
(whose geometric meaning, for a 1 d.o.f. system, is described in Fig. 4.49) is halted
when this condition is verified:

DxðiÞ\e ð4:235Þ

where e is the error, as small as is willed, considered acceptable. This procedure
proves to be convergent for a monotonous function without maximum or minimum

F 

P 

x (0) x (1) 

k (0) 

k (1) 

x 

Fig. 4.49 Nonlinear one d.o.f. system: Newton-Raphson method
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relative values, in the interval in which the solution is looked for: in reality, most of
the structure satisfies these conditions.

4.7.2.1.2 The Newton-Raphson Method Applied to N-Degree-of-Freedom
Systems

The extension to discrete systems with several d.o.f. does not involve a conceptual
variation of the method: the equilibrium equations are given by (4.224) where X is
the vector of the independent coordinates, P the vector of the external forces
(assumed constant in this explanation) and finally Fe the vector of the elastic forces,
nonlinear functions of displacements X. Similarly to that seen for one d.o.f. sys-
tems, the solution is looked for using an iterative procedure, extending to a Taylor
series, about a trial solution (defined by means of prime(i)) Eq. (4.224) and trig-
gering an iterative procedure that can be summarized by the following equations:

XðiÞ ¼ X i�1ð Þ þ DX i�1ð Þ ¼ Xð0Þ þ
Xi�1

k¼0

DX kð Þ ð4:236Þ

@Fe
@X

� 
x¼xðiÞ

X� XðiÞ
n o

¼ P� Fe XðiÞ

 �

) KðiÞ
h i

DXðiÞ ¼ DRðiÞ ð4:237Þ

The iterative procedure stops when condition:

DXðiÞ�� ��\e ð4:238Þ

is verified or rather when norm DXðiÞ�� �� of the difference between the displacements
between the generic ith iteration and the previous one is lower than a certain
maximum, prefixed error. In Eq. (4.237) vector:

DRðiÞ ¼ P� Fe XðiÞ

 �

ð4:239Þ

can be interpreted as the static unbalance due to the fact that the generic XðiÞ

position does not represent the real static solution (otherwise this terms would
obviously be a rigorously null vector).

Matrix KðiÞ� 	
:

KðiÞ
h i

¼ @Fe
@X

� 
x¼xðiÞ

¼ @2V
@X2

� 
x¼xðiÞ

ð4:240Þ

represents the tangent stiffness matrix evaluated about the generic ith trial position.
This matrix coincides with the stiffness matrix calculated using the linear approach
developed in the previous paragraphs and is a function of the XðiÞ position about
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which the same is evaluated. The vector of the elastic forces Fe XðiÞ� �
, a generally

nonlinear function of displacements XðiÞ, is formally evaluated using the relation:

Fe XðiÞ

 �

¼ @V
@X

� �ðiÞ
ð4:241Þ

In Eq. (4.237) vector:

DXðiÞ ¼ X� XðiÞ
n o

ð4:242Þ

represents the difference between the attempt position XðiÞ and the real solution X:
this amplitude is an index of error in the estimation of the equilibrium position.
Finally, let us remember that, often, to improve the convergence of the method, the
external load P is not applied in a single solution, but is divided into fractions which
are subsequently applied, calculating, each time, the intermediate equilibrium
position reached by following the procedure outlined above.

In this way, the gradual application of a load is simulated, the aim being to avoid
the first attempt solution being too far off from the final one, which could lead to
convergence problems of the method.

4.7.2.1.3 An Application Example

As an example, let us now analyse the span of a high tension electric line previously
analysed in Sect. 4.4, Fig. 4.10. Let us consider the schematization already adopted
in Sect. 4.4.1 (Fig. 4.11), or rather a model of the span divided into 8 finite elements
and nine nodes, and, furthermore, let us only study its behaviour in the vertical
plane. We will now evaluate the static equilibrium position reached by the cable
subjected to the initial tension So and its own weight (Fig. 4.50). The vector of the
independent variables Xt, already divided into free d.o.f. XL and constraint d.o.f.
XV has already been defined in (4.84):

p

So So

(a)

(b)

Fig. 4.50 Taut cable: a initial configuration X(o), b generic configuration X(i)
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Xt ¼ XL
XV

� �
ð4:243Þ

where, as we recall,

XT
V ¼ X1 Y1 X9 Y9f g

XT
L ¼ X2 Y2 X3 Y3 X4 Y4 X5 Y5 X6 Y6 X7 Y7 X8 Y8f g

ð4:244Þ

The expressions that define the linearized equations about a generic static config-
urations are (4.85)

KLL½ � KLV½ �
KVL½ � KVV½ �

� 
XL
XV

� �
¼ FL

FV þ RV

� �
¼ FL

�FV

� �
ð4:245Þ

The iterative procedure used to determine this configuration, already defined in the
previous paragraph (4.236), (4.237), is shown below for reasons of convenience:

XðiÞ
L ¼ X i�1ð Þ

L þ DX i�1ð Þ
L ¼ Xð0Þ

L þ
Xi�1

k¼0

DX kð Þ
L ð4:246Þ

KðiÞ
LL

h i
DXðiÞ

L ¼ DRðiÞ
L ð4:247Þ

DRðiÞ
L ¼ PðiÞL � FeL XðiÞ

L


 �
ð4:248Þ

In order to solve these equations using an iterative method and having assigned the

generic trial configuration XðiÞ
L , it is necessary to define:

• the tangent stiffness matrix KðiÞ
LL

h i
;

• the vector of the elastic forces FeL XðiÞ
L


 �
;

• the vector of the generalized forces due to the weight forces PðiÞL .

As seen in Sect. 4.6, generally speaking, these amplitudes can be obtained, by
determining the potential energy and the virtual work of the external forces as a
function of the independent variables represented by nodal displacements and by

subsequently applying Lagrange’s equations. The tangent matrix KðiÞ
LL

h i
is obtained

by assembling the matrices of the single finite elements KðiÞ
j

h i
defined in the local

reference system by:
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KðiÞ
j

h i
¼ KðiÞ

j

h iT
KðiÞ

jl

h i
KðiÞ

j

h i
ð4:249Þ

where KðiÞ
jl

h i
is the stiffness matrix of the finite element taut cable in the plane

(Sect. 4.4.2, (4.30)):

KðiÞ
jl

h i
¼

EAj

lj
0 �EAj

lj
0

0
SðiÞ

j

lj
0 � SðiÞ

j

lj
�EAj

lj
0 EAj

lj
0

0 � SðiÞ
j

lj
0

SðiÞ
j

lj

2
666666664

3
777777775

ð4:250Þ

In Eq. (4.250) tension SðiÞj can be defined by adding the initial tension S 0ð Þ
j ¼ So to

the increase of the axial action due to strain:

SðiÞj ¼ S 0ð Þ
j þ EAj

lj
DXðiÞ

jl ð4:251Þ

in which DXðiÞ
jl is the elongation to which the generic finite element is subjected

with respect to the reference configuration (Fig. 4.51):

DXðiÞ
jl ¼ DXðiÞ

jls � DXðiÞ
jld ð4:252Þ

where DXðiÞ
jls and DXðiÞ

jld are the displacements of the end nodes in the axial direction

of the local reference system of the element that can be obtained from vector XðiÞ
jl :

XðiÞ
jl ¼ KðiÞ

j

h i
XðiÞ

j ð4:253Þ

Zsj
Xsjl

Xsj

Zsjl

Zdj

Xdjl

Xdj

Zdjl

Fig. 4.51 Absolute and local
reference system of the
generic finite element
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where KðiÞ
j

h i
is the coordinate transformation matrix (already introduced in

Sect. 4.4.3, (4.35)):

KðiÞ
j

h i
¼

kðiÞj
h i

0

0 kðiÞj
h i

2
4

3
5) KðiÞ

j

h i
¼ cos aðiÞj sin aðiÞj

� sin aðiÞj cos aðiÞj

" #
ð4:254Þ

aðiÞj the angle formed with respect to the global reference system by the generic

finite element in the configuration corresponding to the attempt solution XðiÞ
j

(Fig. 4.51):

aðiÞj ¼ arctan
ZðiÞ
dj � ZðiÞ

sj

XðiÞ
dj � XðiÞ

sj

 !
ð4:255Þ

Vector FeL XðiÞ
L


 �
of the elastic forces, that can be obtained from Eq. (4.241),

represents the generalized forces applied, in this case, to the nodes of the structure
that here coincide with the components according to the global directions of the
elastic forces applied to the nodes. In this case it is, therefore, simpler to define
these forces by evaluating them in the local reference system of the jth finite
element in the generic position (Fig. 4.52):

Fejl XðiÞ

 �

¼ �
SðiÞj
0

�SðiÞj
0

8>><
>>:

9>>=
>>; ð4:256Þ

Sj
(i)

Sj
(i)

j+

S(i)
j +1

S(i)
j +1

Fig. 4.52 Definition of the elastic forces in the local reference system
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which, when projected into the global reference system, become:

FðiÞej ¼ Kj XðiÞ

 �h iT

Fejl XðiÞ

 �

ð4:257Þ

These forces are assembled in the global vector FeL XðiÞ
L


 �
, (4.248) (Fig. 4.53).

As regards the system in question, the vector of the external forces PðiÞL (4.248)
depends solely on the weight force: the components of the weight force per unit
length in the local reference system of the jth finite element are (see Fig. 4.51):

pðiÞuj ¼ �mg sin aj

pðiÞwj ¼ �mg cos aj
ð4:258Þ

The virtual work performed by these forces can be defined as (Sect. 4.4.6.2):

d�Lj ¼
Zlj
0

pðiÞuj ðnÞd�ujdnþ
Zlj
0

pðiÞwjðnÞd�wjdn ð4:259Þ

By recalling that (Sect. 4.2.1, (4.5)):

uj n; tð Þ ¼ fTu ðnÞXjl ð4:260Þ

wj n; tð Þ ¼ fTwðnÞXjl ð4:261Þ

puj(ξ)

pwj(ξ)

m

ξ

Fig. 4.53 Decomposition of
the weight force in the local
reference system
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d�Lj can be expressed as:

d�Lj ¼
Zlj
0

pðiÞuj ðnÞfTu ðnÞdnþ
Zlj
0

pðiÞwjðnÞfTwðnÞdn
8<
:

9=
;d�Xjl ¼ P ið ÞT

jl d�Xjl ð4:262Þ

where PðiÞjl is a vector, whose dimensions are equal to the number of d.o.f. of the
generic finite element, which contains the generalized forces concentrated at the
nodes of the finite element model. The virtual work expressed as a function of the
independent coordinates in the global reference system is:

d�Lj ¼ P ið ÞT
jl KðiÞ

j

h i
d�Xj ¼ P ið ÞT

j d�Xj ð4:263Þ

where PðiÞj is a vector whose dimensions are equal to the number of d.o.f. of the
generic finite element, which contains the generalized forces concentrated at the
nodes of the model, defined in the global reference system:

PðiÞj ¼ KðiÞ
j

h iT
PðiÞjl ð4:264Þ

By assembling vectors PðiÞj of the excitation forces for each element, as already seen

in Sect. 4.4.6.1, we obtain the definition of the generalized forces PðiÞL for all the d.o.
f. of the system. In this way it is possible to solve Eqs. (4.246), (4.247) and (4.248)
using an iterative approach in order to find the static equilibrium position.

4.8 Numerical Integration of the Equations of Motion
(Brief Outline)

With reference to the equations obtained in the case of nonlinear 1, 2 or n d.o.f.
system (concerning this see Sects. 1.5, 2.4.2 and 4.7), the equations of motion are of
the type:

Fi X; _X; €X
� �þ Fs _X; €X

� �þ Fe Xð Þ ¼ F tð Þ ð4:265Þ

where Fi is the vector that defines the inertia forces, Fs is the vector of the dissi-
pation forces and, finally, Fe is the vector of the elastic forces all nonlinear functions
of the independent variables X. This system of differential equations can always be
traced back to the following form [10]:
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M Xð Þ½ �€X ¼ Fr X; _X; t
� � ð4:266Þ

having collected all the force contributions not directly proportional to acceleration
€X in vector Fr. In the case of linear systems (always see Sects. 2.4 and 4.3) the
equations of motion can be traced back to the known form:

M½ �€X ¼ � R½ � _X� K½ �X� F tð Þ ð4:267Þ

These equations can be integrated directly, as already mentioned several times, in
numerical form: in this paragraph we will make a brief reference to the methodol-
ogies of numerical integration of differential equations with total derivatives of the
type shown in (4.266) and (4.267) most frequently used, with particular reference to
courses on Numerical Calculation and specific texts on the subject [2, 16, 18].

All the integration methods, both in a linear and nonlinear field, are based on two
different ideas:

• satisfying Eqs. (4.266) and (4.267) not in a continuous manner, but only in
particular instants of time to, to þ Dtð Þ, to þ 2Dtð Þ etc.;

• imposing, in approximated form, the value of acceleration €X sð Þ inside the
integration step Dt 0� s�Dtð Þ and deducing both speed and displacement from
this during the next step:

_X tþ Dtð Þ ¼ _X tð Þ þ D _X ¼ _X tð Þ þ
ZDt
0

€X sð Þds
8<
:

9=
;

X tþ Dtð Þ ¼ X tð Þ þ DX ¼ X tð Þ þ Dt _X tð Þ þ
ZDt
0

ZDt
0

€X sð Þds
8<
:

9=
;ds

8<
:

9=
;
ð4:268Þ

The choice of the acceleration trend X(t) inside the step determines the accuracy,
the numeric stability and the burden of the solution method. In this way, the generic
integration procedure proves to be iterative:

• at time t ¼ 0 the initial conditions Xð0Þ and _Xð0Þ are known, because they are
imposed;

• it is possible to evaluate all the terms on the right of the equal sign of Eq. (4.266)
or (4.267) and to thus obtain acceleration €Xð0Þ;

• X Dtð Þ and _X Dtð Þ are calculated by (4.268);
• the procedure is developed, starting from time t þ Dtð Þ and subsequently the

amplitudes at time t þ 2Dtð Þ are obtained and so on.
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The methods are divided into explicit and implicit methods:

• explicit (or predictor) methods are those for which neither displacements
X tþ Dtð Þ, nor velocity _X tþ Dtð Þ are made to depend on acceleration €X tþ Dtð Þ
at step tþ Dt, or rather, it is possible to perform the integrations only by
knowing the accelerations €X tð Þ at step t; these methods can be applied directly
and indifferently both in linear or nonlinear problems;

• implicit (or corrector) methods are those in which, conversely, displacements
and speeds depend on accelerations in two instances t and tþ Dt; since when
using these approaches it is necessary to evaluate all the forces acting on the
system even at time tþ Dt [2], these methods can only be directly applied to
linear problems (the extension of these algorithms in a nonlinear field involves
the introduced, at a frozen time, of the iterative procedures of the predictor
corrector type [1]).

The explicit methods are conditionally stable, that is they require small inte-
gration steps Dt (smaller than the smallest oscillation period present in the system to
be analysed): if integration steps that are too large are used, the integration method
diverges. The implicit methods are unconditionally stable, i.e. any type of inte-
gration step Dt can be used for them: in this case, the choice of integration step only
depends on the accuracy desired in the results (these methods filter the frequencies
for which the integration step adopted is too high). Among the most widely used
integration methods, worth particular note are:

• the Runge-Kutta fourth order (explicit method) method which, despite having an
error of the order of Δt5 nevertheless requires 4 solutions of the equations for
each step and the integration step must be sufficiently small (otherwise there
would be numerical instability);

• the Newmark method, which will be described in the next paragraph; or the
Houbolt [2] method which, however, damps the modes with a T period lower
than 20Dt (this method is often preferred to the Newmark method in nonlinear
problems);

• the Park-method [1] which appears to be better than the Houbolt method for
nonlinear systems;

• the central differences method [2];
• the Hughes method, the Taylor method [1];
• the Hilber method which represents and extension of the Newmark method.

Out of all the above mentioned integration methodologies that can be used, in
this part, reference will be made to the algorithms based on the Newmark method.
As regards other types of approaches, reference can be made to the specialized texts
on the subject [1, 2].
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4.8.1 The Newmark Method in a Linear Field

This method can be considered as an extension of the linear acceleration method:
the following assumptions, based on the hypothesis of constant acceleration in step
Dt, are introduced:

_X tþ Dtð Þ ¼ _X tð Þ þ 1� dð Þ€X tð Þ þ d€X tþ Dtð Þ� 	
Dt

X tþ Dtð Þ ¼ X tð Þ þ Dt _X tð Þ þ 1
2
� a

� �
€X tð Þ þ a€X tþ Dtð Þ

� 
Dt2

ð4:269Þ

The equations of motion for the generic linear system are written at instant tþ Dt:

M½ �€X tþ Dtð Þ þ R½ � _X tþ Dtð Þ þ K½ �X tþ Dtð Þ ¼ F tþ Dtð Þ ð4:270Þ

By obtaining acceleration €X tþ Dtð Þ from the second equation of (4.269) and
substituting it in the first relation, we obtain:

€X tþ Dtð Þ ¼ 1
aDt2

X tþ Dtð Þ � X tð Þ � Dt _X tð Þ � Dt2
1
2
� a

� �
€X tð Þ

� � �
_X tþ Dtð Þ ¼ _X tð Þ þ Dt 1� dð Þ€X tð Þ þ dDt

1
aDt2

X tþ Dtð Þ � X tð Þ � Dt _X tð Þ � Dt2
1
2
� a

� �
€X tð Þ

� � �
ð4:271Þ

By substituting relations (4.271) in Eq. (4.270) we obtain an algebraic equation in
X tþ Dtð Þ:

M½ � 1
aDt2

þ R½ � d
aDt

þ K½ �
� 

X tþ Dtð Þ ¼ F tþ Dtð Þ

þ M½ � 1
aDt2

þ R½ � d
aDt

� 
X tð Þ þ M½ � 1

aDt
� R½ � þ R½ � d

a

� 
_X tð Þ

þ M½ � 1
a

1
2
� a

� �
� R½ �Dt 1� dð Þ þ R½ � dDt

a
1
2
� a

� �� �� 
€X tð Þ

ð4:272Þ

or rather:

�K½ �X tþ Dtð Þ ¼ R tþ Dtð Þ ð4:273Þ

where �K½ � is the matrix of reduced stiffness:

�K½ � ¼ M½ � 1
aDt2

þ R½ � d
aDt

þ K½ �
� 

ð4:274Þ
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and R(t + Δt) is the vector of the reduced forces:

R tþ Dtð Þ ¼ F tþ Dtð Þ þ M½ � 1
aDt2

þ R½ � d
aDt

� 
X tð Þ

þ M½ � 1
aDt

þ R½ � d
a
� 1

� �� 
_X tð Þ

þ M½ � 1
a

1
2
� a

� �
� R½ �Dt 1� dð Þ þ R½ � dDt

a
1
2
� a

� �� �� 
€X tð Þ

ð4:275Þ

Having assigned a certain integration step Dt and having assigned the values of
constants α and δ it is possible to calculate the reduced stiffness matrix �K½ � from
Eq. (4.274). Having assigned the initial conditions (for t = 0) it is possible to
evaluate the vector of the fictitious forces R Dtð Þ at time Dt. By solving Eq. (4.273)
it is possible, at the same time, to obtain the displacements and, by substituting
these values in Eq. (4.271), it is possible to calculate velocity and accelerations. At
this point, time is increased and the procedure is repeated. As can be seen, this
method is implicit and it can be shown that for:

d� 0:5; a� 0:5þ dð Þ2
4

ð4:276Þ

this is unconditionally stable [1, 3]: as the integration step increases, the effect
introduced by the numerical integration is that of filtering the high frequencies
(associated with periods that are lower than the integration step Dt used). This
characteristic is useful in the case of structures modelled with finite elements, where
high fictitious frequencies are introduced by the same schematization used.

4.8.2 The Newmark Method in a Nonlinear Field

As noted, the Newmark method requires an understanding of the real forces at step
tþ Dt meaning that, therefore, this cannot be used for nonlinear systems in which
the forces depend on displacements speeds and accelerations not known in the next
step. In this case, it is necessary to modify this methodology (see [3]) by intro-
ducing, independently of time, an iteration that will converge to the equilibrium at
each step by introducing a dynamic equilibrium equation of the forces which must
be verified at the end of each integration step.
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4.9 Summary

This chapter deals with the study of the dynamics of continuous mechanical sys-
tems using the approximated finite element discretization approach. The general
methodology used to define the matrix equations of motion in the case of vibration
problems is described. Cable, beam and “taut beam” finite elements are analysed as
examples of application; notions regarding two-dimensional and three-dimensional
finite elements are shown. The basics concepts regarding the finite element method
approach for nonlinear systems and methods of numerical integration of the non-
linear equations of motion are introduced.

References

1. Argyris J, Mleinek HP (1991) Texts on computational mechanics, dynamic of structures.
Elsevier, Amsterdam

2. Bathe KJ (1982) Finite element procedures in engineering analysis. Prentice-Hall, Englewood
Cliffs

3. Bathe KJ, Wilson EL (1976) Numerical methods in finite element method. Prentice-Hall,
Englewood Cliffs

4. Belloni G, Bemasconi G (1975) Sforzi e deformazioni e loro legami. Tamburini Editore,
Milano

5. Bishop RED, Johnson DC (1960) The mechanics of vibrations. Cambridge University Press,
Cambridge

6. Bishop RED, Gladwell GML, Michaelson S (1965) The matrix analysis of vibration.
Cambridge University Press, Cambridge

7. Brebbia CA (1991) Boundary element techniques—theory and application in engineering.
McGraw-Hill, New York

8. Bruni S, Cheli F, Collina A, Diana G (1985) Train-track interaction: a comparison between a
numerical model and full scale experiments. In: Heavy vehicle system. Int J Veh Des 6(1–
4):115–146

9. Bruni S, Collina A, Corradi R (2005) Train-track-bridge interaction: influence of track
topology on structural dynamic performances. In: Proceedings of EURODYN 2005, Paris,
France

10. Cook RD (1981) Concepts and applications of finite element analysis. Wiley, New York
11. Den Hartog JP (1956) Mechanical vibrations, 4th edn. McGraw-Hill, New York
12. Desay CS, Abel JF (1972) Introduction to the finite element method: a numerical method for

engineering analysis. Van Nostrand Reinhold Company
13. Gallager H (1973) Finite elementanalysis fundamentals. Prentice-Hall, Englewood Cliffs
14. Holzer SH (1985) Computer analysis of structures. Elsevier, Amsterdam
15. Massa E (1981) Costruzioni di machine. Masson Italia, Milano
16. Meirovitch L (1967) Analytical methods in vibrations. The Macmillan, New York
17. Meirovitch L (1970) Methods of analytical dynamics. McGraw-Hill, New York
18. Meirovitch L (1980) Computational methods in structural dynamics. The Sijthoff & Noordhoff

Intemational Publishers
19. Meyers VJ (1983) Matrix analysis of structures. Harper and Row, New York
20. Politecnico di Milano (1986) Lezioni di scienza delle Costruzioni. Clup, Milano
21. Przemieniecki JS (1968) Theory of matrix structural analysis. McGraw-Hill, New York

4.9 Summary 411



www.manaraa.com

22. Ross CTF (1985) Finite element methods in structural mechanics. Ellis Horwood Limited,
Wiley, New York

23. Thomson WT, Dahleh MD (1997) Theory of vibration with applications, 5th edn. Prentice
Hall, Englewood Cliffs

24. Timoshenko SP, Young DH, Weaver W (1974) Vibration problems in engineering, 4th edn.
Wi1ey, New York

25. Weaver WW, Johnston PR (1987) Structural dynamics by finite elements. Prentice Hall Inc,
Englewood Cliffs

26. Zienkiewicz OC (1987) The finite element method, 4th edn. McGraw-Hill, New York

412 4 Introduction to the Finite Element Method



www.manaraa.com

Chapter 5
Dynamical Systems Subjected to Force
Fields

5.1 Introduction

In order to analyse the dynamics of a mechanical system we must address an issue
which, in general, is very complex. In fact, there are systems that allow a position of
static equilibrium and systems that, in general, do not allow such positions and are,
on the contrary, designed to create a certain motion, such as machines in general.
As regards systems that allow a position of static equilibrium, we have already
examined the class corresponding to dissipative systems where the forms of energy
addressed are elastic, gravitational and the dissipative function associated with non-
conservative forms arising from hysteresis, friction or, in any case, from dissipation
in the elastic elements themselves. In reality, these systems are subject to other
force fields in addition to the elastic and gravitational ones: consider, for example,
the case where a part, or the whole system, comes into contact with a fluid that
exerts actions that depend on the relative motion between fluid and object, actions
that are expressed, therefore, as force fields. In the case of a system with two
elements that come into contact with each other, these are subject to actions that can
again be expressed as a function of relative motion and, therefore, can be defined
once more through a force field. An electromagnetic force acting on a part or an
entire system can again be defined as a force field. The presence of force fields can
alter the static and dynamic behaviour of the actual system in a more or less
substantial manner. These cases are referred to as fluid-elastic or aeroelastic or
magnetoelastic systems, depending on whether the force field results from a fluid in
general, from the action of air or from an electromagnetic field. These force fields
can be:

• conservative;
• non-conservative.

Conservative force fields, similar to the elastic force field (conservative by
definition), overlap the latter, altering, as we will see later, natural frequencies and
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normal modes of vibration: these fields may give rise to static type instability (static
divergence), but cannot generate instability problems of a dynamic nature. In
reality, purely conservative force fields do not actually exist. The elastic force field
is also seen as conservative since the non-conservative part associated with it, due
to structural damping, is introduced with dissipative terms, proportional to velocity:
these systems have been defined as dissipative. Only those systems where their non-
conservative nature cannot be attributed to the dissipative phenomena mentioned
above (typically hysteresis or viscous damping), but is an intrinsic characteristic of
the force field, should be defined as non-conservative systems. Therefore, if the
force field is non-conservative and non-dissipative, any energy introduced by the
field into the system may give rise to:

• unstable motions;
• motions that increase over time (dynamic instability), motions which may also

lead to the collapse of the system.

As mentioned, force fields may act:

• on systems that allow a position of static equilibrium;
• on systems which, in general, do not allow such positions, for example,

machines.

In this chapter we will discuss those mechanical systems subject to force fields:

• perturbed about rest, where motion only results from distributed and/or con-
centrated elasticity (Sects. 5.2 and 5.3);

• perturbed about a state of motion (Sect. 5.4).

A steady-state solution will be obtained for these systems, if one exists, and, in
the event to analyse its stability we will consider the perturbed motion about the
steady-state or about another solution (if one exists). In the discussion we will show
that, in the case of systems perturbed about a situation of non-rest, conditions of
instability may also be observed in cases where these systems are subject to con-
servative force fields. For example, in Sect. 6.6 we will analyse the phenomena of
instability that may arise in a rotating shaft with different degrees of bending
stiffnesses: in this case the energy is supplied by external forces, needed to maintain
the steady-state or the motion, in general, of the system. These forces become, in
such a system, functions of the perturbed motion and so they themselves are a non-
conservative force field: for this reason the whole system is considered to be non-
conservative. In this chapter, we will illustrate some typical examples of such forms
of instability, for example, flutter instability in aerofoils (Sects. 5.2 and 5.3.1) or oil
film instability in journal bearings with hydrodynamic lubrication (Sect. 5.3.2.2)
and other vibratory phenomena induced, in general, by a fluid influencing a body.
Subsequently, further examples of systems where the force field is generated by the
interaction of two bodies coming into contact will also be analysed: the actions of
contact that are exchanged between two bodies can, in fact, give rise to various
phenomena such as flutter instability which may occur above a certain speed in
railway cars or the so-called wheel shimmy in cars [94, 102]. In the dynamics of
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interconnected bodies we will consider the various bodies that make up the system,
either rigid or deformable, and apply to them the actions caused by external force
fields, i.e.:

• known external actions F(t);
• actions arising from systems that interact with them.

Due to the constraints that interconnect the bodies, the term “constraint reac-
tions” is generally used to describe these actions. If an energetic approach is used to
write the equations of motion, for example the Lagrange equations, these reactions
do not perform work and so cannot be calculated. The constraints that exist between
the various bodies are translated into nc constraint equations that reduce the degree-
of-freedom of the entire system. In the event that the constraints are holonomic, if
n are the coordinates required to define the motion of the generic system1 then the
number of independent variables drops to n − nc. In actual fact, this approach is
only theoretical, or applies in a first approximation, since the coupling of various
bodies:

• due to the interposition of any lubricant between the contact surfaces;
• due to the effect of the contact mechanisms (micro-slip, deformation);

is not equivalent, in general, to the imposition of kinematic constraints.
For this reason, the nc constraint equations cannot be used but, in relation to the

type of contact, must be defined as a function of the independent variables that
define the forces exchanged between the bodies themselves. To further clarify this
point, we can use the following example: we will consider two bodies in planar
motion (in this case the total degree-of-freedom are n = 6), coupled in the journal
with a hinge made up of a lubricated journal bearing coupling. If we neglect the
motion between journal and bearing we can write nc = 2 constraint equations that
require that the centre of the journal considered to belong to body A undergoes the
same displacements as the centre of the bearing, belonging to body B (Fig. 5.1). In
this case, the effective degree-of-freedom of the system are reduced from n = 6 to
(n − nc) = 4.

If, however, we consider a case where there is oil film, it is not possible to write
the nc = 2 constraint equations, it is necessary to define the forces exchanged in the
coupling. These forces are functions of the displacements and of the relative
velocities between journal centre and bearing and the angular velocities of the two
bodies A and B: the same forces can, therefore, be estimated as a function of the
independent variables that define the motion of the two bodies A and B (the same
procedure can be applied in the case where mechanisms of local deformability are
under consideration). In this case, it is not possible to write holonomic constraint
equations, which reduce the number of degree-of-freedom, but, once the link

1In a discrete system with rigid bodies, as we know, n ¼ 6 �mc (in the general case of motion in
space) or n ¼ 3 �mc (in the case of planar motion), mc being the number of bodies that make up
the actual system.
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between the forces exchanged and the variables that define the system’s motion
have been defined, the same forces must appear in the equations of motion of the
overall system (described by all 6 coordinates for each body). The expressions of
these forces, which also include the derivatives of the variables that define the
system’s motion, are, ultimately, relations of non-holonomic constraint. With this
approach to the problem, the rigid or deformable bodies that make up the system
will come to have all the degree-of-freedom of the various bodies, as if they were
free: the introduction of constraints occurs through the force fields that represent the
interaction between the bodies themselves. This method, which replaces the tra-
ditional one [1, 6]:

• is closer to reality;
• requires a number of coordinates greater than the actual number of degree-of-

freedom to describe the motion of a system, since it does not introduce the
constraint equations; furthermore, it increases the complexity of the problem.

This approach should be considered as a refinement and a generalisation of the
approach where the interaction between the bodies making up the system can be
described by directly imposing the constraint conditions. We should point out that
the general discussion here can also be applied to controlled mechanical systems,
since the action of control is exerted via forces that are generally functions of the
state variables i.e. variables associated with the degree-of-freedom of the system, so
they can still be considered to be systems subject to field actions. Traditionally, on
the other hand, specific techniques were developed for these systems. For example,
in the event that we wish to judge the stability of the system, they are based on the
Laplace transform: these techniques, already referred to in Chap. 1, Sect. 1.3.5.2,
will not be discussed here; the reader should refer to specialised texts on the subject
[3, 4, 86]. For mainly didactic reasons, and similarly to what was done for dissi-
pative systems, in the first part of this chapter we will analyse the behaviour of

A

B

BA

A

BDetail of the 
journal-bearing
lubricated pair

pin

oil

Fig. 5.1 Constraints between
bodies: lubricated journal-
bearing coupling
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vibrating systems, subject to force fields, perturbed about rest (small motions).
Firstly we will consider those with a one degree-of-freedom (Sect. 5.2), subse-
quently those with two degree-of-freedom (Sect. 5.3) and, lastly, those with n or 1
degree-of-freedom (Sect. 5.4). In the second part of the chapter we will consider
systems subject to force fields, whose motion is defined as being large, focusing on
systems with one, two and n degree-of-freedom. The general discussion will be
accompanied by several explanatory examples, relating to the different issues being
analysed: during the discussion, it will be necessary to refer to specific force fields
and we will briefly illustrate their characteristics. In particular, in Sect. 5.2.1.1 we
will illustrate the characteristics of the force field caused by a fluid interacting with
a fixed or vibrating body while in Sect. 5.5.2.1.1 we will illustrate the characteristics
of the force field that are generated in contacts between wheel and road or wheel
and track.

5.2 Vibrating Systems with 1 DOF Perturbed Around
the Position of Equilibrium

We will consider the vibrating system with one degree-of-freedom in Fig. 5.2, made
up of a mass ms suspended elastically on a spring with elastic constant ks and also
constrained to the ground by a damper of constant rs: We can describe the hori-
zontal displacement of the mass using independent variable x.

We will assume that the system under consideration is subject to a known force
as a time function F(t) and the same is subject to a force field, generically functions
of displacement x, of velocity _x and acceleration €x: we will define with Fx x; _x; €xð Þ
the component of these forces depending on the degree-of-freedom x. The motion
equation of the vibrating system analysed is:

ms€xþ rs _xþ ksx ¼ Fx x; _x;€xð Þ þ FðtÞ ð5:1Þ

This differential equation is non-linear and so cannot generally be integrated
analytically: the solution of (5.1) can be estimated with approximate methods of
step-by-step numerical integration [2, 5]. To analyse the response of the system for
small oscillations about the position of static equilibrium or to estimate the stability
it is possible to linearise (5.1), once the position of static equilibrium has been
defined, if it exists. In correspondence to this solution, F(t) is zero or it is equal to a

( , , , )F x x x t
sm

sk

sr

Fig. 5.2 System with one degree-of-freedom subject to a force field
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constant. The position of static equilibrium xo is such that, with F(t) = 0, the
following relation is satisfied:

ksx0 ¼ Fxðx0; 0; 0Þ ð5:2aÞ

or, more generally, the function f(x) is zero:

f ðx0Þ ¼ ksx0 � Fxðx0; 0; 0Þ ¼ 0 ð5:2bÞ

Equation (5.2a) is a non-linear algebraic equation that can be solved, to obtain
x0, analytically in simple cases and, more generally, using numerical procedures
[2, 5]. To linearise (5.1) about the position of static equilibrium x0, the force
function Fx must be expressed in the Taylor series:

ms€xþ rs _xþ ksx ¼ Fxðx0; 0; 0Þ þ @Fx

@x

� �
0
x� x0ð Þ þ @Fx

@ _x

� �
0
_xþ @Fx

@€x

� �
0
€x ð5:3Þ

For convenience, it is possible to introduce a coordinate transformation that
makes it possible to describe the motion of the system not as a function of inde-
pendent variable x but as a function of a new variable x, which defines the perturbed
motion of the system about the position of static equilibrium x0 defined by (5.2a)
and (5.2b), as:

x ¼ x� x0 ð5:4Þ

By replacing (5.4) in the linearised equation of motion (5.3) we obtain:

ms€xþ rs _xþ ksxþ ksx0 ¼ Fxðx0; 0; 0Þ þ @Fx

@x

� �
0
xþ @Fx

@ _x

� �
0
_xþ @Fx

@€x

� �
0
€x

ð5:5aÞ

Taking into account (5.2a), (5.5a) is reduced to:

ms€xþ rs _xþ ksx ¼ @Fx

@x

� �
0
xþ @Fx

@ _x

� �
0
_xþ @Fx

@€x

� �
0
€x ð5:5bÞ

Now we can define with

mF ¼ � @Fx

@€x

� �
o

rF ¼ � @Fx

@ _x

� �
o

kF ¼ � @Fx

@x

� �
o

ð5:6Þ

the derivatives, with changed sign, of force Fx with respect to displacement x,
velocity _x and acceleration €x, measured about the position of equilibrium defined by
x ¼ xo and _x ¼ €x ¼ 0: these derivatives represent, respectively, the equivalent
mass, damping and stiffness, caused by the specific force field being analysed.
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Taking into account the definition introduced in (5.6), the motion Eqs. (5.5a) and
(5.5b) can be rewritten as:

ms þ mFð Þ€xþ rs þ rFð Þ _xþ ks þ kFð Þx ¼ 0 ð5:7Þ

which after having defined the constants:

mT ¼ ms þ mF rT ¼ rs þ rF kT ¼ ks þ kF ð5:8Þ

is reduced to:

mT€xþ rT _xþ kTx ¼ 0 ð5:9Þ

As we can see, the force field modifies the dynamic behaviour of the vibrating
system, since it modifies the inertial, elastic and damping characteristics. In fact, the
natural frequency of the system, with rT ¼ 0, subject to the force field is:

x0 ¼
ffiffiffiffiffiffi
kT
mT

r
ð5:10Þ

and is therefore modified, as the following are modified:

• the overall stiffness kT which depends (5.8) on the structural stiffness ks, which
by definition is always positive, and on equivalent stiffness kF of the force field
(5.6), which can, however, assume both positive and negative values.

• damping rT which is the sum, in turn, of structural damping rs (always positive)
and of the term rF; the latter may be positive or negative (5.6).

The term of equivalent mass mF is, however, normally always positive and does
not modify the stability of the system. Analysis of the linearised system also makes
it possible to judge the stability of small motions (or incipient instability) of the
non-linear system: in fact, by making use of Lyapunov’s theorem, it is possible to
confirm that, if the linearised system is stable (or unstable), then so is the non-linear
system, provided that we take into consideration small perturbations about the
position of equilibrium. We can talk about asymptotic stability of the system, in
cases where the system perturbed about the position of static equilibrium x0, returns
to the initial conditions for t ! 1. In the event that we wish to consider the
stability of large motions, i.e. for not small movements, then linearisation is not
valid and we must consider non-linear complete equations. In the region of the
small oscillations, by definition, the behaviour of the linear system and that of the
non-linear system do not differ, while it may be different for large amplitudes. It is
typical of systems perturbed about a configuration of unstable equilibrium, when
we consider extensive motion, i.e. we take into account the non-linearity, the
occurrence of an increase in the amplitudes of vibration that tend to a finite limit
cycle (Fig. 5.3a). It may also occur that a system that is stable with small motions is
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no longer stable when motion is large: a typical example is shown in Fig. 5.3b. Now
we will examine the possible behaviours of a linearised system. A particular
integral of (5.9) is, as we know, given by:

x ¼ Xekt ð5:11Þ

which, placed in the actual equation (5.9), brings us to:

k2mT þ krT þ kT
� �

X ¼ 0 ð5:12Þ

k2mT þ krT þ kT ¼ 0 ð5:13Þ

Therefore, the solutions are:

k1;2 ¼ � rT
2mT

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

rT
2mT

� �2

� kT
mT

s
ð5:14Þ

Now we will discuss the possible solutions (5.14). First of all we will consider
the case where the total damping rT is positive:

• if kT [ 0 and kT
mT

[ rT
4mT

the roots k1;2 of (5.14) are complex conjugates:

k1;2 ¼ a� ix ð5:15aÞ

Fig. 5.3 a System with one degree-of-freedom placed in a force field: case relating to a system
with incipient instability: (I) response of the linearised system (unstable); (II) response of the non-
linear system (limit cycle). b System with one degree-of-freedom placed in a force field: a case of
stable system with small motion and unstable with large motion. Non-trivial solutions to (5.12) are
obtained in correspondence to the values of l which cancel out the characteristic equation
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with a ¼ � rT
2mT

real and negative: the values (5.15a) correspond to a stable
oscillating solution of the form:

�xðtÞ ¼ �Xeat cos xt þ /ð Þ ð5:15bÞ

• if kT [ 0 and kT
mT

\ rT
4mT

, the roots k1;2 are both real and negative:

k1 ¼ a1; k2 ¼ a2 ð5:15cÞ

with a1 and a2 real and negative: i.e. the corresponding solution is stable, but not
oscillating:

xðtÞ ¼ X1ea1t þ X2ea2t ð5:15dÞ

• if kT\0, then at least one solution is real positive (k ¼ a[ 0) and we have
static divergence.

If, however, damping rT is negative:

• if kT [ 0, with kT [
r2T
4mT

, we have an oscillating expanding solution (a[ 0);

• if kT [ 0, with kT\
r2T
4mT

, (5.14) will give rise to a supercritical solution
(k1 ¼ a1\0) and a non-oscillating expanding solution (k2 ¼ a2 [ 0);

• a negative value of kT, even in this case of negative damping, still gives rise to
instability of a static nature (divergence).

Therefore, to sum up, we can confirm that:

• if the eigenvalues of the linearised system, both have negative real parts, then
the system is asymptotically stable and the resulting motion x(t) can be
decreasingly exponential or decreasingly oscillating: the system, in this condi-
tion, once perturbed, returns to its initial state for t ! 1;

• if the eigenvalues have a positive real part then the system is asymptotically
unstable (with solution that is merely exponential or oscillating exponential);

• if one of the eigenvalues of the linearised system has a zero real part, then
stability is non-asymptotic.

These characteristics of stability also apply, obviously, with little motion, to the
non-linear system. Lastly, as far as the problem of linearisation of the forces is
concerned, the development of the force derivatives, starting from the analytical
expressions of the forces, is not always easy. When function Fx, which defines the
force, is the result of a product of several functions Fx ¼ f � g � h we can, without
loss of generality, develop the single functions f ; g e h that make up the product in
series around the position of equilibrium, up to the linear term. Subsequently, the
product of the linearised functions is performed, bearing in mind just the linear
terms in the product: it is possible to demonstrate that this approach leads to the
same results obtained when calculating the derivative of the product function of the
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single functions. This approach can also be extended to the case of a composite
function Fx = Fx(y(x)): by develojournalg function Fx with respect to the interme-
diate variable y, and the latter with respect to the independent variable x and
substituting the linearised expression of y(x) in the linearised expression of Fx(y(x)),
we obtain the same result that we would obtain by directly develojournalg Fx(y(x))
with respect to variable x. This way of dealing with the problem of linearisation
makes it possible to carry out calculations that are, in general, more simple than
development carried out directly on the function to be linearised. Below we will
examine some significant examples of systems with one degree-of-freedom subject
to force fields, with particular reference to the aerodynamic forces exchanged
between a fluid and a body.

5.2.1 System with 1 DOF Placed in an Aerodynamic
Force Field

Now we will analyse, as a first example, the vibrating system shown in Fig. 5.4, i.e.
a symmetrical aerofoil, constrained in such a way as to create a vibrating system
with just one torsional degree-of-freedom, ks being the constants of the elastic
return springs, rs the constants associated with the concentrated dampings (repro-
ducing structural damping) and lastly J the moment of inertia of the body around its
centre of gravity G. The aerofoil is hit by a fluid stream, with speed U constant in
time and space. In order to write the equations of motion we must estimate the
generalised forces that act on the wing due to the force field induced by the fluid
stream affecting it.

5.2.1.1 Defining the Aerodynamic Forces on a Rigid Body

In this section, for a more complete discussion, we will provide some references
relating to the aerodynamic actions that are exerted on a body hit by a fluid stream.
As we know (see the Bibliography, section “Aerodynamic forces acting on

U∞
θ

sk sr

sk sr

J

b b

Fig. 5.4 System with 1 torsional DOF: aerofoil hit by a fluid stream
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structures” [9–39], a rigid body hit by a fluid in a two-dimensional stream2 is
subject, on the separation surface between the fluid and the actual body, to tan-
gential s and normal p actions which, as an overall effect, can be traced back to a
resultant applied to a given point, known as the centre of pressure, or, considering
the centre of gravity as the reduction pole, to an equivalent system of forces made
up of (Fig. 5.5):

• a drag force FD, acting in the same direction as the relative velocity Vr of the
stream with respect to the actual body (in the following, it can also be referred to
as FR);

• a lift force FL, acting in an orthogonal direction to the former; or by an aero-
dynamic torque M, the value of which depends on the distance between the
centre of pressure (i.e. the point of application of the lift and drag forces) and the
reduction point of the forces themselves (in the following, it can also be referred
to as FP);

These forces depend on the type of flow that is established around the object, a
function, in turn, of the shape of the aerofoil. Aerofoils that are elongated in the
direction of the incoming stream present a low drag force and, depending on the
direction of the incoming stream, may have a high lift. For these aerofoils
(Fig. 5.6a) the boundary layer adheres to the object on the entire surface, there is no
separation of the stream and, as a consequence, there is no formation of vortices. In
this case, the tangential actions contribute significantly to the drag force, while the
contribution of the normal actions p to the drag force (form drag) is small.

Vice versa, bluff-bodies, such as, for example, a cylinder with a circular cross-
section, are subject to high drag force: in these bodies, for Reynolds numbers
Re > 800–1000 there is formation and shedding of vortices (Fig. 5.6b). The flow
separation that is established on these bluff bodies creates a wake of alternating
vortices that produces drag and lift forces that are variable in time even if the
velocity of the blowing stream has constant magnitude and direction. The forces
that are variable in time due to the vortex shedding in the case of a stationary body
have random characteristics (see Chap. 7) with power spectral density that shows a
peak (Fig. 5.6c) in correspondence to a particular frequency fs, defined by the
Strouhal relation:

Fig. 5.5 Forces acting on a body hit by a fluid stream

2In this case the body must be cylindrical with its axis being perpendicular to the influencing flow.
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fs ¼ csV
D

ð5:16aÞ

where V is the fluid velocity, cs a constant, characteristic of the body and lastly D a
dimension characteristic of the same: in the case of a cylinder with a circular cross-
section, for example, we have cs ¼ 0:2, D being the diameter. Figure 5.6d shows
the values of cs for different profiles.

It is customary to reproduce vortex shedding with an alternating lift force with a
frequency equal to the frequency of Strouhal fs (5.16a) and with drag force (also

Fig. 5.6 a Flow conditions in an elongated aerofoil (wing). b Flow conditions in a bluff bodies:
(a) condition for Re < 800–1000; (b) condition for Re > 800–1000. c Power spectral density
(stationary profile) due to vortex shedding. d Values of Cs for different profiles. e Fixed cylinder:
alternating vortices
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alternating) with double frequency 2fs. Figure 5.6e shows the trend of a series of
alternating vortices in the case of a fixed cylinder with a circular cross-section: the
vortex shedding frequency is equal to frequency fs.

When the object is free to vibrate in an orthogonal direction to the stream, if the
natural vibrating frequency of the object fo ¼ xo

2p coincides with the Strouhal fre-
quency fs, the object is excited in resonance and begins to oscillate. In these con-
ditions the vortex shedding, which occurs for the fixed object in a disorderly
manner in the various sections along the object giving rise to random forces, as a
result of the vibration it synchronises with the actual vibration to generate a force
that is no longer random but almost harmonic with a frequency that is attuned with
the actual vibration. Therefore, in these conditions, a phenomenon of synchronism
occurs between the vortex shedding and the vibration that increases the intensity of
the alternating lift force. Synchronism is maintained even if the velocity V of the

U∞
b

square Cs = 0.103

U∞

equilateral triangle Cs = 100

b

U∞
b

Cs = 0.120

U∞
b

octagon Cs = 0.130

(d)

(e)

Fig. 5.6 (continued)
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stream changes within a certain interval, known as the field of synchronism. For
example, in the case of a cylindrical body with a circular cross-section surrounded
by air, the velocity of synchronism varies from 0.9 to 1.3, i.e. the velocity V can
decrease by 10 % or increase by 30 % with respect to velocity Vs which defines the
conditions of resonance:

fs ¼ cs
V
D

¼ 2p
x0

¼ f0 ) Vs ¼ 2p
x0

D
cs

¼ f0
D
cs

ð5:16bÞ

It should be emphasised that this mechanism of synchronism, as already men-
tioned, by increasing the intensity of the alternating forces can cause high amplitude
vibrations that can reach limit cycles in the region of the size of the actual object
[9–11, 13, 16, 17, 26–34, 38, 39]. For further details on this aspect of the problem,
see the bibliography. In any case, the aerodynamic forces, with the sign conventions
shown in Fig. 5.7, can be expressed as:

FD ¼ 1
2
qCDSV

2
r

FL ¼ 1
2
qCLSV

2
r

M ¼ 1
2
qCmSCV

2
r

ð5:17Þ

where:
ρ is the density of the fluid;
Vr the relative velocity of the stream relative to the object;
the term
1=2qV

2
r

is the kinetic energy per unit of volume associated with the fluid;

S is the reference surface (in the particular case of an aerofoil S is
generally the lifting surface);

C, lastly is a characteristic linear dimension, the chord line in the case of the
aerofoil (Fig. 5.7)

Fig. 5.7 Sign conventions: aerodynamic forces, angle of attack a
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In the expressions (5.17) CD, CL and Cm represent non-dimensional aerodynamic
coefficients: usually these coefficients only refer to the mean value of the aerody-
namic forces. In large fields of the Reynolds number [9, 22, 33, 34, 38], these
coefficients can be considered constant, merely functions of the type of profile
analysed and of the angle of attack of the influencing flow (Fig. 5.7), i.e. the angle
formed by the direction of the relative velocity Vr with a reference direction that is
integral to the body. In fact, the aerodynamic coefficients are a function of the
Reynolds number: Fig. 5.8 shows, again in the case of a cylinder with a circular cross-
section hit by a flow that is perpendicular to the axis of the actual cylinder, the trend of
the drag coefficient Cr as a function of the Reynolds number (Re). As we can see:

• at low Re (Re\103) there is laminar flow and so drag is mainly caused by
tangential actions;

• for 103\Re\105 the flow regime becomes turbulent with a laminar boundary
layer: in this situation the drag resistance is equal to CD = 1.2;

• for values of Re[ 105 (critical Reynolds number), as a function of the
roughness of the cylinder, the boundary limit becomes turbulent and there is a
decrease in drag: at the same time the vortex shedding diminishes greatly
compared to that which occurs in the previous zone;

• for Re[ 106, the drag coefficient CD begins to rise again: in this region the
phenomenon of vortex shedding occurs again.

These coefficients can be obtained analytically by integrating the Stokes-Navier
equations or equations deriving from them. In general, for all types of profiles, we

Fig. 5.8 Trend of the drag coefficient CD for a cylinder with a circular cross-section as a function
of Re
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can also use experimental methods to statically measure the forces acting on
physical scale models placed in wind tunnels or hydraulic channels, upon variation
of the angle of attack of the flow α. In the case of a symmetrical profile, for
example, the trend as a function of the angle of attack (a) of the coefficients, with
the conventions of Fig. 5.7, is shown in Fig. 5.9. The curves CL and Cm grow
almost linearly with α about the origin and have maximum value in correspondence
to an angle of incidence (as) of approximately 10°–15°. Upon increasing the angle
of incidence above this value, lift and torque decrease, while drag increases. Angle
α in correspondence to the maximum is the stall angle of the profile where there is
detachment of the flow from the profile and formation of vortices with consequent
increase in drag and decrease in lift. Profiles that do not detach the stream, as
already mentioned, have low drag coefficients; they are generally profiles that are
elongated in the direction of the flow. Non-elongated profiles, with a strong front
surface, generally detach the stream and are accompanied by a high drag coefficient.

The (5.17) relations apply in conditions of stationary flow, i.e. when the velocity
of the stream relative to the object forms an angle that is constant in time. If, due to
the motion of the object or to changes in the direction or also in the intensity of the
fluid velocity, the relative velocity Vr changes between stream and object, the (5.17)
relations can still be considered valid if the motion of the object or the change in
direction and velocity of the fluid occur slowly, i.e. almost statically. In quantitative
terms this is true if the value of the reduced frequency of the fluid-elastic system in
question, defined as:

Fig. 5.9 Aerodynamic coefficients for a symmetrical profile
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fr ¼ f0
U=C

ð5:17aÞ

is small, f0 ¼ xo
2p being the frequency of oscillation of the vibrating system (or of

oscillation of the velocity or of the direction of the fluid), U being the average
velocity of the fluid and C the chord line. The ratio U/C represents a frequency
correlated to the time required for a fluid particle to cross the region occupied by the
body. In fact, if the body in question does not vibrate (f0 = 0), the relative reduced
frequency fr is zero: the coefficients measured statically in the wind tunnel on a
physical model, placed in the (5.17) relations, make it possible to precisely calculate
the aerodynamic forces acting on the actual body. As the value of fr increases, the
aerodynamic force field comes to depend increasingly on the oscillations of the
body: coefficients Cr, Cp and Cm obtained experimentally, must be corrected as a
function of the reduced frequency (correct quasi-static theory [21, 22, 35–37].
Often, to define aerodynamic coefficients in relation to the quasi-static theory,
corrected if necessary, we can also refer to another non-dimensional parameter,
called reduced velocity Vrid, defined as:

Vrid ¼ U
f0 � C ð5:17bÞ

which corresponds to the inverse of reduced frequency fr (5.17a). In the following
discussion we will assume, for simplicity’s sake, that the quasi-static theory applies
and we will assume that the values of the aerodynamic coefficients are known,
while, for further details, we refer the reader to the Bibliography shown in the
section “Aerodynamic forces acting on structures” [12, 14–27, 35–37].

5.2.1.2 Torsional Vibrating System Subjected to a Fluid Stream

Now we will go back to considering the vibrating system shown in Fig. 5.3, i.e. a
symmetric profile, constrained in such a way as to create a vibrating system with
just one torsional degree-of-freedom, having defined the constants of the elastic
restoring spring with ks, the constants associated with the concentrated dampers
(reproducing structural damping) with rs and lastly the moment of inertia of the
body around its centre of gravity G with J. We will assume that the profile is hit by
an incoming air flow by velocity U that is constant in time and space. To describe
the motion of the one d.o.f. system in question, we assume, as an independent
variable, rotation θ. We write the equations of motion using, for example, the
Lagrange equations: the kinetic energy of the system Ec is:

Ec ¼ 1
2
J _h2 ð5:18aÞ
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Assuming that the potential energy V of the actual system in the static equi-
librium position, in the absence of the aerodynamic force field, is zero, the same can
be expressed as:

V ¼ 1
2
2ksb2h

2 ð5:18bÞ

and similarly the dissipative function D is:

D ¼ 1
2
2rsb2 _h

2 ð5:18cÞ

The work d�L carried out by the external forces applied (the aerodynamic forces)
for the only virtual displacement d�h that the body is permitted by the constraints
equals:

d�L ¼ Md�h ¼ 1
2
qCmðaÞSCV2

r d
�h ð5:18dÞ

where M represents the aerodynamic torque acting on the profile already defined in
the previous section, and is dependent on the force field generated by the incoming
flow. Upon applying the Lagrange equations to the various forms of energy defined
previously (5.18a)–(5.18d), the equation of motion of the system becomes:

J€hþ 2rsb2 _hþ 2ksb2h ¼ 1
2
qCmðaÞSCV2

r ð5:19Þ

The generalised aerodynamic torque M depends (5.17) on the relative velocity
Vr, and on the angle of incidence a, i.e. on the motion of the body. Let us consider
the generic position of the body in question: the relative velocity Vr must be
evaluated as the vector difference of the absolute velocity U of the stream and the
velocity Vt of a point belonging to the body:

Vr ¼ U � Vt ð5:20aÞ

Obviously, this term changes upon variation of the generic point Pi considered
on the body (Fig. 5.10), i.e. from the distance of the rotation axis: this considerably
complicates the definition of the aerodynamic forces. In fact, the relative velocity is
different at every point on the body thus making it impossible to apply the quasi-
static theory, which assumes that the relative velocity is the same for all the points
of the body. Nevertheless, it is possible to demonstrate that it is still legitimate to
resort to the quasi-static theory if we refer to a specific point P1 of the body located
at a certain distance b1 from the rotation axis: in the particular case of the aerofoil,
this point P1 is, in general, close to the leading edge (Fig. 5.10), distant C/2 from the
geometric centre of the section. The value of b1 is different depending on the
geometry of the profile being considered and can be defined experimentally by
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making the profile oscillate in a wind tunnel and measuring the response of the
actual profile [18, 20–24]. In other words, once point P1 has been defined, the
relative velocity is calculated as if all the points of the profile had a relative velocity
equal to that of P1.

The angle w formed by the relative velocity with the horizontal axis equals
(Fig. 5.10):

w ¼ atan
�Vt

U

� �
¼ atan

�b1 _h
U

 !
ð5:20bÞ

The angle of attack a, between the straight line that is integral to the body (which
is horizontal when the body is stationary) and the relative velocity Vr, with the
conventions of Fig. 5.7,3 is given by:

a ¼ h� w ¼ h� b1 _h
U

ð5:20cÞ

θ being the rotation of the body. The relative velocity, in magnitude, is equal to:

V2
r ¼ U2 þ b1 _h

U

 !2

ð5:21Þ

Taking into account the relations (5.20a)–(5.20c) and (5.21), the equation of
motion (5.19) of the vibrating system with 1 DOF, hit by a fluid stream (Fig. 5.3), is
non-linear in the independent variable θ and in its derivatives:

Fig. 5.10 Calculation of the relative velocity Vr for calculation of the aerodynamic forces (5.16a
and 5.16b)

3Rotating the direction of the velocity in an anti-clockwise direction, taking into account the sign
conventions for the positive angles shown in Fig. 5.7, is equal to assuming that the angles of the
body’s clockwise rotation are positive.
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J€hþ 2rsb2 _hþ 2ksb2h ¼ M ¼ 1
2
qCmðaÞSCV2

r ¼ 1
2
qCmðaÞSC U2 þ b1 _h

U

 !2
2
4

3
5

ð5:22Þ

Since the angle of attack a, which appears in the aerodynamic torque coefficient
CmðaÞ, is defined by (5.20c), the same coefficient Cm is, ultimately, a function of the
rotation θ and the velocity _h:

Cm að Þ ¼ Cm h� a tan
b1 _h
U

 ! !
¼ Cm h; _h

� �
ð5:23Þ

Integration of Eq. (5.22) can only be carried out numerically, while updating at
every step of integration, the generalised aerodynamic torque value M as a function
of the current values of θ and _h. To analyse the conditions of incipient instability of
the system (or the small oscillations around the position of static equilibrium) it is
possible, using the Lyapunov theorem, to linearise (5.22): to do this, we must
express the generalised aerodynamic force in a Taylor series, around the position of
static equilibrium. The equation that makes it possible to define the position of static
equilibrium is the following4:

2ksb2h0 ¼ 1
2
qCm h0; 0ð ÞSCU2 ð5:24aÞ

Which is obtained from (5.22) setting _h as zero. Equation (5.24a) accepts as a
solution, assuming a flow in the direction of the axis of symmetry of the profile and
for the particular trend of the assumed aerodynamic torque coefficient of the
symmetric aerofoil (Fig. 5.9):

h0 ¼ 0 ) a0 ¼ 0 ð5:24bÞ

Now to linearise the equation of motion (5.22) around the position of static
equilibrium, it is convenient, as already mentioned, to linearise the single terms of
the product 1

2 qCm h0; 0ð ÞSCU2 i.e.:

4More generally, the aerodynamic field force affects not only the dynamic behaviour of the system,
but also the actual position of static equilibrium.
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Cm að Þ � Cm a0ð Þ þ @Cm

@a

� �
0
a� a0ð Þ

a � h� b1 _h
U

 !

U2 þ b1 _h
U

 !2

� U2

ð5:25aÞ

The aerodynamic torque CmðaÞ is thus linearised around the position of static
equilibrium defined by the pair of values ho ¼ 0 and _ho ¼ 0. We can use Kmo to
define the derivative of the torque coefficient estimated around the position of static
equilibrium:

Km0 ¼ @Cm

@a

� �
0

ð5:25bÞ

The right-hand member of (5.22) (i.e. the aerodynamic moment M acting on the
vibrating system), taking into account (5.25a) and (5.25b), becomes:

M ¼ 1
2
q Cm a0ð Þ þ @Cm

@a

� �
0
a� a0ð Þ

� �
SCU2 ð5:25cÞ

Since the position of static equilibrium, in the case being analysed, is defined by
a value of the angle of attack (5.24b) ao ¼ 0 and that CmoðaoÞ ¼ 0 (see Fig. 5.9),
Eq. (5.25c) becomes:

M ¼ 1
2
qSCKm0U

2
� �

h� 1
2
qSCUKm0b1

� �
_h ð5:25dÞ

Lastly, assuming:

a ¼ 1
2
qS ð5:25eÞ

the equation of motion (5.22) can be rewritten, bringing to the left-hand member the
equivalent linearised terms of damping and stiffness of (5.25d):

J€hþ 2rsb2 þ aKm0Ub1C
� �

_hþ 2ksb2 � aU2Km0C
� �

h ¼ 0 ð5:26Þ

In this case the variable θ that defines the perturbed motion around the position
of static equilibrium, taking into account that ho ¼ 0, is coincident with the initial
independent variable:
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h ¼ h� h0 ¼ h ð5:26aÞ

In the particular case of the aerofoil, as mentioned, b1 is practically equal to C=2.
Since Kmo (5.25b) and Fig. 5.9 is greater than zero, the equivalent elastic term KF

due to the force field (5.26):

KF ¼ �aU2Km0C ð5:27aÞ

is negative; in other words, there is a stream velocity Ulim above which the
equivalent elastic restoring term of the aerodynamic forces KF is equal to or greater
in magnitude than the structural elastic restoring term 2ksb2:

aU2
limKm0C� 2ksb2 ð5:27bÞ

For velocities of the incoming stream greater than this value Ulim, the overall
stiffness KT of the aero-elastic system:

KT ¼ 2ksb2
� �þ KF ð5:27cÞ

is negative, i.e. the system is statically unstable (that is, there is a static divergence).
The equivalent damping term rF however:

rF ¼ aKm0Ub1C ð5:27dÞ

is positive for the aerofoil: the aeroelastic system cannot be dynamically unstable,
on the contrary, as the velocity of the incoming stream increases, the overall
damping rT (structural 2rsb2 and aerodynamic rF) increases. If another type of
profile had been analysed, for example, the box profile in Fig. 5.11 or the same
aerofoil but considering an angle of incidence ao greater than the stall angle
Fig. 5.9, the resulting equations (5.22) would have been the same. In this case,
however, as we can see from the same Fig. 5.11, the derivative of torque coefficient
Kmo is negative: therefore, for the specific profile or for small oscillations around the

Fig. 5.11 Aerodynamic
coefficients of a box profile
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position of static equilibrium, instability of a static nature cannot occur. However, it
is possible that a dynamic type of instability may be established (with oscillations
expanding over time) when the term rF (5.27d) (always, in this case, less than zero)
becomes, in magnitude, greater than structural damping and this occurs for a
velocity Ulim equal to:

Ulim ¼ 2rsb2

aKm0b1C

				
				 ð5:28Þ

The value of this velocity, also known as instability velocity, increases as
structural damping rs increases and as the absolute value of the slope of the curve of
the aerodynamic torque, i.e. of Kmo decreases (Kmo being negative).
Equation (5.26), obtained for the simple case of a torsional vibrating system with
one degree-of-freedom subject to an aerodynamic force field, already shows the
possible alternatives for eliminating any possible forms of instability (static and/or
dynamic) present in a generic vibrating system:

• modifying the shape of the profile (i.e. changing its aerodynamic coefficients);
• introducing greater structural damping into the system or increasing the struc-

tural stiffness.

5.2.1.3 Translating Vibrating System Subjected to a Fluid Stream

Now we will consider a case where the aerofoil is constrained in such a way as to
create a translating vibrating system with one degree-of-freedom, as shown in
Fig. 5.12. We will consider vertical displacement x as a generalised independent
variable, to describe the motion of the system: the different terms of energy, in this
case, can be evaluated as:

Ec ¼ 1
2
m _x2 V ¼ 1

2
ksx2 D ¼ 1

2
rs _x2 d�L ¼ Fxd

�x ð5:29aÞ

U

x, , ,x x x F

sk sr

m

Fig. 5.12 Translating system hit by a fluid stream
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where Fx represents the component in the vertical plane of the aerodynamic forces
acting on the body (with this arrangement of constraints, both the horizontal
component of the forces, and the aerodynamic torque are balanced by the constraint
reactions).

The equation of motion of the aero-elastic system becomes:

m€xþ rs _xþ ksx ¼ Fx ð5:29bÞ

Now we need to estimate generalised force Fx. We assign a generic displacement
x to the body in question, with an assigned velocity _x: the forces that act on the
system (Fig. 5.13) are only the drag force Fr and lift force Fp. The relative velocity
Vr is given by the vector difference of the absolute velocity of the stream U and the
velocity (by dragging) of the object, see Fig. 5.13, while the square of the mag-
nitude of Vr equals:

V2
r ¼ U2 þ _x2 ð5:30aÞ

The angle w formed by vector Vr with the horizontal (see Fig. 5.13), velocity
x being small compared to that of the incoming stream U, equals:

w ¼ a tan
_x
U

� �
� _x

U
ð5:30bÞ

The angle of attack a, formed by the relative velocity Vr with respect to a straight
line that is integral to the body (assumed to have the same direction as the
undisturbed flow U), is thus given by:

a ¼ w ¼ _x
U

ð5:30cÞ

Since the drag and lift forces act, respectively, in the same direction and
orthogonally to the direction of the relative velocity, the vertical resultant Fx

(Fig. 5.12) can be expressed as:

U

Ẋ

Ẋ

Fr

Vr

Fp

Ψ

Fig. 5.13 Definition of the aerodynamic actions acting on a translating profile
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Fx ¼ �Fr sinwþ Fp cosw ð5:30dÞ

Taking into account (5.30a)–(5.30d) the equation of motion (5.29b) of the
translating system surrounded by a fluid stream becomes non-linear in the inde-
pendent variable _x and x:

m€xþ rs _xþ ksx ¼ 1
2
qS U2 þ _x2
� � �Cr að Þ sin _x

U

� �
þ Cp að Þ sin _x

U

� �� �
ð5:31Þ

In particular, (5.31) is non-linear in the velocity _x: for this reason, it can be said
that the aerodynamic force field, in this case of a purely translating profile, once
linearised will only give rise to equivalent damping terms:

Fx _xð Þ ¼ Fx 0ð Þ þ @Fx

@ _x

� �
0
_x ð5:32aÞ

If we consider, as an example, the profile whose characteristic curves (polar) are
shown in Fig. 5.9, the position of static equilibrium is defined by xo ¼ 0, the value
of the lift coefficient being zero Cp að Þ by ao ¼ 0. In this case too, we will linearise
function Fx by develojournalg the single terms of the product that makes up Fx in a
Taylor series:

Fx ¼ 1
2
qS U2 þ _x2
� � �Cr að Þ sin _x

U

� �
þ Cp að Þ sin _x

U

� �� �
ð5:32bÞ

i.e.:

a0 ¼ 0; a � _x
U

sin
_x
U

� �
� _x

U

� �
; cos

_x
U

� �
� 1; V2

r ¼ U2

Cr að Þ � Cr0 þ @Cr

@a

� �
0
a� a0ð Þ ¼ Cr0 þ Kr0 a� a0ð Þ

Cp að Þ � Cp0 þ @Cp

@a

� �
0
a� a0ð Þ ¼ Cp0 þ Kp0 a� a0ð Þ

ð5:32cÞ

Taking into account (5.32c), assuming:

a ¼ 1
2
qS ð5:32dÞ

and neglecting the non-linear terms, force Fx at the right-hand member of (5.31),
(5.32b) can be linearised as:
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Fx ¼ � a � U � Cr0ð Þ _xþ a � U2 � Cp0
� �þ a � U � Kp0

� �
_x ð5:33aÞ

Since in the example analysed, see Fig. 5.9, Cpo að Þ ¼ Cp aoð Þ ¼ Cp 0ð Þ ¼ 0 and

Kro ¼ @Cr=@a

� �
o
, the linearised expression of the generalised aerodynamic force is

reduced to the form:

Fx ¼ a � U Kp0 � Cr0
� �

_x ð5:33bÞ

where Kpo and Cro indicate (5.33a), respectively, the derivate of the lift coefficient
Cp estimated at the origin and the drag coefficient Cr estimated in correspondence to
the actual angle of attack ao ¼ 0. The linearised equation of the system’s motion
thus becomes:

m€xþ rs þ rFð Þ _xþ ksx ¼ 0 ð5:34Þ

having assumed:

rF ¼ �a � U Kp0 � Cr0
� � ¼ a � U Cr0 � Kp0

� � ð5:34aÞ

In this case too, the variable x that defines the perturbed motion around the
position of static equilibrium, taking into account the specific type of profile being
analysed (Fig. 5.9), defined by x0 ¼ 0, proves to be coincident with the initial
independent variable:

x ¼ x� x0 ¼ x ð5:34bÞ

As already mentioned, the aerodynamic force field in this case only affects the
terms of velocity: Cro being always positive and Kpo negative, in the example of the
aerofoil, their contribution in the equivalent damping term rF is purely dissipative,
being always positive. Therefore, the force field introduces actual damping which
adds to the structural damping: this characteristic is exploited by using aerofoils
with the only degree-of-freedom of translation like in the case of the dynamic
stabilisers adopted on vessels (anti-roll stabilisers). If, however, we consider pro-
files that have an important front surface (Fig. 5.11), or the same aerofoil for angles
αo greater than the stall angle, then Kpo may be positive. In this case, if Kpo is, in
absolute value, greater than Cro, then rF proves to be negative: if, in this case, the
magnitude of damping caused by the force field rFj j is greater than the structural
damping rs, this determines an instability in the 1 o.d.f. model, corresponding to a
flexural expanding oscillating motion. Since rF (5.34a) depends on U, there is a
critical velocity Ucrit, in correspondence to which rF assumes a negative value and,
in absolute value, greater than rs. In correspondence to this velocity instability of
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the system occurs, which persists for values of velocity U[Ucrit, characterised by
a coefficient of instability d ¼ a=x

� �5 which becomes increasingly higher as the
velocity of the stream increases above the critical value.

5.3 Vibrating Systems with 2 d.o.f. Perturbed Around
the Position of Equilibrium

Now we will extend our analysis of the dynamic behaviour of mechanical systems
subject to force fields in relation to two-degree-of-freedom systems. Naturally, the
method for analysing these systems is the same applied in the previous section to
systems with one degree-of-freedom:

• finding the position of static equilibrium; or linearisation of the motion
equations;

• study of the limited stability.

In two-degree-of-freedom systems, in addition to those seen for systems with
one degree-of-freedom, other forms of instability are also possible, such as, for
example, flutter instability, where the unstable motion is defined by combining two
vibration modes, as will be illustrated in the following sections. Another difference
lies in the fact that while in systems with one degree-of-freedom it is always
possible to develop the discussion of stability by simply analysing the coefficients
of the differential equation of motion, in the case of two-degree-of-freedom systems
this is only possible in the case of a force field as a function of just the position. In
the case of a force field that also depends on velocity, analysis of the stability is not
so immediate, even if it is possible, however, to outline sufficient criteria for sta-
bility that concern the structure of the matrices.

Now we will illustrate the case of the vibrating two-degree-of-freedom system in
Fig. 5.14,6 placed in a force field that is a function of the position, velocity and
acceleration of the system, whose equations can thus be written in scalar form:

5Coefficient of instability defines the relation between the real part α (positive if there is instability)
and the imaginary part ω of the generic root λ = α + iω of the characteristic equation corresponding
to the solution. This relation is defined in this case by:

d ¼ a
x

� �
¼ �

rFþrsð Þ
2m

x0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� h2ð Þp ¼ �

rFþrsð Þx0

2mx0

x0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� h2ð Þp ¼ � hffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� h2ð Þp � �h ð5:4:1Þ

In stable systems (con rT = (rF + rS) > 0) δ is negative, while for unstable systems
(rT = (rF + rS) < 0) it is positive.
6This system represents the simplest system with 2 DOF that can be considered: the discussion can
be extended to any system with 2 DOF by analysing it with a modal approach, i.e. in principle
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m€xþ rx _xþ kxx ¼ Fx x; y; _x; _y;€x;€yð Þ
m€yþ ry _yþ kyy ¼ Fy x; y; _x; _y;€x;€yð Þ ð5:35Þ

The terms Fx and Fy due to the force field are, in general, non-linear functions of
the displacements x and y and of their derivatives: therefore, integration of the
Eq. (5.35) cannot generally be done analytically and in these cases it is necessary to
resort to numerical integration methods for the differential equations [2, 5, 7].
Equation (5.35) can be rewritten in matrix form, as:

m 0
0 m


 �
�‘x
�0y

� 
þ rx 0

0 ry


 �
_x
_y

� 
þ kx 0

0 ky


 �
x
y

� 
¼

Fx x; y; _x; _y;�‘x;�0y
� �

Fy x; y; _x; _y;�‘x;�0y
� �

8<
:

9=
;

ð5:36Þ

Having defined the following vectors:

z ¼ x
y

� 
F ¼ Fx

Fy

� 
ð5:36aÞ

(5.36) becomes, with a more compact formulation:

M½ �€zþ R½ �_zþ K½ �z ¼ F z; _z;€zð Þ ð5:36bÞ

Following the procedure already used for systems with one degree-of-freedom,
first we search for the position of static equilibrium defined by a pair of values
x0; y0.

7 Then we must solve the system of non-linear equations:

x
sm

sk

sr

F x x x( , , , , , , )y y y t

yk yr

y

X

YFig. 5.14 Vibrating two-
degree-of-freedom system
placed in a force field

(Footnote 6 continued)
coordinates (Sect. 2.5) and, therefore, with structurally decoupled equations, of the same type as
those considered in the example analysed here.
7We should remember that, as the equations are non-linear, there may be more than one position of
equilibrium.
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Kxx0 ¼ Fx x0; y0ð Þ
Kyy0 ¼ Fy x0; y0ð Þ ð5:37aÞ

i.e.:

K½ �z0 ¼ F z0; 0; 0
� � ð5:37bÞ

The solution can be found, for example, with the Newton-Raphson method, for
systems of equations ([2, 5] and Sect. 4.7). Once the position of equilibrium z0, if it
exists, has been obtained, it is possible to linearise the system around the position of
equilibrium found, develojournalg the non-linear forces in series up to the first
order:

F z; _z; z
::� � ¼ F z0; 0; 0

� �þ @F
@z


 �
0
z� z0
� �þ @F

@ _z


 �
0
_zþ @F

@z
::


 �
0

z
:: þ . . . ð5:38aÞ

Remembering that the derivative of a vector (in this case F) with respect to
another vector (in this case z), represents a matrix defined as:

@F
@z


 �
0
¼

@F1
@x1

@F1
@x2

@F2
@x1

@F2
@x1

" #
0

@F
@ _z


 �
0
¼

@F1
@ _x1

@F1
@ _x2

@F2
@ _x1

@F2
@ _x2

" #
0

@F

@�‘z

" #
0

¼
@F1

@�0x1
@F1

@�‘x2
@F2

@�0x1
@F2

@�‘x2

" #
0

ð5:38bÞ

considering the coordinate transformation:

z ¼ z0 þ z ð5:38cÞ

having used z to indicate the vector of the independent variables that define the
perturbed motion around the position of static equilibrium z0:

z ¼ x
y

� 
¼ x� x0

y� y0

� 
ð5:38dÞ

then Eq. (5.36b) can be rewritten, while also taking into account the solution
regarding static equilibrium (5.37b) as:

M½ � þ MF½ �½ �€zþ R½ � þ RF½ �½ �_zþ K½ � þ KF½ �½ �z ¼ 0 ð5:39aÞ

thus corresponding to the equation of free motion, in the presence of the linearised
force field. The system of Eq. (5.39a) can be rewritten as:

Mt½ �€zþ Rt½ �_zþ Kt½ �z ¼ 0 ð5:39bÞ
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Where Mt½ � ¼ M½ � þ MF½ � is the matrix of the system’s mass taking into account
the force field, Rt½ � ¼ R½ � þ RF½ � is the matrix of overall damping and lastly Kt½ � ¼
K½ � þ KF½ � the matrix of total stiffness. The matrices of mass [MF], damping [RF]
and stiffness [KF] equivalent to the force field are defined as:

� MF½ � ¼ �
@Fx
@€x

@Fx
@€y

@Fy

@€x
@Fy

@€y

" #
o

RF½ � ¼ �
@Fx
@ _x

@Fx
@ _y

@Fy

@ _x
@Fy

@ _y

" #
o

KF½ � ¼ �
@Fx
@x

@Fx
@y

@Fy

@x
@Fy

@y

" #
o

ð5:39cÞ

As we saw previously for systems with one degree-of-freedom, (5.39a) high-
lights how the force field can, in general, change the characteristics of mass,
damping and stiffness of the mechanical system, by changing the natural fre-
quencies, damping and, therefore, affecting its stability. The stability of the system
is, in actual fact, conditioned (5.39a), (5.39c) by the form of the matrices [MF], [RF]
and [KF]. In fact, we can make the following observations:

• if the matrices [MF], [RF]e [KF] are symmetrical and positive definite (and
therefore the matrices [MT], [RT] and [KT] prove to be the same) the system is
always stable and admits eigenvalues ki ¼ ai � ixi with a negative real part ai.
In these conditions, the system surrounded by the force field still behaves like a
dissipative system. The matrix [RF] is symmetrical and positive definite if the
velocity field is dissipative, while [KF] is symmetrical and defined positive if the
field of positional forces is conservative: this matrix adds to the system’s elastic
matrix [K], which is definitely symmetrical and positive definite.

• if [KF] is not symmetrical flutter instability may occur: these conditions will be
discussed in detail in the following section;

• if [KF] is non-positive definite and assumes such values that [KT] also is also non-
positive definite then divergence type instability occurs (see Sect. 5.3.1.1.2);

• if [RF] is not symmetrical the force field of velocity is not dissipative and could
give rise to instability;

• if [RF] is non-positive definite in such a way that [RT] is also non-positive
definite, then dynamic instability occurs.

The same also applies for two-degree-of-freedom but also more generally for n-
degree-of-freedom systems. To analyse stability in quantitative terms we must
examine the solution of free motion, obtained by introducing a particular integral of
the homogeneous equation:

z tð Þ ¼ Zekt ð5:40Þ

where k is generally complex. By replacing (5.40) in (5.39a), we obtain a homo-
geneous linear equation in Z:
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k2 Mt½ � þ k Rt½ � þ Kt½ �� �
Z ¼ 0 ð5:40aÞ

By setting the determinant of the coefficient matrix (i.e. the characteristic
polynomial which, as we know, is of degree 2n in λ) equal to zero, we obtain 2n
values of λ, n being the number of degree-of-freedom of the system. As n increases,
to find the values of λ as solutions of an eigenvalue problem is preferable, as
explained previously in Sect. 2.3.1. This procedure will be referred to again in the
section on systems generically with n-degree-of-freedom. Now we will study sta-
bility around the position of rest, of two-degree-of-freedom systems subject to
different force fields, by firstly examining a generic field of forces that are purely
positional and, subsequently, also taking into account the terms of velocity and
acceleration.

5.3.1 Two-Degree-of-Freedom System with Placed in a Field
of Purely Positional Forces

Now we will analyse the behaviour of two-degree-of-freedom systems with by
firstly introducing some observations on purely positional force fields. We will refer
to the simple example in Fig. 5.15, where m is a mass that is free to move in the
plane, elastically constrained by two springs with constants kx and ky, according to
the two directions of the reference axes, where we deliberately neglect the dissi-
pative terms associated with the elastic hysteresis of the springs. F(x,y) is a force
acting on the mass, a function of the position x, y of the mass itself: the force defines
a force field that can be conservative or non conservative. We should remember that
a force field is conservative if the work of the force for a generic trajectory does not
depend on the path, but only on the point of departure and arrival, i.e. (Fig. 5.16)

mxk

(x,y)F 

yk

X

YFig. 5.15 Vibrating two-
degree-of freedom system
surrounded by a field of
positional forces
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L ¼
Z
C

F dP ¼
Z
C

Fx dxþ
Z
C

Fy dy ¼ f x; yð Þ � f x0; y0ð Þ ð5:41Þ

The work of force F, of components Fx and Fy, if the force field is conservative
does not depend on the path C, but only on the extremes Po and P. If the line is
closed then the work performed by the conservative force field will be zero.

In the case of conservative systems we should remember that the force F is
defined as the gradient of a scalar f(x,y) which represents the potential of the force
field: the expression that appears in (5.41) is then an exact differential and, as a
consequence, the components of the forces according to x and y are:

Fx ¼ @f
@x

; Fy ¼ @f
@y

ð5:42Þ

Again, for a conservative force field, the mixed derivatives of the components of
the forces with respect to the independent variables are equal, i.e.:

@Fx

@y
¼ @Fy

@x
ð5:42aÞ

In fact, f is a continuous function:

@2f
@x@y

¼ @2f
@y@x

ð5:42bÞ

that is, the rotor of F is zero [1, 5, 6]:

rot F ¼ 0 ð5:42cÞ

and for (5.42) we have (5.42a). In the case of a non-conservative system, there is no
potential f and the mixed derivatives of the components of the force F are different:

X

Y

P

0P

Γ

Fig. 5.16 Work performed
by a conservative force field
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@Fx

@y
6¼ @Fy

@x
ð5:43aÞ

that is:

rot F 6¼ 0 ð5:43bÞ

The work L performed by the force field along a closed path C is, in this case,
different to zero: so a non-conservative force field for a closed trajectory gives or
subtracts energy from the system. We will once more consider the two-degree-of-
freedom system in Fig. 5.15, subject, as already mentioned, to a purely positional
force field and we will write the equations of dynamic equilibrium in the two
orthogonal directions x and y:

m€xþ kxx ¼ Fx x; yð Þ
m€yþ kyy ¼ Fy x; yð Þ ð5:44Þ

The terms Fx(x, y) and Fy(x, y) are non-linear functions of the displacements
x and y: however, the integration of these equations is not generally possible
analytically and in these cases we must resort, as already mentioned, to numerical
methods of integration of the above mentioned differential equations [2, 5, 7] or to
approximate analytical methods. As usual (5.44) can be rewritten in matrix form as:

m 0
0 m


 �
€x
€y

� 
þ kx 0

0 ky


 �
x
y

� 
¼ Fx x; yð Þ

Fy x; yð Þ
� 

ð5:45Þ

Note that the system, which was initially uncoupled, is now coupled by the
presence of the force field, a function of both the variables x and y. If the purpose of
analysis is to estimate the small oscillations around the position of static equilibrium
or to study the stability of small motions of the actual system, it is possible, as
already mentioned, to linearise the motion equations around that position. The
position of static equilibrium is defined by a pair of values xo and yo that satisfy the
equations:

Kxx0 ¼ Fx x0; y0ð Þ
Kyy0 ¼ Fy x0; y0ð Þ ð5:46Þ

which are obtained from (5.45) for zero values of accelerations x, y and velocity _x,
_y. The unknowns xo and yo appear again in non-linear form in the expressions of the
positional forces of the field: the solution of (5.46) must be calculated with specific
numerical procedures for non-linear problems (for example, the Newton Raphson
method referred to in Chap. 4, Sect. 4.7). Once the pair of values xo and yo has been
defined, it is possible to carry out a coordinate transformation, introducing two new
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variables x and y, which define the perturbed motion around the position of static
equilibrium, defined by:

x ¼ x� x0; y ¼ y� y0 ð5:47Þ

Now, to analyse the motion of the vibrating system in a small neighbourhood
around the position of equilibrium, we can use the Lyapunov theorem to linearise
the actual equations, that is, the non-linear terms Fx and Fy in a Taylor series in the
neighbourhood of xo and yo, up to the linear terms (using subscript o to indicate the
value of the generic quantity estimated in the position of static equilibrium). Taking
into account (5.46) and (5.47), (5.45) becomes:

m€xþ kxxþ kxx0 ¼ Fx x0; y0ð Þ þ @Fx

@x

� �
0
x� x0ð Þ þ @Fx

@y

� �
0
y� y0ð Þ þ � � �

m€yþ kyyþ kyy0 ¼ Fy x0; y0ð Þ þ @Fy

@x

� �
0
x� x0ð Þ þ @Fy

@y

� �
0
y� y0ð Þ þ � � �

ð5:48Þ

Taking into account the equation of static equilibrium (5.46) and bringing linear
elements of the development of the force field to the left-hand member, we obtain:

m€xþ kxx� @Fx

@x

� �
0
x� @Fx

@y

� �
0
y ¼ 0

m€yþ kyy� @Fy

@x

� �
0
xþ @Fy

@y

� �
0
y ¼ 0

ð5:48aÞ

In this way we have reduced to a differential equations system, linear and
homogeneous, in the two variables x and y, variables which, as mentioned, describe
the perturbed motion of the system around the position of static equilibrium: in
matrix form the Eq. (5.48a) can be rewritten as:

M½ �€zþ K½ � þ KF½ �½ �z ¼ 0 ð5:49Þ

having used z to indicate the vector containing the displacements x and y:

z ¼ x
y

� 
ð5:49aÞ

and with [M] the mass matrix of the system. In (5.49) [K] represents the system’s
elastic matrix, while [KF] is an equivalent elastic matrix, due to the presence of
positional force field F where the vibrating system is located:
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KF½ � ¼ �
@Fx
@x

� �
0

@Fx
@y

� �
0

@Fy

@x

� �
0

@Fy

@y

� �
0

2
4

3
5 ð5:49bÞ

The Eq. (5.49) is similar in form to (5.39a) with matrices [MF] and [RF] being
null, since the force field is considered to be merely positional. When analysing
(5.49) we can immediately see how the field of positional forces changes the
dynamic behaviour of the vibrating system, namely, its natural frequencies and
relative vibration modes: in fact, in the absence of the force field the same equations
can be reduced to:

m€xþ kxx ¼ 0

m€yþ kyy ¼ 0
ð5:50aÞ

which are uncoupled. The natural pulsations and relative vibration modes, for the
system not subject to a force field, are:

x10 ¼
ffiffiffiffi
kx
m

r
) Z

10ð Þ ¼ 1

0

� 

x20 ¼
ffiffiffiffi
ky
m

r
) Z

20ð Þ ¼ 0

1

�  ð5:50bÞ

As we can see, the relations between the elements of the eigenvectors (vibration
modes) are jointly real and orthogonal (Fig. 5.17) as x and y are already principal
coordinates.

If, however, we consider the force field, once the matrix [KT] has been defined as
the sum of the contribution of the elastic forces and the linearised force field:

KT½ � ¼ K½ � þ KF½ � ¼ kx 0
0 ky


 �
�

@Fx
@x

� �
0

@Fx
@y

� �
0

@Fy

@x

� �
0

@Fy

@y

� �
0

2
4

3
5 ¼ Kxx Kxy

Kxy Kyy


 �
ð5:51Þ

(5.49) can be rewritten as:

X

Y

X

Y
Fig. 5.17 Vibrating system
with 2 d.o.f.: vibration modes
in the absence of a force field
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M½ �€zþ KT½ �z ¼ 0 ð5:52Þ

The solution of (5.52), which represents the equation of free motion in the
presence of the linearised force field, is, as usual, of the form:

z ¼ Zekt ð5:52aÞ

which leads to:

k2 M½ �Z þ KT½ �� �
Z ¼ 0 ð5:52bÞ

The system thus obtained, admits non-trivial solutions when the determinant D
of the matrix of the coefficients is zero:

D ¼ D kð Þ ¼ k2 M½ � þ KT½ �		 		 ¼ 0 ð5:52cÞ

i.e.:

D kð Þ ¼ k2mþ Kxx Kxy

Kyx k2mþ Kxx

				
				 ¼ 0 ð5:52dÞ

By develojournalg the determinant (5.52d) we obtain the characteristic poly-
nomial of degree 2n in k (in this case, n = 2 being of the fourth order)

D kð Þ ¼ k4m2 þ k2 mKxx þ mKyy
� �þ KxxKyy � KxyKyx

� � ¼ 0 ð5:52eÞ

By dividing (5.52e) by m2 and assuming:

Kxx ¼ Kxx

m
; Kyy ¼ Kyy

m
; Kxy ¼ Kxy

m
; Kyx ¼ Kyx

m
ð5:52fÞ

we obtain as the solution of the polynomial (5.52e):

k2I;II ¼ �Kxx þ Kyy

2
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Kxx þ Kyy

2

� �2

� KxxKyy � KxyKyx
� �s

ð5:53aÞ

which can also be rewritten in the following form:

k2I;II ¼ �Kxx þ Kyy

2
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Kxx � Kyy

2

� �2

þ KxyKyx

s
ð5:53bÞ

The expressions (5.53a) and (5.53b), which will be used below in discussing the
various possible cases, depending on the nature of the force field, can also be briefly
expressed as:
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k2I;II ¼ �c�
ffiffiffi
b

p
¼ �c� D ð5:53cÞ

Now we will discuss the possible solutions (5.53a)–(5.53c), bearing in mind the
conservative or non-conservative nature of the force field that the system in
Fig. 5.15 is subject to.

5.3.1.1 Conservative Force Field

If the force field is conservative, then the matrix of stiffness [KT] is symmetrical (the
extra-diagonal terms of the stiffness matrix are equal): in this case, the term under
the square root of (5.53b) is positive definite, as it is the sum of two squares.

5.3.1.1.1 Stiffness Matrix [KT] Positive Definite

If the overall stiffness matrix in addition to being symmetrical is also positive
definite, then the terms Kxx, Kyy, KxxKyy − Kxy, Kyx, which represent the principal
minors, are positive, and from (5.53a), it can easily be demonstrated8 how the
values of k2I;II are negative, (5.53c) being D\ cj j. The values of k1;2;3;4 (equal to the

square root of k2I;II) are, therefore, purely imaginary:

k1;2 ¼ �
ffiffiffiffiffi
k2I

q
¼ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�cþ D

p
¼ �ix1 essendo D� cð Þ\0ð Þ

k3;4 ¼ �
ffiffiffiffiffiffi
k2II

q
¼ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�c� D

p
¼ �ix2 essendo �D� cð Þ\0ð Þ

ð5:54Þ

In this case, as the real part of the eigenvalues is zero, the linearised system is
stable, but not asymptotically. The pulsations x1 and x2 of the linearised system,
represent the pulsations of the small oscillations of the non-linear system around the
position of equilibrium. This shows that if the matrices [M] and [KT] are sym-
metrical and positive definite the solution to the free problem (5.52) is a pure

8As the matrix is [KT] symmetrical, by analysing (5.53b) it is easy to see how the radicand b
(5.53c) is certainly positive (being the sum of two squares) hence:

D ¼
ffiffiffi
b

p
¼ reale ð5:8:1Þ

and KxxKyy � KxyKyx
� �

[ 0 being, D in magnitude is lower than c ¼ KxxþKyy

2 hence:

k2I;II ¼ �c�
ffiffiffi
b

p
¼ �c� D\0: ð5:8:2Þ
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harmonic motion: the eigenvalues k are purely imaginary (5.54) and the pulsations
x1 and x2 are different compared to the values that we saw in the absence of the
force field (5.50b).

5.3.1.1.2 Stiffness Matrix [KT] not Positive Definite

If the matrix [KT] is symmetrical (so always representative of a conservative force
field) but is not positive definite, at least one of the principal minors is negative. In
particular, if the determinant is negative, then it is always, based on (5.53a):

D[ cj j ð5:55aÞ

and therefore (5.53c), regardless of the sign of c, just one of the k2I;II is positive, so:

k1;2 ¼ �
ffiffiffiffiffi
k2I

q
¼ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�cþ D

p
¼ �a being D� cð Þ\0ð Þ

k3;4 ¼ �
ffiffiffiffiffiffi
k2II

q
¼ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�c� D

p
¼ �ix1 being �D� cð Þ\0ð Þ

ð5:55bÞ

One of the roots, k1 ¼ a, therefore, is real and positive and this corresponds to
the onset of static instability (divergence). The solution k2 ¼ �a is, however,
negative (corresponding to a motion that vanishes over time). On the other hand,
the second solution k3;4 ¼ �ix1 corresponds to a harmonic motion.

In the case of a stiffness matrix [KT] that is not positive definite, but with a
determinant greater than zero, then the only possibility9 is to have negative terms of
the principal diagonal to result in c\0. As the determinant is positive, this results in
(5.53a):

D\ cj j ð5:56aÞ

so both the values k2I;II are positive, as the sign c prevails:

k1;2 ¼ �
ffiffiffiffiffi
k2I

q
¼ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�cþ D

p
¼ �a1 essendo D� cð Þ\0ð Þ

k3;4 ¼ �
ffiffiffiffiffiffi
k2II

q
¼ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�c� D

p
¼ �a2 essendo �D� cð Þ\0ð Þ

ð5:56bÞ

9If the determinant of the matrix is positive, we have:

KxxKyy [KxyKyx ð5:9:1Þ

If the force field is conservative, the product KxyKyx is positive and, therefore, the terms Kxx

and Kyy must have the same sign.

450 5 Dynamical Systems Subjected to Force Fields



www.manaraa.com

The four roots k1;2;3;4 are all real, two negatives and two positives, corresponding
to two instabilities of a static nature, that is, to two different modes of static
divergence. To sum up, we can say that:

• in cases where the matrix [KT] is symmetrical and positive definite there is
stability;

• if [KT], although symmetrical, is not positive definite, then at least one solution
has positive exponent, with divergence type static instability.

To calculate the eigenvectors corresponding to the solutions k1;2;3;4 found, we
will reconsider the linearised equations of motion (5.52a):

€xþ Kxxxþ Kxyy ¼ 0

€yþ Kyyyþ Kyxx ¼ 0
ð5:57aÞ

Replacing in (5.57a) the solution of the form:

z ¼ Zekt ¼ array�20cXY� �
ekt ð5:57bÞ

the same system of differential equations is reduced to a system of linear algebraic
equations of the form:

k2X þ KxxX þ KxyY ¼ 0

k2Y þ KyyY þ KyxX ¼ 0
ð5:57cÞ

If l corresponds to one of the eigenvalues calculated in the two cases analysed in
this section, (5.55b) and (5.56b), then the two Eq. (5.57c) are linear combinations of
each other: from the first of (5.57c) it is possible, for example, to define the relation
between the amplitudes in correspondence to the solutions of the characteristic
equation:

lI;II ¼ Y
X

� �
I;II

¼ � k2I;II þ Kxx

Kxy
ð5:57dÞ

Since, in any case, for conservative systems the values of k2I;II are always real, it
follows that the characteristic ratios lI;II will be real. Furthermore, given that the
overall elastic matrix [KT] is symmetrical, having assumed a conservative force

field, the eigenvectors Z
ðI;IIÞ

:

Z
ðI;IIÞ ¼ X

ðI;IIÞ

Y
ðI;IIÞ

� 
ð5:57eÞ
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will also be orthogonal in respect to the overall stiffness matrix [KT] and to the mass

matrix [M] (see Sect. 2.5.2.1), despite being different, obviously, to those Z
ð1oÞ

,

Z
ð2oÞ

that are obtained in the absence of the force field (5.50b).

5.3.1.2 Non-conservative Force Field

Now we will analyse the most interesting case, namely, the case where the force
field is non- conservative: as the matrix [KT], in this case, is no longer symmetrical,
the extra-diagonal terms are different and their product can be both positive and
negative. We will analyse the two cases separately.

5.3.1.2.1 Negative Radicand β (Flutter Instability)

The radicand β of (5.53b) is negative if:

• Kxy is of the opposite sign to Kyx:

KxyKyx\0 ð5:58aÞ

• And if the following relation exists:

KxyKyx

		 		[ Kxx � Kyy

2

� �2

ð5:58bÞ

In this case the values of k2I;II are complex conjugates:

k2I;II ¼ �c� i
ffiffiffiffiffiffi
bj j

p
¼ a� ib ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 þ b2

p
� e�i/ ¼ M � e�i/ ð5:58cÞ

and can be represented by a pair of numbers with equal magnitude M and phase /
equal and opposite in sign. The values of k1;2;3;4, which are obtained as the square
root of k2I;II , are also complex conjugates, in pairs, with the same imaginary part, as
also shown in Fig. 5.18:

k1;2 ¼ �
ffiffiffiffiffi
k2I

q
¼ � ffiffiffiffiffiffiffiffiffiffiffiffi

aþ ib
p ¼ �

ffiffiffiffiffi
M

p
� ei/2 ) k1 ¼ aþ ix; k2 ¼ �a� ix

k3;4 ¼ �
ffiffiffiffiffiffi
k2II

q
¼ �

ffiffiffiffiffiffiffiffiffiffiffiffi
a� ib

p
¼ �

ffiffiffiffiffi
M

p
� e�i/2 ) k3 ¼ a� ix; k4 ¼ �aþ ix

ð5:58dÞ
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Each pair of conjugate roots (k1;3, k2;4) as we have often seen, provides the same
solution in the real field, so we will have as a general integral in the real field:

z ¼ Re Z
ð1Þ
ek1t

� �
þ Re Z

ð2Þ
ek2t

� �
¼ Re Z

ð1Þ
eat � eixt

� �
þ Re Z

ð2Þ
e�at � eixt

� �
¼ eat � Re Z

ð1Þ � eixt
� �

þ e�at � Re Z
ð2Þ � eixt

� �
ð5:59Þ

i.e. two isofrequential vibration modes, one of which is expanding and the other

damped. The eigenvectors Z
ð1Þ

and Z
ð2Þ

are, in general, complex and the corre-
sponding motion will be of an elliptical nature. In fact, the characteristic relation
between the amplitudes (5.57d):

lI;II ¼
Y

X

� �
I;II

¼ � k2I;II þ Kxx

Kxy
¼ �Me�i/ þ Kxx

Kxy
ð5:60aÞ

in this case is complex as the value of k2I;II is a complex number: Y
ð1Þ

and X
ð1Þ

and

Y
ð2Þ

and X
ð2Þ
, which form the vectors Z

ð1Þ
and Z

ð2Þ
of (5.59), are therefore corre-

lated by the relations lI and lII :

Y
ð1Þ

X
ð1Þ ¼ lI ¼ � k2I þ Kxx

Kxy
) Y

ð1Þ ¼ X
ð1Þ

lIj jeiwI

Y
ð2Þ

X
ð2Þ ¼ lII ¼ � k2II þ Kxx

Kxy
) Y

ð2Þ ¼ X
ð2Þ

lIIj jeiwII

ð5:60bÞ

iMe−  Φ

Φ

iMe+  Φ

/2Φ

1λ

3λ
2λ

4λ

Re

ImFig. 5.18 Solutions in the
case of non-conservative
field, with b < 0
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having used lij j to indicate the magnitude of the complex number li ði ¼ I; IIÞ and
wi ði ¼ I; IIÞ the subject:

wI ¼ arct g
M sin/

�M cos/� Kxx

� �
wI ¼ �wII

ð5:60cÞ

(5.59) developed in the components x and y become:

x tð Þ ¼ Re C1X
ð1Þ
ek1t þ C2X

ð2Þ
ek2t

� �
¼ eat � Re C1X

ð1Þ
eixt

� �
þ e�at � Re C2X

ð2Þ
eixt

� �
y tð Þ ¼ Re C1Y

ð1Þ
ek1t þ C2Y

ð2Þ
ek2t

� �
¼ eat � Re C1Y

ð1Þ
eixt

� �
þ e�at � Re C2Y

ð2Þ
eixt

� �
¼ eat � Re C1X

ð1Þ
lIj jeiWI eixt

� �
þ e�at � Re C2X

ð2Þ
lIIj jeiWIIeixt

� �
ð5:60dÞ

where C1 and C2 (complex) can be determined from the initial conditions. The
trajectory of the mass (Fig. 5.19) is defined by two counter rotating elliptical
motions, as the vibrations along X and Y are harmonic and out of phase with each
other: one motion is exponentially expanding k1 ¼ aþ ix and the other expo-
nentially decreasing k4 ¼ �aþ ix.

The generic trajectory, cleansed of the term e�at, is elliptical since, as already
mentioned, it is defined by two sinusoidal components along the X and Y axes

U

xY
_

X
_

P

x(t )

y(t )

Fig. 5.19 Motion of the
system subject to flutter type
instability
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(projections of the vectors X
ð1;2Þ

and Y
ð1;2Þ

on the respective real axes (Figs. 5.19

and 5.60d), out of phase with each other as the relation lI;II ¼ Y�
X

� �ð1;2Þ
(5.60b),

(5.60c) is complex.10

10For ease of discussion, we will consider the contribution to vibration caused by k1, for example,
by cleansing it of the exponential term. The trajectory described by the mass m is defined by a
generic relation of the form (5.60d):

x ¼ X cos xt þ hð Þ
y ¼ Y cos xt þ cð Þ ð5:10:1Þ

In order to define the type of trajectory, it is possible to express (5.9.1) with a shift of time
t ¼ s� ðh=xÞ so that the same expressions can be defined as:

x ¼ X cos xt þ hð Þ ¼ X cos xs� x
h
x
þ h

� �
¼ X cos xsð Þ

y ¼ Y cos xt þ cð Þ ¼ Y cos xs� x
h
x
þ c

� �
¼ Y cos xsþ c� hð Þð Þ ¼ Y cos xsþWð Þ

ð5:10:2Þ

where w represents the relative angle between x and y, see (5.60c). By making the cosine term in
the second equation explicit and substituting the first, we have

y
Y
¼ cos xsþWð Þ ¼ cos xsð Þ cos Wð Þ � sin xsð Þ sin Wð Þ

¼ cos xsð Þ cos Wð Þ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� cos2 xsð Þ

p� �
sin Wð Þ ¼ x

X
cos Wð Þ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� x

X

� �2r !
sin Wð Þ

ð5:10:3Þ

By squaring this expression we have:

y
Y

� �2
þ x

X

� �2
�2

y
Y

� � x
X

� �
cos W ¼ sin2 W ð5:10:4Þ

This equation represents, in general, an elliptical. Assuming that the relative angle w is zero
(i.e. h ¼ c), we have:

y
Y

� �2þ x
X

� �2�2
y
Y

� � x
X

� �
¼ 0 ) y

Y
� x
X

� �2¼ 0 ) y ¼ x
Y
X

� �2

ð5:10:5Þ

which represents a rectilinear motion. In the particular case where X ¼ Y ¼ A and W ¼ 90	,
(5.10.4) becomes:

y
A

� �2
þ x

A

� �2
�2

y
Y

� �
¼ 1 ) y2 þ x2 ¼ A2 ð5:10:6Þ

which represents a circular motion. To define the direction the elliptical trajectory travels, it can be
described in polar coordinates:

z ¼ q � eib ð5:10:7Þ
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The direction of travel on the trajectory causing the body to absorb energy from
the force field is, therefore, defined by solution k1 (that with the positive real part),
while the other solution corresponds to a motion (the direction of travel of the
relative trajectory is opposite to the previous) that transfers energy to the force field
(the motion gradually dampens). In vibrating systems subject to conservative fields
of positional forces, the relations between the elements of the generic eigenvector
(generally complex) are always real (Sect. 2.3.1) and so the vibrations associated
with the different elements are always either in phase or in counter phase: for this
reason, in these systems the motion, represented in the plane x–y and for a two-
degree-of freedom system is always a segment of a straight line. The instability that
can be seen in non-conservative systems surrounded by fields of purely positional
forces is, on the other hand, characterised by the fact that two natural frequencies
become equal and the resulting motion is of an elliptical nature. This is a charac-
teristic that is peculiar to unstable non-conservative systems, with expanding
vibrations generated by the action of the force field. The force field makes the two
frequencies of the system equal, which in the absence of the force field would be
different, and makes it possible for the mass to describe an elliptical trajectory and
to absorb the energy from the field. Returning, in fact, to the example considered in
Fig. 5.15), in the absence of the force field, the frequency would be:

xx ¼
ffiffiffiffi
kx
m

r
¼ x10

xy ¼
ffiffiffiffi
ky
m

r
¼ x20

ð5:61Þ

(Footnote 10 continued)
z being a complex vector (of magnitude ρ and anomaly β) which describes the trajectory of the
mass m:

q ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
X2 cos2 xt þ hð Þ þ Y2 sin2 xt þ cð Þ

q
b ¼ a tan

Y sin xt þ cð Þ
X cos xt þ hð Þ
� � ð5:10:8Þ

The direction of travel can be defined by the sign of the:

db
dt

¼ 1

1� b2
� xYX cos xt þ cð Þ cos xt þ hð Þ þ xYX sin xt þ cð Þ sin xt þ hð Þ

X2 cos2 xt þ hð Þ ¼

¼ 1

1� b2
� xYX sin c� hð Þ
X2 cos2 xt þ hð Þ

ð5:10:9Þ

The sign of the term depends, therefore, on the sign of sinðh� cÞ ¼ � sinðWÞ, i.e. on the
value assumed by the two phases WI and WII (5.60c).
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with, in general, xx differing from xy. The non-conservative field of positional
forces modifies such frequencies through [KF] and these, at the onset of instability,
converge to the same value of x given by (5.58b). This physical aspect of the
problem suggests a way to control these forms of instability by acting appropriately
on the value of xx and xy: in fact, if, for example, xx and xy were very different,
the force field through the terms of [KF] would be less likely to make them equal,
thus distancing the system from phenomena of instability. Generalising the dis-
cussion to n-degree-of freedom systems, the purely inertial and elastic system is
characterised by natural frequencies that are generally different: the presence of
[KF], equivalent elastic matrix of the non-conservative force field, changes the
natural frequencies of the system and when instability occurs with expanding
vibrations (conditions given by (5.58a), two of these frequencies become equal
(complex conjugate roots with positive real part). This type of instability is defined
as flutter instability. Examples of this form of instability will be shown later, in
particular relating to an aerofoil with two degree-of-freedom (Sect. 5.3.2.1), to a
railway wheelset and to the motion of a journal in a bearing with hydrodynamic
lubrication (Sect. 5.3.2.2).

5.3.1.2.2 β Positive Radicand

We will now analyse the second case, where the radicand b[ 0: this condition
always occurs if Kxy and Kyx, although having different magnitudes, have the same
sign or if the magnitude of their product satisfies:

KxyKyx

		 		\ Kxx þ Kyy

2

� �2

ð5:62Þ

as highlighted in (5.53b). In this condition, see (5.53c), the two values of k2I and k2II
are real: at this point, we need to distinguish the possible cases on the basis of the
sign of the matrix’s [KT] determinant. In the case of a determinant that is less than
zero (matrix not positive definite), as seen previously in the case of conservative
systems, the result is always:

D[ cj j: ð5:63aÞ

And then, once again, similarly to what happens to systems surrounded by fields
of conservative forces with [KT] not positive definite (sect. 5.3.1.1.2, (5.55b)), one
solution k2I is positive while the other k2II proves to be negative, so we will have:

k1;2 ¼ �
ffiffiffiffiffi
k2I

q
¼ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�cþ Dð Þ

p
¼ �a

k3;4 ¼ �
ffiffiffiffiffiffi
k2II

q
¼ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�c� Dð Þ

p
¼ �ix1

ð5:63bÞ
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giving rise to static divergence. In the case of a determinant that is greater than zero,
however, the result is always:

D\ cj j ð5:64aÞ

and so the sign of k2I;II is determined by the sign of c. If the terms Kxx and Kyy are
positive, then the matrix [KT] is positive definite, as the determinant is also positive.
A positive value of c, provides two negative values of k2I;II , so the roots k1;2;3;4 will
all be imaginary, i.e. the linearised system is stable:

k1;2 ¼ �
ffiffiffiffiffi
k2I

q
¼ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�cþ Dð Þ

p
¼ �ix1

k3;4 ¼ �
ffiffiffiffiffiffi
k2II

q
¼ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�c� Dð Þ

p
¼ �ix2

ð5:64bÞ

The ratios of the elements of the eigenvectors are real but, unlike the similar case
obtained for the conservative force field, they will no longer be orthogonal, since
the matrix [KT] is no longer symmetrical (Sect. 2.5.2.1). So to summarise, we can
say that:

• in the case of a non-conservative field of positional forces, [KT] non-symmet-
rical, under suitable conditions, given by (5.58a) and (5.58b) the onset of flutter
type instability is possible, being typical of non-conservative systems.

• furthermore, if the matrix of overall stiffness [KT] (including the elastic terms
and the force field equivalent terms [KF]) is not positive definite, we will, once
again, find the divergence type static instabilities already seen in conservative
systems.

5.3.1.3 An Example: Instability in a Cutting Tool

We will analyse, as an example of a mechanical system subject to a field of
positional forces perturbed around the position of rest, that relating to a cutting tool:
more specifically, in this section, we will analyse the possible forms of instability
introduced by the force field due to the contact with the piece to be cut, instabilities
which, as we know, cause the tool to jump around, with the consequent unwanted
irregularities in the process. The problem is complex as the description of the actual
force field that acts on the tool system is complex. Given the purely didactic
purpose of the discussion, we will adopt suitable simplifications that will, however,
in no way alter the specific characteristics of the phenomenon to be analysed.

The longitudinal axis of the tool (axis X in Fig. 5.20) is inclined, in relation to the
normal to the plane of the object to be processed, with an angle θ: kx and ky are the
two stiffnesses in direction X and Y, Y being normal to X. The force P transmitted
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from the piece to the tool can be, in a first approximation, considered proportional
to the thickness of the swarf thickness S removed, i.e.:

P ¼ ksS ð5:65Þ

while the inclination of this force is defined by a certain angle w (Fig. 5.20),
function of the different processing parameters. Assuming, for simplicity’s sake,
that the tool is rigid and neglecting the rotations, it is possible to assume, as
independent variables, the displacement x and y of the actual tool, according to the
directions X and Y (Fig. 5.20) defined in relation to the position of equilibrium:
these variables describe the perturbed motion around this position. The angle of
inclination of the force transmitted to the tool is considered independent from x and
y and from the velocity _x and _y, but depends only on the cutting speed . Its
equations of motion, supposing that the dissipative terms can be neglected and
using m to indicate the mass of the tool, are:

�m€x� kxxþ Px ¼ 0

�m€y� kyyþ Py ¼ 0
ð5:66Þ

Px and Py being the two components of the force transmitted by contact P in
direction x and y, defined by the relations:

Px ¼ P cos w� hð Þ
Py ¼ �P sin w� hð Þ ð5:66aÞ

The displacement of the tool, in its two components x and y, also defines
(Fig. 5.20) the thickness of the swarf removed P using the simple relations:

S ¼ �y � sin h� x � cos h ð5:67Þ

Taking into account (5.66a) and (5.67) the motion equations of the system can
be rewritten in explicit form as:

Fig. 5.20 Definition of the
tool model
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m€xþ kxx� P cos w� hð Þ ¼ 0 ) m€xþ kxx� ksS cos w� hð Þ ¼ 0

m€yþ kyyþ P sin w� hð Þ ¼ 0 ) m€yþ kyy� ksS sin w� hð Þ ¼ 0
ð5:68Þ

i.e.:

�m€x� kxx� ks �y � sin h� x � cos hð Þ cos w� hð Þ ¼ 0

�m€y� kyyþ ks �y � sin h� x � cos hð Þ sin w� hð Þ ¼ 0
ð5:69Þ

Given the particular choice of the independent variables, these directly define the
perturbed motion, i.e. with the symbology adopted:

x ¼ x

y ¼ y
ð5:70aÞ

and (5.68) become:

m€xþ kxx� ks �y � sin h� x � cos hð Þ cos w� hð Þ ¼ 0

m€yþ kyyþ ks �y � sin h� x � cos hð Þ sin w� hð Þ ¼ 0
ð5:70bÞ

The vector of the independent variables is defined with z:

z ¼ x
y

� 
ð5:71Þ

(5.70b) can be rewritten in matrix form as:

M½ �€zþ KS½ � þ KF½ �½ �z ¼ M½ �€zþ KT½ �z ¼ 0 ð5:72Þ

[M] and [KT] being the matrices of mass and overall stiffness (sum of the structural
term [KS] and of the term due to the force field [KF]) defined as:

M½ � ¼ m 0
0 m


 �
ð5:72aÞ

KT½ � ¼ KS½ � þ KF½ � ¼ Kxx Kxy

Kyx Kyy


 �

¼ kx þ ks cos w� hð Þ cos hð Þ ks cos w� hð Þ sin hð Þ
� ks sin w� hð Þ cos hð Þ ky � ks sin w� hð Þ sin h� �
 � ð5:72bÞ

This matrix is non-symmetrical, due to the non-conservative nature of the force
field. The system can be subject, therefore, to dynamic type instability when:
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KxyKyx\0 ) �k2s cos w� hð Þ sin h sin w� hð Þ cos h\0 ð5:73aÞ

and the magnitude of their product:

KxyKyx

		 		[ K2
xx � K2

yy

4
)

k2s cos w� hð Þ sin h sin w� hð Þ cos h		 		[
kx þ ks cos w� hð Þ cos hð Þ2� ky � ks sin w� hð Þ sin h� �2

4

ð5:73bÞ

So a necessary condition to have dynamic instability becomes:

sin w� hð Þ[ 0 ) w[ 0 ð5:74aÞ

The same system can be subject to static instability (divergence) when one of the
principal minors of the stiffness matrix is negative, i.e. when:

ky\ks sin w� hð Þ sin h ð5:74bÞ

5.3.2 Two-Degrees-of-Freedom System Placed in a Field
of Position and Velocity Dependent Forces

We consider it useful, for mainly didactic purposes, not to directly introduce the
general discussion on the stability of a generic two-degree-of-freedom system
placed in field of forces that are depending on position and velocity, but firstly we
will refer to two specific examples (aerofoil hit by a confined flow [Sect. 5.3.2.1)
and journal bearing lubricated pair (Sect. 5.3.2.2)], to then return to the general
discussion in the context of the examples and the discussion relating to systems
with n DOF (Sect. 5.4).

5.3.2.1 An Example: An Aerofoil with Two Degree-of-Freedom Hit
by a Confined Flow

As an example of a two-degree-of-freedom system placed in a field of forces that
are depending on both position and velocity, we will consider the aerofoil described
in Fig. 5.21: this body (with mass m and moment of inertia J around the centre of
gravity) can translate on a vertical plane and rotate, constrained by two vertical
springs, each with elastic constant kx=2. To describe its motion we can assume, as
independent variables, the vertical displacement x and the rotation θ.
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As we saw in Sect. 5.2.1.1, the aerodynamic actions of drag and lift that act on
the body are, respectively, parallel and normal to the direction of the relative
velocity Vr. This relative velocity is calculated in relation to an observer that is
integral to the aerofoil at a characteristic point at a distance b1 from the centre of
gravity of the aerofoil (Sect. 5.2.2) and it is inclined at angle w with the horizontal
(Fig. 5.22). The equations of motion, therefore, are the following:

mx
:: þ rx _xþ kxx ¼ Fp cosw� Fr sinw

J h
::

þ rh _hþ khh ¼ M
ð5:75Þ

Having used kh to define the torsional stiffness kh ¼ kxl2 and rh for the torsional
damping rh ¼ rxl2. By defining the vector z formed by the independent coordinates
x and θ as:

V

2
xk

,m J

2
xr

2
xk

2
xr

x

θ

Fig. 5.21 Two-degree-of-freedom aerofoil
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ψ

1x   b θ−

1b

ψ

Fig. 5.22 Calculating relative velocity
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z ¼ x
h

� 
ð5:75aÞ

(5.75) can be rewritten in matrix form as:

m 0
0 J


 �
€x
€h

� 
þ rx 0

0 rh


 �
_x
_h

� 
þ kx 0

0 kh


 �
x
h

� 
¼ Fp cosw� Fr sinw

M

� 
ð5:75bÞ

or:

Ms½ �€zþ Rs½ �_zþ Ks½ �z ¼ F z; _zð Þ ð5:75cÞ

As we saw in Sect. 5.2.1.1, the aerodynamic actions of drag, lift and torque can
be expressed as:

Fr ¼ 1
2
qSCr að ÞV2

r

Fp ¼ 1
2
qSCp að ÞV2

r

M ¼ 1
2
qSCm að ÞV2

r

ð5:76Þ

where the aerodynamic coefficients are functions of the angle a formed between the
relative velocity Vr and a reference line that is integral to the body (Fig. 5.22).
Using the quasi-static theory, which is valid, as mentioned, in the case of reduced
speed Vrid [ 20�30, (see Sect. 5.2.1.1, (5.17) about this), and the angle w between
the relative velocity Vr and the absolute reference being small, we can assume:

tanw ¼ _x� b1 _h
U

� w ð5:77aÞ

The angle of attack between the relative velocity and the body is, in this case,
equal to:

a ¼ hþ w ð5:77bÞ

(Fig. 5.22) being:

V2
r ¼ U2 þ _x� b1 _h

� �2
ð5:77cÞ

The expressions of the generalised forces according to the degree-of-freedom of
the system are, therefore, non-linear functions of the actual variables and of their
derivatives in relation to time: to linearise the motion equations and examine the
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stability of the system, we proceed as seen in Sect. 5.3.1, i.e. by linearising each
term that appears in the expressions of the generalised forces and bearing in mind
just the linear terms (so neglecting those of a higher order that appear in the
developments in series). We will consider, in particular, the case of a symmetrical
aerofoil (Fig. 5.9) whose lift and torque coefficients are zero at the origin:

Cp0 ¼ 0; Cm0 ¼ 0 ð5:78aÞ

The position of static equilibrium, considering the direction of the velocity of the
free stream coinciding with the axis of symmetry of the profile, and bearing in mind
(5.78a), thus becomes:

x0 ¼ 0

h0 ¼ a0 ¼ 0
ð5:78bÞ

The relative velocity Vr and its values of cosw and sinw, developed around the
position of static equilibrium defined by (5.78b), can be expressed as:

V2
r ¼ U2 þ . . . � U2; w � _x� b1 _h

U

cosw ¼ 1þ w2

2
þ . . . � 1; sinw ¼ wþ . . . � w

ð5:78cÞ

The aerodynamic coefficients Cr að Þ, Cp að Þ and Cm að Þ, as we saw in Sect. 5.2.1,
can be developed in Taylor series around the position of static equilibrium defined
by ao ¼ 0 (5.78b). The forcing terms F z; _zð Þ linearised in (5.75b) by expanding the
products and considering just the linear terms of the product obtained, are reduced
to the following expressions:

Fp að Þ cosw ¼ aV2
r Cp cosw

¼ aU2 @Cp

@a

� �
0
a� a0ð Þ ¼ aU2Kp0 hþ _x� b1 _h

U

 !

Fr að Þ sinw ¼ aV2
r Cr sinw ¼ aU2Crw ¼ aU2Cr0

_x� b1 _h
U

 !

M að Þ ¼ aCV2
r Cm ¼ aCU2 @Cm

@a

� �
0
a� a0ð Þ ¼ aCU2Km0 hþ _x� b1 _h

U

 !

ð5:79Þ

having indicated, as always, with:
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a ¼ 1
2
qS; Cr0 ¼ Crð Þa¼a0

Kp0 ¼ @Cp

@a

� �
0
¼ @Cp

@a

� �
a¼a0

; Km0 ¼ @Cm

@a

� �
0
¼ @Cm

@a

� �
a¼a0

ð5:79aÞ

The motion Eq. (5.75) of the vibrating two-degree-of-freedom system analysed
while placed in a force field (Fig. 5.21) can be rewritten, having linearised the
forces and by ordering the terms according to the degree-of-freedom of the system,
as:

m 0

0 J


 �
€x
€h

� 
þ rx 0

0 rh


 �
_x
_h

� 
þ kx 0

0 kh


 �
x

h

� 

¼ aU Kp0 � Cr0
� �

_xþ aU Cr0 � Kp0
� �

b1 _hþ aU2Kp0h

aUCKm0 _x� aUCb1Km0
_hþ aU2CKm0h

( ) ð5:80aÞ

Also in this case, bearing in mind the particular type of profile analysed in
Fig. 5.9, the variables x and θ that define the perturbed motion around the position
of static equilibrium, defined by xo ¼ 0 and ho ¼ 0, coincide with the actual
independent variables initially chosen:

x ¼ x� x0 ¼ x

h ¼ h� h0 ¼ h
ð5:80bÞ

Having used z to indicate the vector of the independent variables:

z ¼ x
h

� 
ð5:80cÞ

By bringing to the left of the equals sign the second-member terms, which
represent the linearised aerodynamic forces, it is possible to define the Eq. (5.80a)
in matrix terms as:

M½ �€zþ Rs½ � þ RF½ �½ �_zþ Ks½ � þ KF½ �½ �z ¼ 0 ð5:80dÞ

having used [KF] and [RF] to indicate the equivalent aerodynamic matrices of
stiffness and of damping:

KF½ � ¼ aU2 0 �Kp0

0 �CKm0


 �

RF½ � ¼ aU
Cr0 � Kp0 Kp0 � Cr0

� �
b1

CKm0 Cb1Km0


 � ð5:80eÞ
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By summing the matrices due to linearisation of the force field [KF] and [RF] to
the structural matrices [KS] and [RS] we obtain the overall matrices of stiffness [KT]
and damping [RT]:

KT½ � ¼ Ks½ � þ KF½ � ¼ kx �aU2Kp0

0 kh � aU2CKm0


 �

RT½ � ¼ Rs½ � þ RF½ � ¼ rx þ aU Cr0 � Kp0
� �

aU Kp0 � Cr0
� �

b1
�aUCKm0 rh � aUCb1Km0


 � ð5:80fÞ

whereas the matrix of mass remains unaltered as, in this case, the aerodynamic
actions do not depend on accelerations. It is important to note that:

• the aerodynamic matrices [KF] and [RF] couple the equations that, initially, with
the absence of fluid dynamic forces, prove to be uncoupled;

• the two matrices [KF] and [RF] are not symmetrical: so the force field is non-
conservative for the positional terms and non-dissipative for those of velocity: in
fact, since the equivalent matrix of damping is not symmetrical, it can both
dissipate energy and introduce energy into the system;

• the terms of the equivalent matrices of the force field increase as the velocity
U of the flow increases.

We will now review the possible types of instability linked to the aerodynamic
force field that may occur. These are, basically:

• static divergence of the torsional degree-of-freedom;
• instability with one torsional degree-of-freedom;
• instability with one flexural degree-of-freedom;
• flutter instability.

5.3.2.1.1 Torsional Static Divergence

Static divergence occurs when the direct term of equivalent torsional stiffness
�aU2CKm0 (5.80d), in addition to being negative, is in absolute value greater than
the corresponding term of structural stiffness kh (global matrix [KT] not positive
definite):

� aU2CKm0\0

aU2CKm0

		 		[ kh
ð5:81Þ

This instability occurs when the values of the derivative Km0 of the torque
coefficient are positive, as, for example, occurs in aerofoils (Fig. 5.11). To over-
come this type of instability, it is necessary, at equal velocity U, to either increase
the torsional stiffness kh of the system or decrease the value of the derivative of the
torque coefficient Km0.
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5.3.1.2.2 Dynamic Instability with One-Degree-of-Freedom

Dynamic instability with one-degree-of-freedom, either torsional or flexural, occurs
when the corresponding direct term (either vertical or torsional) of the equivalent
damping matrix [RF] of the force field is (5.80c) negative (matrix [RF] not positive
definite) and, in absolute value, predominant compared to the corresponding term of
structural damping:

aU Cr0 � Kp0
� �

\0

rx\ aU Cr0 � Kp0
� �		 		: ð5:82aÞ

aUCb1Km0\0
rh\ aUCb1Km0j j n ðtÞ ¼ 6 ð5:82bÞ

In this situation the system oscillates while expanding, by receiving energy via
the degree-of-freedom affected by the instability. More specifically, aerofoils (with
one-degree-of-freedom), for which the derivative of the lift coefficient Kp0 is
negative, while the derivative of the torque coefficient Km0 is positive, are always
stable. This instability with one-degree-of-freedom occurs, on the other hand, in
non-aerofoil profiles, with a large front surface (for example, beams with simple
and double-T cross-sections or similar sections).

5.3.1.2.3 Flutter Instability

Aerofoil type profiles that are stable if constrained in such a way as to create a
vibrating system with one degree-of-freedom can be subject, if constrained so that a
two-degree-of-freedom system is created, to flutter instability, due to the simulta-
neous action of positional and velocity parts of the force field. The positional part of
the force field is characterised (5.80a)–(5.80f) by an extra-diagonal zero term Kyx,
so the positional terms alone cannot be responsible for the instability, since the
necessary condition can never exist (5.58a and 5.58b) (with the absence of
damping) to justify this phenomenon (Sect. 5.3.1.2) being:

KxyKyx ¼ 0 ð5:82cÞ

On the other hand however, the positional part of the force field modifies, via the
term kh � aU2CKm0, the torsional frequency of the system and, in particular, for
positive values of the torque coefficient derivative Km0, the torsional frequency xh

decreases. If, as is usually the case, the frequency xx relating to vertical motion is
less than the torsional frequency xh, as the velocity U of the incident flow
increases, the positional part tends to draw the two frequencies together, syn-
chronising them. In this situation ([RF] is not symmetrical), above a certain value of
velocity, known as the flutter velocity, the terms of velocity are able to make the
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system unstable with amplitudes that increase over time affecting both the vertical
and torsional motion. Flutter instability is typical of structures such as the wings of
aircraft and the decks of suspension bridges, where the natural torsional frequency
xh is generally greater than the flexural frequency xx and the almost wing-like form
of the profile is such as to present a positive derivative of the torque coefficient Km0

and negative derivative of the lift coefficient Kp0. To avoid the danger of flutter
instability, in the decks of suspension bridges, for example, we can:

• modify the form of the profile, seeking to decrease the value of the derivatives of
the coefficients of lift Kp0 and torque Km0, in order to reduce the influence of the
aerodynamic force field;

• seek to space out the natural vertical xx and torsional xh frequencies, to raise
the flutter velocity (though this is not always possible on some structures).

We will examine the phenomenon of flutter in more detail while bearing in mind,
as mentioned, that:

• the terms directly responsible for introducing energy into the system are those of
velocity;

• the tendency towards vertical and torsional synchronisation is essential to allow
energy to be introduced into the system.

Under conditions of flutter, as already mentioned in Sect. 5.3.1.2.1, the solutions
become of the form k1;2 ¼ �a� ix, i.e. with equal pulsations: so, under this
condition, the profile translates and rotates with the same frequency x, synchro-
nously: the two motions are also out of phase, with phases that vary depending on
the velocity above the threshold of instability. When the index of instability reaches
the maximum values, the relative phase between the translational and rotational
motion becomes p=2. This implies that:

• as the profile passes through x = 0 (with _x facing downwards), it has the
maximum rotation with its upstream part facing downwards;

• however, as the profile rises, again in x = 0 (but with _x facing upwards), it has its
upstream part facing upwards (Fig. 5.23).

For this reason, at any given time the velocities of the profile, under these
conditions, have the same direction as the lift force: so, the actual force performs
positive work at every cycle, i.e. it introduces energy into the system: the syn-
chronisation of the two vertical and torsional moments mean that this condition is
maintained over time, so the introduction of energy continues over time generating
instability.

The above makes it possible to describe, in qualitative terms, the phenomenon of
flutter instability that can affect a particular profile. To define the actual phenom-
enon in quantitative terms, we must, as mentioned, integrate (5.80d) by imposing a
generic solution:

468 5 Dynamical Systems Subjected to Force Fields



www.manaraa.com

z ¼ Zekt ð5:83aÞ

obtaining, as usual, a homogeneous algebraic equation of the form:

k2 MT½ � þ k RT½ � þ KT½ �� �
Z ¼ 0 ð5:83bÞ

By setting the determinant of the coefficient matrix to zero we can calculate the
roots ki. Figure 5.24 shows, as a function of the velocity of the incident flow U, an
example of the trend of the initial natural pulsations (xh torsional and flexural xx)
of a section of suspension bridge deck and of the instability coefficient a=x: the
same figure also shows the values adopted for calculation. With the presence of the
equivalent damping terms of the force field [RF] the onset of instability is possible
even when the two frequencies are not strictly coincident.

5.3.2.2 Instability of a Journal in a Bearing with Hydrodynamic
Lubrication

Now we will address the problem concerning the interaction between a journal and
a bearing with natural hydrodynamic lubrication: this issue will be resumed in
Chap. 6, dedicated to the dynamics of rotors, so please refer to that chapter for
further discussion on the problems of lubrication. Here we will briefly summarise
the key aspects of the problem while referring the reader to specialised texts and
lecture notes for more detailed discussion (see the bibliography and, in particular,
[41, 50, 52, 53]. We will be considering a lubricated cylindrical bearing (Fig. 5.25)
subject to a vertical load Q: the centre of the journal Op is placed in an eccentric
position ec with respect to the geometric centre Oc of the bearing, thus forming a
meatus with variable thickness that determines a distribution of pressure that
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Fig. 5.23 Subsequent
positions assumed by an
aerofoil subject to flutter type
instability
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balances the external load acting on the actual journal. The value of the magnitude
ecj j of the vector Oc � Op, that defines the position of the centre of the journal
inside the bearing and its anomaly β depend on the load Q acting on the journal, on
its angular speed X, as well as the geometry of the bearing and the characteristics of
the lubricant. More in general [41, 53, 54], we can say that, inside the meatus the
presence of an oil film creates a force Fp, sustaining the journal, as a function:

• of the relative position of the centre of the journal Op with respect to the
geometric centre of the bearing Oc, defined by the coordinates xc and yc;

• of the components _xc and _yc of the approach speed of the journal with respect to
the bearing.

This force Fp can be divided, according to the two axes X and Y, into two
components Fx and Fy the values of which are functions of the coordinates xc, yc
and their first derivatives, _xc and _yc:
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Fig. 5.24 Plot of the torsional xh and flexural xx pulsations and of the instability coefficient a=x,
as a function of the velocity of the incident flow U, of a typical section of suspension bridge deck
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Fx ¼ Fx xc; yc; _xc; _ycð Þ
Fy ¼ Fy xc; yc; _xc; _ycð Þ ð5:84Þ

These Eq. (5.84) indicate that the journal is subject to a field of forces that
depend on position and velocity, depending on the characteristics of the bearing and
the speed of rotation Ω. To define this force field we use the lubrication theory
which is based on the Reynolds equation (see Bibliography, section “Lubrication
and bearings with hydrodynamic lubrication” [40–54]. In particular, once the
position xc, yc and the velocity _xc and _yc of the journal inside the bearing have been
assigned, it is possible to solve the Reynolds equation using numerical or semi-
analytical methods to define the trend of the pressures in the oil film and, as a
consequence, the forces Fx and Fy that act on the journal.

In this discussion we will use the term steady-state conditions to define those
conditions where the journal rotates in the bearing with a constant angular speed Ω,
without performing oscillations within the bearing, i.e. with _xc ¼ 0 and _yc ¼ 0: the
position of the centre of the journal Op with respect to the centre of the bearing Oc is
defined by the equilibrium between the constant external load Q and the resultant of
the pressures generated by the oil film (Fig. 5.25). The eccentricity ec that is created
between the axes of the journal and the bearing depends, therefore, on both the
rotational speed Ω and the intensity of the load Q on the journal:

ec ¼ ec X;Qð Þ ð5:85Þ

The term load locus is used to define the locus of the points described by the
centre of the journal Op with variable Ω and constant load Q, or vice versa. The
trend of the load locus can be defined analytically by integrating the Reynolds
equations (Chap. 6, Sect. 6.2.2) or by taking experimental measurements.
Obviously, the load locus is a function of the type of bearing being analysed.

θ β

Ω
CX

CY

xF

yFx

y

Q

PO

CO
Ce

x

Fig. 5.25 Position of the
journal inside the bearing
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Examples of this locus, for two different types of bearing, are illustrated in
Fig. 5.26a:

• for X ¼ 0, journal and bearing are in contact and the eccentricity ec is equal to
the radial clearance d ¼ R� r, R being the inner radius of the bearing and r the
radius of the journal;

• as the speed increases Ω (or, at constant speed, as the load decreases Q), the
eccentricity ec changes, in magnitude and direction, to produce the film needed
for support;

• the eccentricity ec tends to zero for Ω tending to infinity, or, in the case of
constant speed, for load Q tending to zero.

Another important parameter in defining the dynamic characteristics of the
bearing is the so-called load coefficient AðvÞ which, once the different parameters in
play have been assigned, defines the load per unit of width N that the fluid film can
sustain:

N ¼ Q
b
¼ A vð ÞXr r

2

d2
l ð5:86Þ

v ¼ ec=d being the non-dimensional eccentricity, b the width of the bearing, r the
radius of the journal and l the viscosity of the lubricant. The trend of AðvÞ is of the
type illustrated in Fig. 5.26b: the function AðvÞ can be determined by numerically
integrating the Reynolds equations ([41, 53, 54] and Chap. 6, Sect. 6.2.2).
Knowledge of the function AðvÞ is necessary as, once the load acting on bearing
Q is known, and therefore the load per unit of width N, it is possible to obtain the
value of AðvÞ from (5.86) and, entering the curve A ¼ AðvÞ of Fig. 5.26b, establish
v: once v is known it is possible to estimate the eccentricity ec required by the
journal to support the actual load. Once the eccentricity ec and the load locus are
known, it is also possible to establish the direction of the eccentricity vector, by

Fig. 5.26 a Load locus,
b load coefficient AðvÞ; (1)
cylindrical bearing; (2) single
lobe bearing
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means of anomaly bc, thus being able to define, for the particular type of bearing
being analysed, the geometry of the meatus for the assumed values of Q and Ω. The
position of the journal, therefore, can be established, in static conditions, with the
procedure described above: when the rotor vibrates, however, the relative position
between journal and bearing changes dynamically and the forces Fx and Fy, non-
linear expressions in xc, yc, _xc and _yc, are given by (5.84). Considering with xco and
yco the position of the centre of the journal with respect to the centre of the bearing
under steady-state conditions, i.e. with _xc ¼ 0 and _yc ¼ 0:

xc0 ¼ ec0j j sin bc0
yc0 ¼ ec0j j cos bc0

ð5:87Þ

in order to analyse the perturbed motion of the journal around this steady-state
position,11 it is possible to linearise the expression of the forces Fx and Fy (5.84) by
developing them in series, i.e.:

Fx ¼ Fx xc0; yc0; 0; 0ð Þ þ @Fx

@xc

� �
xc0;yc0

xc � xc0ð Þ þ @Fx

@yc

� �
xc0;yc0

yc � yc0ð Þþ

¼ @Fx

@ _xc

� �
xc0;yc0

_xc þ @Fx

@ _yc

� �
xc0;yc0

_yc þ � � �

ð5:88aÞ

Fy ¼ Fy xc0; yc0; 0; 0ð Þ þ @Fy

@xc

� �
xc0;yc0

xc � xc0ð Þ þ @Fy

@yc

� �
xc0;yc0

yc � yc0ð Þþ

¼ @Fy

@ _xc

� �
xc0;yc0

_xc þ @Fy

@ _yc

� �
xc0;yc0

_yc þ . . .

ð5:88bÞ

where Fx xc0; yc0; 0; 0ð Þ and Fy xc0; yc0; 0; 0ð Þ represent the forces exerted by the oil-
film under steady-state conditions (or static equilibrium) and thus satisfy the
equation:

Fx xc0; yc0; 0; 0ð Þ þ Qx ¼ 0

Fy xc0; yc0; 0; 0ð Þ þ Qy ¼ 0
ð5:89Þ

11Normally, and perhaps improperly, this steady-state situation, defined by a constant position of
the journal centre xc0; yc0, by the journal constant rotational speed Ω and by a constant load Q, is
defined as the position of static equilibrium of the journal: the issue can be covered in the section
on systems perturbed in the neighbourhood of rest as perturbed motion is considered to be that
defined by the variables x ¼ x� xc0 and y ¼ y� yc0 not in the angular speed Ω which is
assumed to be constant.
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The linearised dynamic forces exchanged between journal and bearing, due to
perturbed motion around the position of static equilibrium, taking into account
(5.88a), (5.88b) and (5.89) and introducing a change of coordinates that makes it
possible to highlight the perturbed motion:

x ¼ xc � xc0
y ¼ yc � yc0

ð5:90Þ

become:

Fxdin ¼ Fx � Fx xc0; yc0; 0; 0ð Þ ¼ �Kxxx� Kxyy� Rxx _x� Rxy _y

Fydin ¼ Fy � Fy xc0; yc0; 0; 0ð Þ ¼ �Kyxx� Kyyy� Ryx _x� Ryy _y
ð5:91Þ

i.e. in matrix form:

Fxdin

Fydin

� 
¼ � Kxx Kxy

Kyx Kyy


 �
x
y

� 
� Rxx Rxy

Ryx Ryy


 �
x
:

y
:

� 
ð5:92Þ

having used the constants Kxx, Kxy, Kyx and Kyy to indicate the partial derivatives,
with a change in the sign, of the functions Fx and Fy with respect to the variables xc
and yc, estimated around the position of static equilibrium xc0; yc0; these derivatives
can also be expressed in non-dimensional form as:

Kxx ¼ � @Fx

@xc

� �
xc0;yco

¼ Q
d
Cxx

Kxy ¼ � @Fx

@yc

� �
xc0;yco

¼ Q
d
Cxy

Kyx ¼ � @Fy

@xc

� �
xc0;yco

¼ Q
d
Cyx

Kyy ¼ � @Fy

@yc

� �
xc0;yco

¼ Q
d
Cyy

ð5:93Þ

as d ¼ R� r, Q being the applied load and Cxx, Cxy, Cyx and Cyy non-dimensional
stiffnesses (functions of v). In the case of cylindrical bearings, for example, these
stiffnesses assume the trend shown in Fig. 5.27.

The constants Rxx, Rxy, Ryx and Ryy in (5.92) represent the partial derivatives of
Fx and of Fy with respect to the components of velocity: the same quantities can be
expressed in non-dimensional form as:
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Rxx ¼ � @Fx

@ _xc

� �
xc0;yco

¼ Q
Xd

exx

Rxy ¼ � @Fx

@ _yc

� �
xc0;yco

¼ Q
Xd

exy

Ryx ¼ � @Fy

@ _xc

� �
xc0;yco

¼ Q
Xd

eyx

Ryy ¼ � @Fy

@ _yc

� �
xc0;yco

¼ Q
Xd

eyy

ð5:94Þ

where exx, exy, eyx and eyy are called coefficients of non-dimensional damping: these
coefficients, always in the case of cylindrical bearings, show the trend as a function
of v that is shown in the diagram in Fig. 5.27. The values of exy are eyx are
coincident and, for this reason, the equivalent damping matrix, due to the oil-film
[RF], is symmetrical: it is also always positive definite. With this approach, the
effect of the force field can be attributed to two equivalent matrices, respectively
elastic and viscous: the physical non-conservative nature of the field of positional
forces, will, once again, be reflected by the non-symmetry of the equivalent elastic
matrix. The numerical values of the single elements of the equivalent matrices can
be defined either experimentally or analytically, as will be described in Chap. 6,
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Fig. 5.27 Non-dimensional
stiffnesses Cij and dampings
eij for a cylindrical bearing
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Sect. 6.2.2. Once the force field has been linearised, it is possible to address the
study of the incipient instability of a lubricated journal.

We will now analyse the effect of oil-film on the dynamic behaviour of rotors,
using (Fig. 5.28) a rotor made up of a massless rigid shaft, with a disk of mass
2m (and weight 2Q) mounted on the centre line of the two supports, perfectly
balanced and with identical supports. The perturbed motion equations, in directions
X and Y, become, taking into account (5.92):

m€x� Fxdin ¼ 0

m€y� Fydin ¼ 0
ð5:95Þ

i.e.:

m€xþ Q
Xd

exx _xþ Q
Xd

exy _yþ Q
d
Cxxxþ Q

d
Cxyy ¼ 0

m€yþ Q
Xd

eyx _xþ Q
Xd

eyy _yþ Q
d
Cyxxþ Q

d
Cyyy ¼ 0

ð5:95aÞ

We will first analyse the effect of just the positional terms. While neglecting the
terms of velocity and assuming for convenience:

x0 ¼
ffiffiffi
g
d

r
ð5:96aÞ

and since Q ¼ mg, Eq. (5.95a) are reduced to:

1 0
0 1


 �
€x
€y

� 
þ x2

0
Cxx Cyx

Cxy Cyy


 �
x
y

� 
¼ 0

0

� 
ð5:96bÞ

Using the discussion already seen in Sect. 5.3.1.2, on purely positional force
fields, we can say (5.58a) and (5.58b) that flutter instability will arise in the event
that the following occur:

Q

X

Y
2m

Fig. 5.28 Model of a stiff
rotor on bearings with
hydrodynamic lubrication
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CxyCyx\0; CxyCyx

		 		[ Cxx � Cyy

2

� �2

ð5:97Þ

By observing the trend of the non-dimensional stiffness coefficients (Fig. 5.27),
we can see that the term Cxy is always positive, while the term Cyx changes sign for
a value of v equals, in cylindrical bearings, vlim ¼ 0:78. For a value of non-
dimensional eccentricity v less than the limit value vlim, that is, if the journal
decreases its eccentricity ec (which happens with low loads Q or high rotational
speeds X) the extra-diagonal terms of the stiffness matrix Cxy and Cyx are of
opposite signs and the equations in (5.97) are verified. In these conditions the
journal is unstable, that is, once it is perturbed around the configuration of steady-
state equilibrium, it is subject to expanding elliptical motion (see Sect. 5.3.1.2 on
this) with pulsation x and coefficient of expansion a (Fig. 5.29). The value of
v ¼ 0:78, so the real part of the solution is zero (a ¼ 0), corresponding to the value
that separates the zone of stability from that of instability: so the non-dimensional
coefficient (a=x) if positive, provides an index of the system’s instability (Fig. 5.30)
but if negative, an index of stability.

On the other hand, with an equivalent elastic matrix of the oil-film not positive
definite we would see divergence type unstable conditions: in the case in question
this condition does not occur in any situation as the terms of stiffness are always
such that the actual matrix of stiffness of the force field is always positive definite,
that is, the position of the journal is always statically stable. We will now also
analyse the effect of the terms of velocity, while always referring to the simplified
model with two DOF in Fig. 5.28: the linearised equations, in this case, having
again assumed (5.96a), equal:

1 0
0 1


 �
€x
€y

� 
þ x2

0

X
exx eyx
exy eyy


 �
_x
_y

� 
þ x2

0
Cxx Cyx

Cxy Cyy


 �
x
y

� 
¼ 0

0

� 
ð5:98aÞ
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Fig. 5.29 Stable motion and
unstable motion
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Having used the vector z to indicate:

z ¼ x
y

� 
ð5:98bÞ

the vector that contains the independent variables that define the perturbed motion
of the journal around the position of static equilibrium, (5.98a) can be rewritten as:

M½ �€zþ RF½ �_zþ KF½ �z ¼ 0 ð5:98cÞ

having used RF½ � and KF½ � to indicate, respectively the equivalent matrices of the
oil-film:

RF½ � ¼ x2
0

X
exx eyx
exy eyy


 �
; KF½ � ¼ x2

0
Cxx Cyx

Cxy Cyy


 �
ð5:98dÞ

By again placing in (5.98a) or (5.98c) the solution:

z ¼ Zekt ¼ X
Y

� 
ekt ð5:98eÞ

we arrive at the fourth degree secular equation in l (Sect. 2.3.2), which when solved
gives the 4 roots ki ¼ ai � ixi. Due to the presence of terms of velocity, the
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Fig. 5.30 Stability of a
cylindrical bearing with just the
positional terms: trend of the
ratio a=x as a function of non-
dimensional eccentricity v
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stability of the system will not depend solely on the equivalent elastic matrix [KF]
of the force field which, as seen previously, is a function of v, but also on the
equivalent damping matrix [RF] due to the actual force field. This matrix is not only
a function of v, via the coefficients eij, but also of the angular speed X of the rotor.
The terms of velocity are stabilising as [RF] is symmetrical and positive definite.
More specifically [43, 44], two of these solutions ki are real and negative or
complex conjugates with a strongly negative real part (corresponding to a stable
solution). The other two values of ki are complex conjugates with a real part that
can be positive or negative: we can use a to define the real part and x for the
imaginary part of these solutions. Figures 5.31a and 5.31b show, in relation to the

pair of unstable solutions only, the trend of ratio a=x and of ratio X=x as a function
of the non-dimensional eccentricity v, again for cylindrical bearing and stiff shaft.

v\vlim
X[ 2x

ð5:98fÞ

Since instability is dynamic or caused by flutter, we have expanding oscillatory
motion in the plane x–y with expanding elliptical trajectory that has a frequency
equal to the natural pulsation x of the system. Lastly, we should remember that the
linearised solution applies for small oscillations around the position of equilibrium.
As the amplitude of the oscillations increases, then the non-linear effects become
significant, causing the establishment of limit cycles with oscillation amplitudes that
reach maximum values close to the boundary conditions of contact between journal
and bearing.

Fig. 5.31 Stability of a cylindrical bearing with velocity and positional terms: a trend of the ratio
a=x as a function of non-dimensional eccentricity v; b trend of the ratio X=x as a function of non-
dimensional eccentricity ec
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5.4 Multi-Degree-of-Freedom Vibrating Systems Perturbed
Around the Position of Equilibrium

The reality that surrounds us is always made up of continuous systems, that is,
systems with 1 degree-of-freedom: often, however, we can reduce them to discrete
models with 1, 2 or n-degree-of-freedom depending on the schematization adopted
and the level of refinement required in the results. Usually, the schematization used
is the simplest possible, but is such that it can correctly reproduce the character-
istics, at least qualitative, of the phenomenon being analysed. In problems relating
to systems subject to non-conservative force fields, for a qualitative analysis of the
phenomena we usually reduce to simple models with one or two-degree-of-free-
dom, depending on the problem being analysed (see previous sections). If we wish
to reproduce all the characteristics of the phenomenon in question as faithfully as
possible, including in quantitative terms, we need to resort to more sophisticated
models with n or 1 degree-of-freedom. Basically, there are two approaches that
can be used for this purpose:

• the modal approach, Chap. 3, Sect. 3.8;
• the finite elements method, Chap. 4.

The difference in using the first or second approach lies purely in the way the
equations are obtained, but leads, in any case, to a discrete system with n degree-of-
freedom. In this section we will illustrate the methods used to analyse a generic
mechanical system with n degree-of-freedom surrounded by a force field that is a
function of the position, velocity and acceleration of the actual system, with a
discussion which is clearly a logical extension of that already seen for two-degree-
of-freedom systems in Sect. 5.3. In Sect. 5.4.2 we will show how the discussion
applies to a specific example, concerning an aerofoil hit by a confined flow and
analysed using both the methods mentioned.

5.4.1 The General Method for Analysing a n-Degree-of-
Freedom System Subject to Non-conservative Forces

The equations of motion of a generic vibrating n-degree-of-freedom system, written
in matrix form, are:

Ms½ �€xþ Rs½ � _xþ Ks½ �x ¼ F €x; _x; xð Þ ð5:99Þ

Following what has already been done for systems with one and two degree-of-
freedom, first we must find the position of static equilibrium (we should remember
that as the equations are non-linear, the positions of equilibrium may be more than
one). For this purpose, we must solve a system of non-linear equations of the form:
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Ks½ �x0 ¼ F 0; 0; x0ð Þ ð5:100Þ

Which can be solved, for example, using the Newton-Raphson method, for
systems of equations [2, 5, 8]. Having obtained a position of equilibrium xo, if one
exists, it is possible to linearise the system’s equations of motion around the
position of static equilibrium found, developing the non-linear forces F €x; _x; xð Þ in a
Taylor series up to the first order:

F x
::
; _x; x

� � ¼ F 0; 0; x0ð Þ þ @F
@x


 �
0
x� x0ð Þ þ @F

@ _x


 �
0
_xþ @F

@x
::


 �
0

x
:: þ . . . ð5:101Þ

The derivatives of the vector F with respect to vector x (with the sign changed)
formally represent the matrices of equivalent stiffness [KF], damping [RF] and mass
[MF], respectively, due to the force field:

KF½ � ¼ � @F
@x


 �
0
¼ �

@F1

@x1

@F1

@x2
. . .

@F1

@xn
. . . . . . . . . . . .
@Fn

@x1

@Fn

@x2
. . .

@Fn

@xn

2
6664

3
7775
o

RF½ � ¼ �

@F1

@ x
:

1

@F1

@ x
:

2

. . .
@F1

@ x
:

n
. . . . . . . . . . . .
@Fn

@ x
:

1

@Fn

@ x
:

2

. . .
@Fn

@ x
:

n

2
666664

3
777775
o

MF½ � ¼ �

@F1

@ x
::

1

@F1

@ x
::

2

. . .
@F1

@ x
::

n
. . . . . . . . . . . .
@Fn

@ x
::

1

@Fn

@ x
::

2

. . .
@Fn

@ x
::

n

2
666664

3
777775
o

ð5:101bÞ

Equation (5.99) can thus be rewritten, also taking into account (5.101), as:

Ms½ � þ MF½ �½ �€xþ Rs½ � þ RF½ �½ � _xþ Ks½ � þ KF½ �½ �x ¼ 0

MT½ �€xþ RT½ � _xþ KT½ �x ¼ 0
ð5:102Þ

having indicated, as usual, with:

x ¼ x� x0 ð5:102aÞ

the variable that describes the perturbed motion around the position of static
equilibrium. So Eq. (5.102) is the free motion equation of the system, with the
presence of the linearised force field: this equation, relating to any system with
n degree-of-freedom, can obviously also refer to:

• a continuous system discretized using the finite elements method;
• a continuous system discretized using the modal approach.

As we have already seen for systems with one or two degree-of-freedom,
Eq. (5.102) highlights how the force field can, in general, change the system’s

5.4 Multi-Degree-of-Freedom Vibrating Systems … 481



www.manaraa.com

characteristics of mass, damping and stiffness, thus changing its natural frequencies
and influencing its stability.

5.4.1.1 Stability Analysis

As we saw in both the previous examples, it is also possible to achieve linearisation
of the non-conservative forces that act on a system with n degree-of-freedom, in
order to analyse the stability of the linearised system. One method used to estimate
the stability of a system consists in analysing the free motion solution, obtained by
finding a particular integral of the homogeneous (5.102):

x tð Þ ¼ Xekt ð5:103Þ

where k can generally be complex. By replacing the solution (5.103) in (5.102), we
obtain a homogeneous linear equation in X:

k2 MT½ � þ k RT½ � þ KT½ �� �
X ¼ 0 ð5:104Þ

By annulling the determinant of the coefficient matrix, we obtain 2n values of k,
n being the number of degree-of-freedom of the system. As already stated, as the
degree-of-freedom increase, this procedure becomes less suitable, so we reduce the
search for values of k to the solution of an eigenvalue problem, a problem which
can be solved using ordinary calculation codes. For this purpose, as already seen
(Sect. 2.4.3.1), we consider an auxiliary identity alongside of the motion
Eq. (5.102):

MT½ �€xþ RT½ � _xþ KT½ �x ¼ 0

MT½ � _x ¼ MT½ � _x ð5:105Þ

And we perform the following change in variables:

z ¼ _x
x

� 
¼ y

x

� 
) _z ¼ €x

_x

� 
¼ _y

_x

� 
ð5:105aÞ

The system (5.105) can thus be rewritten as:

MT½ � _yþ RT½ �yþ KT½ �x ¼ 0

MT½ �y ¼ MT½ � _x ð5:105bÞ
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Defining matrices [B] and [C]:

B½ � ¼ MT½ � 0
0 MT½ �


 �
C½ � ¼ RT½ � KT½ �

� MT½ � 0


 �
ð5:106aÞ

(5.106b) is briefly expressed as:

B½ �_zþ C½ �z ¼ 0 ð5:106bÞ

For convenience (5.106b) can be written as:

_z ¼ A½ �z ð5:106cÞ

being:

A½ � ¼ � B½ ��1 C½ � ð5:106dÞ

By imposing for (5.106c) a solution of the form:

z tð Þ ¼ Zekt ð5:107aÞ

we reduce to the eigenvalue problem:

A½ � � k I½ �½ �Z ¼ 0 ð5:107bÞ

The values of ki ¼ ai � ixi are the eigenvalues of the matrix [A], also known as
the state transition matrix transition matrix. Examination of the real part of these
eigenvalues ki makes it possible to establish whether the system is asymptotically
stable or not: a positive value of the real part indicates instability, a negative value
indicates stability. The equivalent matrices of the force field [MF], [RF] and [KF]
are, in general, functions of a parameter p that is characteristic of the phenomenon
being analysed: for example, in the event that we wish to analyse the behaviour of a
system placed in a confined flow, this parameter is the velocity U of the actual flow.
For this reason, bearing in mind (5.102), the overall matrices [MT], [RT] and [KT] of
the system surrounded by the force field are functions of this parameter:

MT½ � ¼ MT pð Þ½ �; RT½ � ¼ RT pð Þ½ �; KT½ � ¼ KT pð Þ½ � ð5:108Þ

The roots k of the system analysed (5.104) are, in turn, functions of the
parameter p:

k2 MT pð Þ½ � þ k RT pð Þ½ � þ KT pð Þ½ �� �
X ¼ 0 ) k ¼ k pð Þ ð5:108aÞ

5.4 Multi-Degree-of-Freedom Vibrating Systems … 483



www.manaraa.com

We define the value above which a generic eigenvalue k ¼ k pð Þ has a positive
real part as the critical value of parameter pcrit (in the case of the aerofoil critical
velocity Ucrit), i.e. where p ¼ p[ pcrit there is at least one eigenvalue kk:

kk ¼ kk pð Þ ¼ ak pð Þ þ ixk pð Þ con ak pð Þ[ 0 ð5:108bÞ

Alongside calculation of the eigenvalues of the linearised system, which can
sometimes present problems of a numerical nature, we can use the forced method
which offers the advantage of greater numerical stability [43].

5.4.2 An Example: An Aerofoil Hit by a Confined Flow
(n-Degree-of-Freedom System)

We will now analyse the fluid-elastic vibrations of the wing on an aircraft which
moves in a fluid in constant pressure (with the absence of turbulence): for sim-
plicity’s sake, we will assume, as shown in Fig. 5.32, that the wing has one end
wedged into the ground, although in reality it would actually be connected to the
fuselage. We should actually analyse the global wing + fuselage system, but the
discussion would become unnecessarily complicated for the educational require-
ments that we seek to satisfy. In reality, the wing moves through the air at a certain
velocity U: in general, the issue is dealt with while assuming that the wing is fixed
and the fluid has equal velocity (in magnitude and direction) but in the opposite
direction. This problem is similar, for example, to that of fluid-elastic vibrations in
the decks of suspension bridges or cable-stayed bridges, to the vibrations of blades
in turbo-alternators hit by fluid, to the vibrations caused in helicopter rotor blades
etc.

Fig. 5.32 The wing hit by a confined flow
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5.4.2.1 Model with Finite Elements

First of all we will examine a case where the structure is schematised with finite
elements (Fig. 5.33) by adopting beam-type finite elements (Sect. 4.5). This
schematisation applies as long as the wing is sufficiently extended in the longitu-
dinal direction and so the various cross sections of the wing can be considered rigid:
in this case it is possible to schematise the wing with finite beam-type elements, for
which just the flexural and torsional characteristics are defined.12 As always, the
number of finite elements adopted to reproduce the dynamic behaviour of the wing,
in addition to being such as to reproduce the variations of section that can be
encountered along the longitudinal axis of the actual wing, must be adjusted to the
range of frequencies that we intend to analyse.

We use x to define the vector that contains the degree-of-freedom relative to the
nodes of the model with finite elements (Fig. 5.33) and, more specifically, the
degree-of-freedom that are actually free (Chap. 4, Sect. 4.5) x ¼ xL:

x ¼

x2
x3
. . .
xi
. . .
xn

8>>>>>><
>>>>>>:

9>>>>>>=
>>>>>>;

ð5:109Þ

xi being the vector (Fig. 5.34) that contains the degree-of-freedom of the generic ith
node:

yz

i

n − 1
n

1
2

x

n − 1

Fig. 5.33 The wing schematised with beam-type finite elements

12If the wing were an assembled structure, and so difficult to define from a structural point of view,
a more sophisticated schematisation of the actual structure would be necessary, introducing, for
example, other finite elements such as plates (Sect. 4.6). Often, experimental testing is necessary
on a prototype to better define the elasto-inertial of the structure (for more information see Chap. 8
on Techniques of identification.
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xi ¼

xi
yi
zi
hxi
hyi
hzi

8>>>>>><
>>>>>>:

9>>>>>>=
>>>>>>;

ð5:110Þ

The equations that govern the motion of the structure, with the presence of
aerodynamic actions are, therefore:

Ms½ �€xþ Rs½ � _xþ Ks½ �x ¼ Q
x
x; _xð Þ ð5:111Þ

where the structural matrices [Ms]and [Ks] are the matrices relating solely to the
degree-of-freedom that are actually free:

Ms½ � ¼ MLL½ �; Ks½ � ¼ KLL½ � ð5:111aÞ

Defined with the known assembly and partition procedures (for more informa-
tion see Chap. 4, Sect. 4.5) starting from the matrices of mass [Mj] and stiffness [Kj]
of the single finite elements (Fig. 5.35). In (5.111) the damping matrix [Rs] is
obtained as a linear combination of the global matrices [Ms] and [Ks]:

Rs½ � ¼ a Ms½ � þ b Ks½ � ð5:111bÞ

a and b being two coefficients that are appropriately defined to reproduce the
structural damping of the system in the range of frequencies concerned. Now we
can write the expression of the generalised aerodynamic forces acting on the
structure: for this purpose, we consider a very small generic infinitesimal elemental
area of length dn belonging to the jth finite element (Fig. 5.36).

Xsl

Zsl

Xdl

Ysl

Ydl

θy sl

θz sl

θy dl

θz dl θx dl

θx sl

X_j

y

X_i

z

3

n − 1
n

1
2

x

n − 1

Fig. 5.34 Degree-of-freedom xi associated with the generic node and the generic finite element xj
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The presence of the incident fluid, with velocity U assumed constant in space
and in time, generates aerodynamic forces13: these forces per unit of length can be
expressed, if projected in a vertical and transversal direction and taking into account
the nomenclature adopted in Sect. 5.2.1 (where there is the full discussion of the
quasi-static theory used) as:

Fw ¼ Fp cosw� Fr sinw
� �

Fv ¼ Fp sinwþ Fr cosw
� �

M ¼ aCV2
r Cm að Þ

ð5:112aÞ

being:

[Kj ] =

[KLL]

[Kj ]

[KLv ]

[Kvv]
[KvL]

Fig. 5.35 Stiffness matrix assembly Ks½ �

Fig. 5.36 Calculating the generalised aerodynamic forces

13In this discussion we will neglect the effect of turbulent wind which would add to the velocity of
the aircraft, giving rise to velocity U that is no longer constant, but variable over time in magnitude
and direction.
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• Fp the lift force (5.66):

Fp ¼ aV2
r Cp að Þ ð5:112bÞ

• Fr the drag force:

Fr ¼ aV2
r Cr að Þ ð5:112cÞ

• a the constant:

a ¼ 1
2
qS ð5:112dÞ

• S is the reference surface per unit length of the wing;
• a the angle of incidence of the flow on the profile (Fig. 5.36).

These expressions are similar to those obtained for the aerofoil with 2 DOF
(Sect. 5.3.2), having added the resultant Fv of the aerodynamic forces, per unit of
length, according to the horizontal direction (Fig. 5.32)14:

Fw ¼ aV2
r Cp að Þ cosw� aV2

r Cr að Þ sinw� �
Fv ¼ aV2

r Cp að Þ sinwþ aV2
r Cr að Þcosw� �

M ¼ aCV2
r Cm að Þ

ð5:113Þ

In this case, the angles a and w (5.77a)–(5.77c) and the relative velocity Vr are
functions of the current abscissa n (varying the motion of the different sections with
n):

a ¼ a nð Þ ¼ hx nð Þ þ w nð Þ ð5:113aÞ

w ¼ w nð Þ ¼ arctg
_w nð Þ
U � _v

� b1 _hx nð Þ
U � _v

 !
ð5:113bÞ

V2
r ¼ V2

r nð Þ ¼ b1 _hx nð Þ � _w nð Þ
� �2

þ U � _vð Þ2 ð5:113cÞ

where w, v are hx represent, respectively, the vertical and lateral displacement and
torsional rotation of the generic infinitesimal element placed at distance n from the
far-left of the generic jth finite element (Fig. 5.36).

14In this section, we use, for ease of discussion, the correct quasi-static theory which only applies
for very high reduced velocities Vr: we refer the reader to [14, 20, 21, 24, 25] for more
sophisticated analysis.
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Once the position of static equilibrium xo has been defined using (5.100), as we
saw in Sect. 5.3.2, it is possible to linearise the expressions of the aerodynamic
forces, per unit of length, around this position. Assuming:

V2
r ¼ U2; cosw ¼ 1; sinw ¼ w

a nð Þ ¼ hx nð Þ þ w nð Þ; w nð Þ ¼ _w nð Þ
U

� b1 _hx nð Þ
U

ð5:114aÞ

and defining with:

Cr0 ¼ Cr að Þð Þa¼a0
; Cp0 ¼ Cp að Þ� �

a¼a0
; Cm0 ¼ Cm að Þð Þa¼a0

Kr0 ¼ @Cr að Þ
@a

� �
a¼a0

; Kp0 ¼ @Cp að Þ
@a

� �
a¼a0

; Km0 ¼ @Cm að Þ
@a

� �
a¼a0

ð5:114bÞ

the aerodynamic forces linearised on the generic section Eq. (5.113) can be
rewritten as:

Fw ¼ aU2Kp0a� aU2Cr0w� aU2Kr0aw

Fv ¼ aU2Cp0wþ aU2Kp0awþ aU2Kr0a

M ¼ aCU2Km0a

ð5:114cÞ

having used a and w to indicate the perturbed motion around the position of static
equilibrium. By subsequently eliminating the higher order terms from (5.114c), we
obtain:

Fw ¼ aU2Kp0a� aU2Cr0w

Fv ¼ aU2Cp0wþ aU2Kr0a

M ¼ aCU2Km0a

ð5:114dÞ

Taking into account (5.114a) in (5.114d), it is possible to express the aerodynamic
forces linearised in correspondence to the generic section of the wing as a function of
the displacements and the velocities that it is subject to. Having used xn to indicate the
vector containing the lateral v nð Þ and vertical w nð Þ displacement coordinates and
the rotation hx nð Þ of the generic section of the wing (Fig. 5.36), which represent the
perturbed motion around the position of static equilibrium (in the case in question,
Fig. 5.9), this position is defined by vo nð Þ ¼ wo nð Þ ¼ hxo nð Þ ¼ 0:
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xn nð Þ ¼
w nð Þ � w0 nð Þ
v nð Þ � v0 nð Þ
hx nð Þ � hx0 nð Þ

8<
:

9=
; ¼

w nð Þ
v nð Þ
hx nð Þ

8<
:

9=
; ¼

w nð Þ
v nð Þ
hx nð Þ

8<
:

9=
; ð5:115aÞ

The expression of the aerodynamic forces acting on the generic section of the
wing Fn per unit of length, cleansed of the constant terms and linearised (5.114d),
can be written as:

Fw ¼ aU2Kp0 hx þ _w
U
� b1 _hx

U

 !
� aU2Cr0

_w
U
� b1 _hx

U

 !

Fv ¼ aU2Cp0
_w
U
� b1 _hx

U

 !
þ aU2Kr0 hx þ _w

U
� b1 _hx

U

 !

M ¼ aCU2Km0 hx þ _w
U
� b1 _hx

U

 !
ð5:115bÞ

and, in matrix form:

Fn ¼
Fw

Fv

M

8<
:

9=
; ¼ � KAn½ �xn � RAn½ � _xn ð5:115cÞ

where the matrices KAn½ � and RAn½ � assume the following expressions:

RAn½ � ¼ aU

�Kp0 þ Cr0
� �

0 Kp0 � Cr0
� �

b1
�Cp0 � Kr0
� �

0 Cp0b1 þ Kr0b1
�CKm0 0 �CKm0b1

2
64

3
75

KAn½ � ¼ aU2

0 0 �Kp0

0 0 Kr0

0 0 �CKm0

2
64

3
75

ð5:115dÞ

In (5.115d) we should remember:

• Cr0, Cp0 and Cm0 (5.114b) are, respectively, the coefficients of drag, lift and
torque of the profile calculated in the position of static equilibrium, i.e. for
a ¼ ao;
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• Kr0, Kp0 and Km0 (5.114b) are the respective derivatives with respect to the angle
of attack calculated, again, around the position of static equilibrium;

• b1 is the reference distance for calculating the relative velocity of the flow with
respect to the profile;

• C is the quantity of reference of the profile (the chord in the case of the aerofoil).

As we know, the generalised forces must be estimated by expressing the virtual
work performed by the real forces Fn as a function of the independent variables, in
this case the displacements xi of the nodes of the finite element model. We can then
calculate the virtual work d�Ln of the aerodynamic forces acting on a generic
infinitesimal element of a beam

d�Ln ¼ Fndn
� �T

d�xn ¼ � xTn KAn½ �Tdnþ _xTn RAn½ �Tdn
n o

d�xn ð5:116aÞ

The work relative to the generic section of the wing must be then integrated
along the length lj of the jth finite element:

d�Lj ¼
Zlj
0

Fndn
� �T

d�xn ¼
Zlj
0

�xTn KAn½ �Tdn� _xTn RAn½ �Tdn
n o8<

:
9=
;d�xn ð5:116bÞ

This virtual work d�Lj must be estimated, subsequently, as a function of the
system’s free coordinates, i.e. of the nodal displacements of the model x. The
quantities contained in the vector xn are linked to the nodal coordinates relating to
the generic jth finite element xj, by shape functions, previously defined in the
chapter regarding the finite element method (Chap. 4, Sect. 4.3):

xn ¼
w nð Þ
v nð Þ
hx nð Þ

8<
:

9=
; ¼

f T
wj

nð Þ
f T
vj
nð Þ

f T
hxj

nð Þ

8>><
>>:

9>>=
>>;xj ¼ f

j
nð Þ

h iT
x ð5:116cÞ

f
j
nð Þ

h i
being the matrix of the functions of form which, in this case, has three lines

(as many as the variables xn of the section affected by the aerodynamic forces) and
twelve columns (as many as the degree-of-freedom xj associated with the end nodes
of the generic beam element):

f
j
nð Þ

h iT
¼

f T
wj

nð Þ
f T
vj
nð Þ

f T
hxj

nð Þ

8>><
>>:

9>>=
>>; ð5:117aÞ

being:

5.4 Multi-Degree-of-Freedom Vibrating Systems … 491

http://dx.doi.org/10.1007/978-3-319-18200-1_4


www.manaraa.com

f
hxj

nð Þ ¼

0
0
0
1� n=lj
� �
0
0
0
0
0
n=lj
� �
0
0

8>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>:

9>>>>>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>>>>>;

; f
wj

nð Þ ¼

0
0

2
l3j
n3 � 3

l2j
n2 þ 1

� �
0

� 1
l2j
n3 þ 2

lj
n2 � n

� �
0
0
0

� 2
l3j
n3 þ 3

l2j
n2

� �
0

1
l2j
n3 � 1

lj
n2

� �
0

8>>>>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>>>>:

9>>>>>>>>>>>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>>>>>>>>>>>;

;

f
vj
nð Þ ¼

0
2
l3j
n3 � 3

l2j
n2 þ 1

� �
0
0
0

1
l2j
n3 � 2

lj
n2 þ n

� �
0

� 2
l3j
n3 þ 3

l2j
n2

� �
0
0
0

� 1
l2j
n3 þ 1

lj
n2

� �

8>>>>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>>>>:

9>>>>>>>>>>>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>>>>>>>>>>>;

ð5:117bÞ

We will now calculate the virtual work d�Lj of the aerodynamic forces as a
function of the independent variables, by introducing the link (5.116c):

d�Lj ¼
Zlj
0

�xTj fj nð Þ� �
KAn½ �T� _xTj fj nð Þ� �

RAn½ �Tdn
n o8<

:
9=
; fj nð Þ� �T

d�xj ¼ QT
xj
d�xj

ð5:118aÞ

Q
xj
being the vector of the linearised generalised aerodynamic forces acting on the

jth finite element:
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Q
xj
¼
Zlj
0

� fj nð Þ� �
KAn½ � fj nð Þ� �T

xj � fj nð Þ� �
RAn½ � fj nð Þ� �T

_xj
n o

dn

¼
Zlj
0

fj nð Þ� �
KAn½ � fj nð Þ� �T

dn

2
64

3
75xj � Zlj

0

fj nð Þ� �
RAn½ � fj nð Þ� �T

dn

2
64

3
75 _xj

¼ � KAj
� �

xj � RAj
� �

_xj

ð5:118bÞ

In (5.118b) [KAj] and [RAj] are two equivalent matrices (of stiffness and of
damping) of the aerodynamic force field relating to the single jth finite element:

KAj
� � ¼ Zlj

0

fj nð Þ� �
KAn½ � fj nð Þ� �T

dn

2
64

3
75

RAj
� � ¼ Zlj

0

fj nð Þ� �
RAn½ � fj nð Þ� �T

dn

2
64

3
75

ð5:118cÞ

By assembling the single terms Q
xj
, we obtain the vector Q

x
of the Lagrangian

components of the aerodynamic forces, according to all the degree-of-freedom of
the structure:

Q
x
¼ � KF½ �x� RF½ � _x ð5:118dÞ

The matrices [KF] and [RF] represent the overall equivalent matrices of stiffness
and damping, obtained by assembling the single equivalent matrices of stiffness
[KAj] and damping [RAj] of the single finite elements, with a process that is very
similar to that used for structural matrices (Fig. 5.35). By bringing Q

x
to the first

member of the Eq. (5.111), we obtain the equation of motion with the linearised
forces:

Ms½ �€xþ Rs½ � þ RF Uð Þ½ �½ � _xþ Ks½ � þ KF Uð Þ½ �½ �x ¼ 0 ð5:119Þ

Thus we have reduced the problem of a continuous system, subject to a non-
conservative force field, to a discrete system with n-degree-of-freedom, linearised,
where we can apply the methods already illustrated in the previous section to study
its stability. The matrices of the linearised system are a function of the force field
and, in particular, in the case of the wing, they are a function of the velocity U of
the incident flow (5.119). By calculating the eigenvalues:
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ki ¼ ki Uð Þ ¼ ai þ ixi ¼ ai Uð Þ þ ixi Uð Þ ð5:119aÞ

as the velocity U of the flow varies, it is possible to calculate the threshold value
(critical velocity Ucrit) above which instability will start to occur:

ai Ucritð Þ[ 0 ð5:119bÞ

In practical cases this kind of approach may present problems of a numerical
nature, if the number of degree-of-freedom is high: in this case, the modal approach,
reducing analysis to just the modes affected by the phenomenon of instability, may
be advantageous compared to that of finite elements; it is, however, accompanied by
the drawback of having to choose, in advance, the vibration modes affected by
instability.

5.4.2.2 Modal Approach

Now we will deal with the same problem, concerning the wing hit by a confined
flow (Fig. 5.32), using a modal approach where the main advantages lie in the
possibility of reducing the number of degree-of-freedom and in the possibility of
inserting damping in a rigorous way (Sect. 2.8). Assuming that we will again
schematise the structure with a finite element model (Fig. 5.33), the equations of
motion of the wing, with the presence of aerodynamic actions, are, once again,
(5.111):

Ms½ �€xþ Rs½ � _xþ Ks½ �x ¼ Q
x
x; _xð Þ ð5:120Þ

If we wish to adopt a modal approach, we must define the vibration modes XðiÞ

of the structure, with the absence of damping and applied external forces, estimated
by solving the following equation with the usual techniques (Sect. 2.3 and Chap. 4,
Sect. 4.5):

Ms½ �€xþ Ks½ �x ¼ 0 ð5:121aÞ

By organising the single eigenvectors defined in this way into the modal matrix
U½ �, taking into account only the first p15 modes relating to the range of frequencies
considered:

U½ � ¼ Xð1ÞXð2Þ. . .XðiÞ. . .XðpÞ
h i

ð5:121aÞ

and performing the transformation of coordinates:

15Usually, in these problems of instability, the lowest modes are those that are involved.

494 5 Dynamical Systems Subjected to Force Fields

http://dx.doi.org/10.1007/978-3-319-18200-1_2
http://dx.doi.org/10.1007/978-3-319-18200-1_4


www.manaraa.com

x ¼ U½ �q ð5:121bÞ

it is possible to rewrite (5.120) in terms of principal coordinates:

m½ �€qþ r½ � _qþ k½ �q ¼ U½ �TQ
x
x; _xð Þ ð5:122Þ

In (5.122), [m], [r] and [k] re used to indicate the matrices, respectively, of mass,
damping and stiffness in principal coordinates (we should remember that they are
diagonal):

m½ � ¼ U½ �T Ms½ � U½ �; r½ � ¼ U½ �T Rs½ � U½ �; k½ � ¼ U½ �T Ks½ � U½ � ð5:122aÞ

The term U½ �TQ
x
x; _xð Þ of (5.122), taking into account the transformation of

coordinates (5.121b) and considering the linearised terms of the aerodynamic forces
(5.118d), becomes:

U½ �TQ
x
x; _xð Þ ¼ � U½ �T KF½ �x� U½ �T RF½ � _x

¼ � U½ �T KF½ � U½ �q� U½ �T RF½ � U½ � _q ¼ � kF½ �q� rF½ � _q
ð5:122bÞ

[kF] and [rF] being full matrices (pxp) that define, in principal coordinates, the
linearised generalised aerodynamic forces:

kF½ � ¼ kF Uð Þ½ � ¼ U½ �T KF Uð Þ½ � U½ �
rF½ � ¼ rF Uð Þ½ � ¼ U½ �T RF Uð Þ½ � U½ �

ð5:122cÞ

and having used q to indicate the vector containing the principal coordinates that
represent the perturbed motion around the position of static equilibrium. The lin-
earised equations of motion (5.122) thus become:

m½ �€qþ r½ � þ rF½ �½ � _qþ k½ � þ kF½ �½ �q ¼ 0 ð5:122dÞ

In this equation it is again possible to see how the aerodynamic forces couple the
vibration modes using the full matrices equivalent to the field [kF] and [rF]. The
modal method can be applied once the vibration modes are known. These modes
can be obtained:

• with a finite elements schematisation (the approach described above);
• using the equations of continuos systems (Chap. 3);
• from experimental testing on the structure, using techniques of modal identifi-

cation (Chap. 8).

By using the last two approaches, we have a continuous or discrete function that
defines the generic ith vibration mode UðiÞ fð Þ of the wing in question:
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UðiÞ fð Þ ¼
UðiÞ

w fð Þ
UðiÞ

v fð Þ
UðiÞ

hx
fð Þ

8><
>:

9>=
>; ð5:123aÞ

where UðiÞ
w fð Þ, UðiÞ

v fð Þ and UðiÞ
hx

fð Þ are the components of the mode analysed
according to the vertical, lateral and rotational directions. It is possible then, in this
case too, to use a modal approach, without using a finite elements schematisation
and thus arrive at an equation of motion similar to (5.122):

m½ �€qþ r½ � _qþ k½ �q ¼ Q
q

ð5:123bÞ

where Q
q
is the vector of the generalised aerodynamic forces.

The approach to define this vector Q
q
is conceptually similar to that seen pre-

viously: however, in this case the displacements xf sustained by the generic section
of the wing (Fig. 5.37) are linked to the generalised coordinates q via a matrix
U fð Þ½ � of order 3xp (p being the vibration modes considered):

xf ¼
w fð Þ
v fð Þ
hx fð Þ

8><
>:

9>=
>; ¼ Uð1Þ fð ÞUð2Þ fð Þ. . .UðiÞ fð Þ. . .UðpÞ fð Þ

h i
q

¼
Uð1Þ

w fð ÞUð2Þ
w fð Þ. . .UðiÞ

w fð Þ. . .UðpÞ
w fð Þ

Uð1Þ
v fð ÞUð2Þ

v fð Þ. . .UðiÞ
v fð Þ. . .UðpÞ

v fð Þ
Uð1Þ

hx
fð ÞUð2Þ

hx
fð Þ. . .ðiÞhx fð Þ. . .UðpÞ

hx
fð Þ

2
664

3
775q ¼ U fð Þ½ �q

ð5:123cÞ

which contain the lateral, vertical and rotational components of the p modes con-
sidered. The virtual work of the aerodynamic forces acting on the generic section of
coordinate f and on an infinitesimal portion df, taking into account (5.123a) and
(5.123), thus equals:

Fig. 5.37 Displacements xf of the generic section of the wing
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d�Lf ¼ FT
f � df � d�xf ð5:124Þ

as, similar to what we have seen previously, the aerodynamic force Ff per unit of
length is given by:

Ff ¼
Fw

Fv

M

8<
:

9=
; ¼ � KAf½ �xf � RAf½ � _xf ð5:124aÞ

The work relating to the generic section must then be integrated along the length
L of the wing:

d�L ¼
ZL
0

Ffdf
� �T

d�xf ¼
ZL
0

�xTf KAf½ �T� _xTf RAf½ �T
n o

dfd�xf ð5:124bÞ

Taking into account the transformation of coordinates (5.123a), (5.124b) can be
rewritten as:

d�L ¼
ZL
0

�qT / fð Þ½ �T KAf½ �T� _qT / fð Þ½ �T RAf½ �T
n o

df / fð Þ½ �
8<
:

9=
;d�q

¼ �qT
ZL
0

/ fð Þ½ �T KAf½ �T / fð Þ½ �df
2
4

3
5d�q� _qT

ZL
0

/ fð Þ½ �T RAf½ �T / fð Þ½ �df
2
4

3
5d�q

¼ QT
q
d�q

ð5:124cÞ

Q
q
being the vector of the linearised generalised aero-elastic forces, expressed in

principal coordinates:

Q
q
¼ �

ZL
0

/ fð Þ½ �T KAf½ �T / fð Þ½ �df
2
4

3
5q� ZL

0

/ fð Þ½ �T RAf½ �T / fð Þ½ �df
2
4

3
5 _q

¼ � kF½ �q� rF½ � _q
ð5:124dÞ

In (5.124d) the matrices kF½ � and rF½ � are the equivalent aerodynamic matrices of
stiffness and damping of the force field, linearised and expressed in modal
coordinates:
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kF½ � ¼
ZL
0

/ fð Þ½ �T KAf½ �T / fð Þ½ �df
2
4

3
5

rF½ � ¼
ZL
0

/ fð Þ½ �T RAf½ �T / fð Þ½ �df
2
4

3
5

ð5:124eÞ

By bringing the linearised forcing terms to the first member of the Eq. (5.124),
we obtain:

m½ �€qþ r½ � þ rF½ �½ � _qþ k½ � þ kF½ �½ �q ¼ 0 ð5:125Þ

similar to that obtained in (5.119).

5.5 Systems Perturbed Around the Steady-State Position

We will now address the study of stability in systems, again, placed in force fields,
perturbed around a steady-state motion: in some ways this study is addressed in a
similar way to what we have already seen for systems perturbed in the position of
rest.

5.5.1 Systems with 1 d.o.f

For simplicity’s sake we will be considering a dynamic one-degree-of-freedom
system subject to forces that are generically functions of displacement and velocity,
as well as time:

m€x ¼ F x; _x; tð Þ ð5:126Þ

To study the stability of the system, first we must find, if it exists, the steady-
state solution xrðtÞ of the equation of motion (5.126)16:

m€xr ¼ F xr; _xr; tð Þ ð5:127Þ

In particular xrðtÞ may be of the form xr ¼ xro, _xr ¼ 0, i.e. a position of rest, or
_xr ¼ Vo constant (absolute steady-state), i.e. a condition of uniform motion with
constant speed, or even a periodic solution (periodic steady-state). Similarly to what

16The case of a system perturbed around the position of rest has already been considered in the
previous Sect. 5.4.
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was done for studying stability, we can now define the perturbed motion x of the
system around the steady-state solution xr as:

x ¼ x� xr; _x ¼ _x� _xr; €x ¼ €x� €xr ð5:128Þ

At this stage, if we wish to analyse the small oscillations around the steady-state
solution, we must develop the force F ¼ F xr; _xr; tð Þ in a Taylor series, around the
steady-state solution xr, by calculating the derivatives of F with respect to the
independent variables:

F � F xr; _xr; tð Þ þ @F x; _x; tð Þ
@x

� �
xr ;_xr

x� xrð Þ þ @F x; _x; tð Þ
@ _x

� �
xr ; _xr

_x� _xrð Þ ð5:129Þ

where the derivatives must be calculated in correspondence to the steady-state
solution xr. Remembering the definition given of perturbed motion (5.128) and the
development of the force (5.129), the equation of motion (5.126) is rewritten as:

m €xþ €xr
� � ¼ F xr; _xr; tð Þ þ @F x; _x; tð Þ

@x

� �
xr ;_xr

x� xrð Þ þ @F x; _x; tð Þ
@ _x

� �
xr ;_xr

_x� _xrð Þ

ð5:130Þ

Assuming:

Kx ¼ � @F x; _x; tð Þ
@x

� �
xr ; _xr

RV ¼ � @F x; _x; tð Þ
@ _x

� �
xr ; _xr

ð5:131aÞ

and taking into account the fact that xrðtÞ is the solution of the equation of motion
(5.127), we obtain, after appropriate simplification, an equation in the variable x:

m€xþ Rv _xþ Kxx ¼ 0 ð5:131bÞ

If the derivatives Kx and Rv are constants, we find ourselves with a differential
equation with constant coefficients that we can study with the methods already seen
for systems perturbed around the state of rest. If the derivatives are explicit func-
tions of time and the solution is periodic, then Kx and Rv can be periodic: in this
case the resulting equation is linear, but with periodically variable coefficients. In
the specific case where these coefficients vary harmonically, (5.131b) can be
brought back, see Sect. 1.5, to a Mathieu equation: analysis of the stability, in this
case, can be done with specific methods for the type of equation being considered,
for example the perturbation method.
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5.5.1.1 An Example: The Stability of the Torsional Motion of a Rotor

We will consider, as the first example (Fig. 5.38), a motor and a user coupled on the
same shaft with moment of inertia J: the drive torqueMm and resistant torqueMr are
known and we assume they are functions of the angular speed _h only (Fig. 5.39).
The system’s equation of motion, with rotation h assumed to be the free coordinate,
is the following:

J€h ¼ Mm
_h
� �

�Mr
_h
� �

ð5:132Þ

Firstly, we must find the steady-state solutions, which can be sought as the

intersection of the characteristic curve of the motor Mm ¼ Mm
_h
� �

with that of the

user Mr ¼ Mr
_h
� �

(Fig. 5.39). In the particular case being analysed there are two

intersections, that is, two possible steady-state solutions, respectively, for angular
speeds x1 and x2. For both the solutions, the steady-state velocity _hr ¼ xr satisfies
the equation:

Mm xrð Þ �Mr xrð Þ ¼ 0; €h ¼ 0 ð5:133aÞ

Mm Mr

J

θ

Fig. 5.38 Schematisation of
a.c. motor and user

M

Mr

ω1 ω2

Mm

θ̇

Fig. 5.39 Characteristic
curves of a.c. motor and user
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So we have a case of absolute steady-state motion at a constant speed. For the
sake of convenience we can define the values of the drive torque and the resistance
torque under steady-state conditions as:

Mm ¼ Mm xrð Þ; Mr ¼ Mr xrð Þ ð5:133bÞ

We will now analyse the perturbed motion, around the steady-state solution,
defined by the variable h, together with its derivatives:

h ¼ h� hr; _h ¼ _h� _hr; €h ¼ €h� €hr ð5:134Þ

By developing the non-linear terms of the equation of motion (5.132), around
the generic steady-state situation ( _hr ¼ x; €hr ¼ 0, with r = 1, 2), corresponding to
motion with constant angular speed up to the linear terms only of the development,
we have:

J€h ¼ Mm þ @Mm

@ _h

� �
_h¼xr

_h� _hr
� �

�Mr � @Mr

@ _h

� �
_h¼xr

_h� _hr
� �

ð5:135Þ

Taking into account the steady-state solution (5.133a) and the definition of
perturbed motion (5.134), Eq. (5.135) of the perturbed motion around the steady-
state solution can be rewritten, with suitable simplifications:

J€hþ � @Mm

@ _h

� �
_h¼xr

þ @Mr

@ _h

� �
_h¼xr

" #
_h ¼ 0 ð5:135aÞ

Using Km and Kr to define the derivatives of the engine and resistance torque
with respect to the angular speed, estimated in the steady-state position:

Km ¼ @Mm

@ _h

� �
_h¼xr

; Kr ¼ @Mr

@ _h

� �
_h¼xr

ð5:135bÞ

and assuming, as a variable, the angular speed x:

x ¼ _h ð5:135cÞ

we have:

J€hþ Kr � Km½ � _h ¼ 0 ð5:136Þ

Equation (5.136) is a linear equation with constant coefficients, of the first order
in the variable x. Replacing a solution of the form:
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x ¼ xoekt ð5:137aÞ

in the Eq. (5.136), we obtain:

Jkþ Kr � Km½ �ð Þxoekt ¼ 0 ð5:137bÞ

and, by solving the characteristic equation:

Jkþ Kr � Km½ �ð Þ ¼ 0 ð5:137cÞ

we obtain the real value of k:

k ¼ Km � Kr½ �
J

ð5:137dÞ

which corresponds to:

• an exponentially decreasing solution (corresponding to stable motion) for k < 0;
• an exponentially increasing solution (corresponding to unstable motion) for

k > 0.

In this case the stability of the system is dictated by the sign of the difference
Km − Kr, J always being positive. In particular, upon examining the characteristic
curves we can see that in correspondence to the solution _hr ¼ x2, Km being neg-
ative and Kr positive, the system is definitely stable. Physically, this corresponds to
the fact that, for example, a perturbation of the positive angular speed þDx, leads
to a reduction in the drive torque and an increase in the resistance torque: under this
condition the system has a tendency to self-adjust. Vice versa, in correspondence to
the solution _hr ¼ x1, the signs of the derivatives Kr and Km are both positive, but
with Km > Kr. Bearing in mind (5.122d), the coefficient Km − Kr is positive:
therefore, the steady-state situation is unstable. In fact, an increase in angular speed
þDx corresponds to an increase in the drive torque Cm and a lesser increase in that
of resistance Cr: the angular speed, therefore, tends to increase.

5.5.2 Systems with 2 d.o.f

We will now examine systems with two degree-of-freedom, again perturbed around
the steady-state position: more specifically, we will examine:

• the lateral vibrations and the yaw rotation of a railway wheelset, perturbed
around the configuration of straight running at constant velocity (Sect. 5.5.2.2);

• the stability of a road vehicle driving in a straight line at constant velocity
(Sect. 5.5.2.3).
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5.5.2.1 Introduction to Studying the Dynamics of a Land Vehicle

Both railway and road vehicles are important examples of mechanical systems
surrounded by a force field: in these cases the force field is mainly due to actions
that are exerted in the contact zone between wheel and runway. Analysing the
stability of a railway vehicle, either running in a straight line or through a bend,
along with the similar problem for a road vehicle, offers an important analysis of the
stability of a system perturbed around a steady-state solution. In this case, the
steady-state (or particular integral) is defined by the rectilinear motion of the vehicle
or by the motion on a curvilinear trajectory with the known law of motion, these
being the possible particular solutions of the problem. The discussion, for sim-
plicity’s sake, will be limited to the case study of perturbed motion around the
configuration assumed by the system running at a steady-state and in a straight line.
We will be considering models that have been greatly simplified yet still reproduce,
at least qualitatively, the behaviour of the real system and the problems linked to it.
Here we will only touch briefly on more complex models while referring the reader
to specialist publications for further details (see bibliography). The problems
present in a railway vehicle and in a road vehicle are basically similar, with some
obvious differences:

• in a road vehicle, the definition of its trajectory is controlled by the driver,
whereas in a railway vehicle it is defined by the track layout;

• the problems for defining the contact forces generated between tyre and road
and wheel and track are also different.

Although it is certainly not necessary to provide a description of a road vehicle
(Fig. 5.40), as it is widely recognised by everyone, it may be useful to briefly recall
the main morphological characteristics of a railway vehicle. Rolling stock, in its
standard configuration (Fig. 5.41), is made up of an carbody, two or more bogies
and their wheelsets (meaning the axis and pair of wheels):

• the wheelsets can be rigid or with independent wheels (for example, for ease of
control on bends with low radii of curvature);

Fig. 5.40 A road vehicle
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• the wheelset is connected to the bogie via the so-called vertical, transverse and
longitudinal primary suspensions (created physically with elastic elements like
helical springs and deformable connections like, for example, in the case of the
bushings between wheelset and bogie);

• the bogies may be self-steering.
• vertical, transversal and longitudinal secondary suspensions, created physically

with helical springs and torsional return bars, are positioned between carbody
and bogie;

• in the secondary stage of suspension viscous or friction dampers are also
considered.

A correct and complete analysis of the behaviour of a rail vehicle must take into
account the mutual interaction between the vehicle and the infrastructure, that is, the
connection that constrains the rail to the outside world: in fact, where rail vehicles
are concerned, we cannot ignore, if not in a first approximation, the dynamic effect
of the rail which can be schematised as a beam constrained with elastic elements to
the crossbeams which, in turn, usually rest on a ballast, to filter the forces trans-
mitted to the ground and limit noise emissions.

For road vehicles, however, the road can be considered rigid, given the rela-
tionship between the stiffness of the tyre and that of the actual runway. Unlike the
rail vehicle, the road vehicle has just one stage of suspensions between chassis and
wheel (Fig. 5.40), but the deformability of the tyre is far higher than that of the
wheel on a wheelset. In the road vehicle, assuming that the road is horizontal, the
contact normal always runs in a vertical direction (Fig. 5.42), while the contact
normal in the case of wheel-rail, given the particular morphology of the rail and the
wheel rim (Fig. 5.43a), changes as the relative wheelset-track position varies. When
the wheelset is centred, the contact is on a truncated conical area of the wheel-rim
(known as the rolling surface), with low conicity c (c ¼ 0:05� 0:1 rad); as the
relative displacement Yrel between wheelset and track increases (Fig. 5.43b) the
contact normal of the wheel whose edge approaches the track rises up to a value of

Fig. 5.41 A railway vehicle
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cmax ¼ 60o�70o, while the contact normal on the other wheel remains more or less
constant. Therefore, the particular morphology of the wheel rim and the rail
(Fig. 5.43) introduces two conditions of constraint as the contact normal component
of the relative velocity between each wheel and the corresponding rail must be zero:
these constraints reduce the degree-of-freedom of the actual wheelset.

In order to reproduce the behaviour of the real system (Figs. 5.40 and 5.41), we
must correctly schematise the vehicle and the actions of contact so as to define
suitable mathematical models. These model (Figs. 5.44 and 5.45) are made up of a

Fig. 5.42 Road vehicle: direction of the contact normals

Fig. 5.43 Railway vehicle. a Geometry of the wheel-rail contact; b direction of the contact normal
in the case of wheel-rail
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set of rigid (or deformable) bodies, interconnected with elastic and damping ele-
ments, both linear and non-linear: external forces such as aerodynamics and forces
due to wheel-pathway contact act on the vehicle. Figure 5.44 shows a possible 14
degree-of-freedom model for the road vehicle (6 for the chassis, 4 associated with
the suspension wishbones, 4 associated with the rolling of the wheels). A classic
model adopted for the rail vehicle is of the type shown in Fig. 5.45: in particular, it

Fig. 5.44 ADAMS model of a road vehicle

Fig. 5.45 Model of a railway vehicle
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is a model with 23 degree-of-freedom for studying the lateral and vertical dynamics
of the rolling stock. When making use of models like this, which often involve a
high number of degree-of-freedom, studying the dynamic behaviour of the vehicle
becomes rather complicated and requires the use of specific algorithms for writing
the equations of motion (Multi-body methods, [5, 7, 8, 56–84, 86–96, 98–109] and
appropriate numerical methods for integrating the actual equations of motion [2, 5,
56, 64, 69–71].

To define the dynamic behaviour of rail and road vehicles we need to analyse
what happens during wheel-runway contact, that is, analyse the quantities that
influence the actions exchanged in the contact zone:

• in Sect. 5.5.2.1.1 below, we will go over the basic concepts that make it possible
to define the forces exchanged between wheel and pathway and, more specifi-
cally, we will analyse the problems linked to the forces exchanged between
wheel and rail (section “The Contact Forces Between Wheel and Rail”) and
between tyre and road (section “The Contact Forces Between Tyre and Road”);

• in the sections immediately below we will use these notions to analyse the
dynamics of the wheelset (Sect. 5.5.2.2) of the road vehicle (Sect. 5.5.2.3), while
studying, in particular and mainly for didactic purposes, the stability of the
rectilinear steady-state motion.

5.5.2.1.1 The Contact Forces Between Wheel and Pathway

To introduce the main problems involved when defining the contact forces
exchanged between wheel and pathway, we must consider, for example, the motion
of a drive wheel which moves forward by rolling along a flat surface: in the
traditional approach of Applied Mechanics [1, 6] the product of the normal action
N by the coefficient of static friction fs is greater than the tangential action T, this
motion is schematised as pure rolling of the wheel (Fig. 5.46a).

With this view, the wheel is considered to be rigid and the contact between
wheel and plane is punctiform or linear. The contact point C has velocity Vc equal

T 
N 

C = P0 

M
G v 

v 
c 

v = Ω Λ (G − C) 

Ω 

Ω 
G 

(a)

(b)

Fig. 5.46 Pure rolling hypothesis
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to zero, so it becomes the centre of instantaneous rotation Po. In this case, the tie
between the forward velocity V of the wheel centre G and the angular velocity X of
rotation (Fig. 5.46b) is17:

V ¼ X
 G� Cð Þ ð5:138Þ

If this occurs, vector X is directed like the axis of the wheel while vector V is
orthogonal to the axis of the wheel and to the vector (C − G). In reality, however,
the bodies are deformable and contact is no longer a point, but extends to an area
with a roughly elliptical shape: Fig. 5.47 shows this situation in the case of a
railway wheel. In this situation there is no longer pure rolling and (5.138) no longer
holds true, as:

V 6¼ X
 G� Cð Þ ð5:139Þ

The generic infinitesimal element on the external circumference of the wheel is
subject to variations in peripheral velocity, due to the deformations that the actual
wheel undergoes. Away from the contact patch, the peripheral velocity (i.e. the
velocity relating to a system of reference, translating with the wheel centre) is
constant, and the element appears to be undeformed (if we exclude the centrifugal
field).

In the contact patch normal rx and shear s stresses arise, associated with the state
of deformation of the actual element [56, 58, 59, 84, 98–100], see Fig. 5.47. In the
front area of the patch the normal and shear elastic stresses (associated with
deformations) satisfy the condition of adhesion:

s� fsrx ð5:140Þ

Fig. 5.47 Railway wheel: a contact patch, b distribution of normal rx and shear s stresses

17We should remember that in this discussion geometric vectors are highlighted in bold.
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where fs is the coefficient of static friction. In the rear area of the patch, small local
slipping motions take place, without macroscopic slipping of the whole wheel
occurring. Basically, we have a similar mechanism to that of a belt on a pulley [1],
where one area of the belt’s winding arc is the site of micro-slip, while in the other
area there is adhesion. Upon increase of the torque (braking or drive) acting on the
wheel, or rather, the tangential reaction T required by wheel-terrain contact, the area
affected by micro-slip extends, until it covers the entire area of contact: above this
limit real macroscopic slipping actually begins. The trend of the overall reaction
transmitted from the ground to the wheel (i.e. the integral of tangential actions s
extended to the entire contact patch) is normally defined as the product of the
normal action N for a suitable friction coefficient. This reaction tends to a maximum
value Tmax ¼ lmaxN, to then decrease more or less rapidly tending asymptotically to
the value corresponding to total macroscopic slipping: in these conditions the entire
area is the site of slipping.

As mentioned, due to the deformability of the wheel and the rail and due to the
presence of micro-slip, the velocity V of the wheel centre is different to the vector
product (5.139), as it would be in the case of pure rolling. In addition to the braking
or drive torque, which give rise to longitudinal actions, in general the wheel is also
affected by transversal forces (consider, for example, the centrifugal force in a
vehicle going around a bend). In this way, the micro-slip zone is generally affected
both by transversal actions and longitudinal actions. The centre of the wheel, in the
presence of transversal forces, has a component of velocity in a direction that is
perpendicular to the plane of the actual wheel (Fig. 5.48). To define the contact
forces we need to define the distribution of the normal rx and shear s forces in the
contact zone, correlating it to the kinematic quantities in play, i.e. to the velocity of
the wheel centre and to its angular velocity X: solving this problem is very com-
plex. On the other hand, it is possible to demonstrate both experimentally and
analytically [99, 100, 102] that the contact forces can be defined as a function of a
single kinematic parameter etot defined as creepage in the railway sector and slip in

VLVL

VT
V

Ω

Fig. 5.48 Components of the
velocity V of the wheel centre
in a generic case
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the automotive sector. So we introduce the vector quantity of creepage etot, defined
as the ratio of the absolute velocity Vc of the contact point kinematic entity (cor-
responding to the centre of the contact patch), calculated as if that point where
rigidly constrained to the wheel, i.e.:

Vc ¼ Vþ X
 C � Gð Þ ¼ V� X
 G� Cð Þ ð5:141aÞ

and the module of the wheel centre velocity |V|:

etot ¼ V� X
 G� Cð Þ
Vj j ð5:141bÞ

The difference between the effective velocity of the wheel centre V and the
quantity X
 G� Cð Þ is a measure of how the wheel micro-slips: this difference
also equals the absolute velocity of the contact patch’s centre, considered to be
rigidly constrained to the wheel. In other words, if we consider a translating ref-
erence system with origin in the wheel centre, V represents a “drag” velocity (i.e.
velocity of non-rotating wheel) and X
 G� Cð Þ is the relative velocity of point
C. The velocity Vc of the contact patch’s centre represents a kinematic entity and
not the actual velocity of the point of the wheel that occupies the position at the
centre of the contact patch. In fact, the actual velocity of this point should be
calculated while also taking into account the terms of relative velocity with respect
to a reference system that is integral with the hub, due to the deformability of the
wheel in the contact patch. To define the forces that are established in the contact
patch, without introducing the deformability of bodies in contact, we use total
creepage etot, defined by (5.141b): with this approach, the contact forces, as we will
illustrate below, come to depend on the velocity Vc of the contact point kinematic
entity. The geometric creepage vector etot is usually broken down into two com-
ponents (Fig. 5.49) eL and eT , respectively, in the longitudinal (defined by unit

VT VL

VcT =  VT VcL = VL − R

Ω

Ω

Fig. 5.49 Railway wheel:
velocity Vc of the contact
point kinematic entity broken
down into longitudinal and
transversal components

510 5 Dynamical Systems Subjected to Force Fields



www.manaraa.com

vector l) and the transversal direction (defined by unit vector t), with respect to the
axis of the wheel:

etot ¼ Vc

Vj j ¼ leL þ teT ð5:142aÞ

being, respectively:

eL ¼ VL � XR
Vj j ; eT ¼ VT

Vj j ð5:142bÞ

where VL and VT represent the components of the velocity V of the wheel centre, in
longitudinal l and transversal t direction (Fig. 5.49), respectively.

The contact force is made to depend on the total creepage (5.142a) and, more
precisely, the longitudinal FL and transversal FT components of the contact force
are non-linear functions of the longitudinal eL and transversal eT components of
creepage (5.142b) and of the normal component N of the contact force in the form
[94, 97, 100, 102, 103]:

FL ¼ �lL eL; eT ;Nð ÞN
FT ¼ �lT eT ; eL;Nð ÞN ð5:142cÞ

where lL and lT are said to be coefficients of friction. As we can see from (5.142b),
creepages eL and eT are functions of the components of the wheel centre velocity VL

and VT and of the wheel’s rotational speed X: these quantities are functions of the
independent variables that make it possible to define the motion of the actual wheel:
so for these reasons, (5.142c) can be considered as force field that are functions, in
this case, of the derivatives with respect to time of the independent variables that
define the motion of bodies in contact. This approach to defining the contact forces
is used both in the case of wheel-rail and in the case of tyre-road with different
formulations and nomenclatures: for example, as already mentioned in the intro-
duction to the section, in the case of wheel-rail, we must also bear in mind the
particular morphology assumed by the wheel flange and the rail (Fig. 5.43a). For
these reasons, we will now address a discussion that differs for the two cases:

• wheel-rail (section “The Contact Forces Between Wheel and Rail”);
• tyre-road (section “The Contact Forces Between Tyre and Road”).

The Contact Forces Between Wheel and Rail

As seen in the previous section, the contact force is made to depend on the
creepage, more precisely the longitudinal and transversal components, FL and FT, of
the contact force are non-linear functions of the longitudinal eL and transversal eT
components of the total creepage~etot and of the normal component N of the contact
force in the form of (5.142c): the same equation highlights how the friction
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coefficient l, and thus the corresponding contact force component in one direction,
also depends on the creepage in the other direction. Figure 5.50 shows the trend of
the longitudinal friction coefficient lL as a function of the longitudinal creepage eL
upon variation of the lateral creepage coefficient eT . Upon variation of eL and when
eT ¼ 0, lL increases in a non-linear form until, for values of eL higher than 0.005, it
reaches a maximum value lLmax. In this situation the constraint is saturated, that is,
it cannot provide greater longitudinal forces. Taking into account the simultaneous
presence of transversal creepage eT , the maximum value that can be reached by the
friction coefficient lL decreases. This figure, and those following it (relative to the
railway wheel) do not show the subsequent reduction in the value of l which, as
already mentioned, tends asymptotically to the value of the macro-slipping friction
coefficient. Function lL ¼ lL eL; eTð Þ (and likewise lT ¼ lT eT ; eLð Þ is odd with
respect to eL and even with respect to eT : the subsequent figures will only show the
quarter corresponding to positive eL and eT . Figure 5.51 uses a three-dimensional
representation to show how, as transversal creepage eL increases (we have the same
graphs for coefficient lT , as parameter eL varies) friction coefficient decreases and
so force FL, which develops from contact in a longitudinal direction, is reduced. At
worst, if the creepage in the transversal direction is so high that it involves the entire
contact area with transversal creepage eT , force FL is cancelled out: in this case all
the adhesion has already been fully exploited in the perpendicular direction and the
creepage zone affects the entire contact patch (the constraint has reached saturation
point). Figure 5.52 shows the trend of the longitudinal friction coefficient lL as a
function of longitudinal creepage eL upon variation of the normal load N. The
normal load, when the dimensions of the contact patch change, also affects the
mechanism that defines the links between the various quantities in play. Defining
the various quantities shown in the curves (Figs. 5.50, 5.51 and 5.52) can be done:

• experimentally [102, 107];
• using suitable mathematical models, developed mainly by two researchers:

Kalker [99, 100] and Johnson [98]
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0.35 

εT

μL

εL

Fig. 5.50 Railway wheel:
friction coefficient lL as a
function of creepage eL, upon
variation of creepage eT
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If we wish to simulate the generic motion of the vehicle, we must use the
complete expressions of the contact forces (5.142c) and introduce them into the
mathematical model of the vehicle: the resulting equations are, as a consequence,
non-linear and so must be numerically integrated using split-step methods. At the
generic instant of time, the velocities of the individual bodies and in particular of
the wheelset are known, either from the initial conditions or from the previous
integration step: it is possible, for this reason, to use (5.142b) to estimate the
creepages eL and eT and so, using (5.142c), the contact forces FL and FT needed to
proceed in integrating them [56–60, 62–64, 80–84, 87–91, 93, 95, 96, 108].

To analyse the stability of the vehicle affected by the actions of contact described
above, it is sufficient to linearise (5.142b) around the steady-state position. When
analysing the perturbed motion around the configuration defined by running in a
straight line at constant speed, if we assume that the wheel is being pulled and that
the longitudinal forces associated with the mechanism of rolling friction can be
neglected, and we take into account (5.142c) and the definition of creepage (5.142b)
we will have:

εL

εT

Fig. 5.51 Railway wheel:
friction coefficient lL as a
function of creepage eL and of
creepage eT
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Fig. 5.52 Railway wheel:
friction coefficient lL as a
function of creepage eL, upon
variation of the normal load N
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eTo ¼ 0

eLo ¼ 0
ð5:143aÞ

With load N being constant, and by using the subscript “o” to define the quantities
estimated in correspondence to the steady-state position defined by (5.143a), the
contact forces can be linearised around the actual steady-state position using:

FL ¼ FLo � @lL
@eL

� �
o
N eL � eL0ð Þ � @lL

@eT

� �
o
N eT � eT0ð Þ

FT ¼ FTo � @lT
@eL

� �
o
N eL � eL0ð Þ � @lT

@eT

� �
o
N eT � eT0ð Þ

ð5:143bÞ

By analysing the curves shown in Figs. 5.50 and 5.51, and the mixed derivatives
being zero, (5.143b) are reduced to:

FL ¼ FLo � @lL
@eL

� �
o
NeL ¼ �foLeL ) foL ¼ @lL

@eL

� �
o

FT ¼ FTo � @lT
@eT

� �
o
NeT ¼ �foTeT ) foT ¼ @lT

@eT

� �
o

ð5:143cÞ

where it is possible to consider as equal the derivatives foL and foT of the friction
coefficients calculated at the origin, as FLo ¼ FTo ¼ 0:

foL ¼ @lL
@eL

� �
o
¼ foT ¼ @lT

@eT

� �
o
¼ fo ð5:143dÞ

i.e.:

FL ¼ �foeL
FT ¼ �foeT

ð5:144Þ

These definitions will be applied below in studying the stability of a railway
wheelset running in a straight line and perturbed around the steady-state situation at
constant V. We should also remember that, as mentioned previously, in the lateral
dynamics of the railway vehicle, in addition to tangential actions, normal actions
also appear, modifying the direction upon variation of angle c formed by the
tangent to the contact plane, defined by the coupled profiles of wheel and rail
(Fig. 5.43) [56–60, 62–64, 66, 80–84, 93, 95, 96, 108].

The Contact Forces Between Tyre and Road

In order to define the behaviour of a generic road vehicle we must analyse what
happens during contact between tyre and terrain, that is, analyse the quantities that
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affect the actions exchanged in the contact patch. The tyre is a highly deformable
element: for this reason contact develops in an area that is much larger than that of
the railway vehicle: in the case of the railway vehicle, the size of the contact patch is
about ten millimetres, whereas in the case of the tyre it is about ten centimetres.

We will analyse Fig. 5.53 which shows the case of a drive wheel, with no
transversal forces (similar considerations can be conducted with a braking wheel):
the figure shows the trend, in the contact patch, of the normal stresses rx and shear
stresses sL. The peripheral velocity, meaning the velocity of a small element of
tread seen by an observer integral to the centre of the wheel, changes upon variation
of its position in the contact patch:

• there is a first zone of complete adhesion where the peripheral velocity is equal
and opposite to the velocity of the wheel centre;

• there is a second zone where there is local micro-slipping (similar to what we
saw for the railway wheel), where the peripheral velocity (Fig. 5.53) is greater
(in the case of the drive wheel) or lower (case of the trailer wheel) than the
forward speed.

Similarly to what we saw for the railway wheel, to correctly reproduce the
tangential forces exchanged between wheel and terrain we must take into account
the deformability of the tyre and this involves the need to write partial derivative
equations as is the case for continuous systems: as we know, these equations are
complicated, difficult to integrate analytically and so would involve particularly
laborious calculations. On the other hand, one model usually adopted to describe
the dynamic behaviour of the vehicle is based on multibody methods [5, 7, 69–72],

Fig. 5.53 The tyre: contact patch and induced stresses (drive wheel)
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i.e. on schematisations of the actual vehicle with discrete systems made up of rigid
bodies. In order to introduce into these models (with rigid bodies) the effect
introduced by the contact forces (due to the deformability of the tyre) we use, as for
the railway wheel, the concept of contact point kinematic entity, meaning the
central point of the contact patch, considered, however, as belonging to a wheel that
is considered rigid. We should remember that, as this kinematic entity is pure
mathematical abstraction, it does not correspond to a generic infinitesimal element
of the tyre that lies in the patch (the velocity of which depends, amongst other
things, on the extension of the micro-slipping zone).

As already mentioned, it is possible to demonstrate, both experimentally and
analytically, how the velocity of this kinematic entity is an important quantity in
defining the forces exchanged between wheel and terrain. Firstly, we will analyse
the case of just longitudinal forces applied to the vehicle: in this situation, the
longitudinal contact force FL:

• depends on the characteristics of the tyre and the road;
• depends on the normal load N;
• is a function of longitudinal slip eL (in automotive jargon), corresponding to the

longitudinal creepage already defined in the case of the railway wheel.

So, as we saw in the previous section, eL is defined as the relationship between
the longitudinal component of the absolute velocity of the kinematic entity contact
point VC and the module of the forward speed Vj j of the wheel centre:

eL ¼ VL � XR
Vj j ð5:145Þ

So, if a longitudinal force FL, resulting from driving or braking torque, is applied
to the tyre then longitudinal slip eL occurs. The link between the longitudinal force
FL, in non-dimensional terms, and eL can be expressed by:

FL

N
¼ �lL eL;N; cp; cs

� � ð5:146Þ

where N, as already mentioned, is the normal load, cp is a parameter that defines the
characteristics of the tyre and cs is a parameter that defines the characteristics of the
road. Figure 5.54a shows an example of the trend of lL as a function of longitudinal
slip eL (without transversal forces): for limited eL, lL depends linearly on the actual
slip (creepage), while, as this quantity increases, the link becomes strongly non-
linear. In the area where the curve reaches an asymptote, virtually the entire area of
contact is the site of slip; for even higher values of creepage, slipping is macro-
scopic and this situation is not stable (dashed curve). The maximum value lLmax
and the minimum value lLmin also depend, in turn, on the forward speed V of the
wheel centre. By comparing this curve with the similar curve in Fig. 5.47 (relating
to the railway wheel), we can see that the two phenomena are quite similar: the only
significant difference concerns the value of creepage eL ¼ 0:005 in correspondence
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to which the constraint reaches saturation in the case of the railway wheel
(Fig. 5.47), while in the case of the tyre the slip value eL in correspondence to which
this phenomenon occurs is equal to approximately eL ¼ 0:3 (Fig. 5.54a).
Figure 5.54b shows how lL varies as environmental conditions vary, i.e. dry or wet
road, presence of snow or ice. As we can see, the slipping friction coefficient lL can
vary enormously (from 1 to 0.2) as these conditions vary. The presence of water
also reduces lL: in this regard, we should also remember the phenomenon of
aquaplaning, i.e. floating of the vehicle, (function of speed V) due to a film of water
[94] build under its wheels. In Fig. 5.55 we can see the dependency of the friction
coefficient lL on the normal load N: the effect of the non-linear dependency of lL
on the load N is lower than the effect of longitudinal force FL due to the direct linear
dependence (5.146): the overall result is such that a heavily loaded wheel, with the
other conditions being equal, has lower friction coefficients lL and so, to provide a

Fig. 5.54 a Tyre: coefficient
of longitudinal friction lL as a
function of slip eL (zero yaw
angle). b Tyre: coefficient of
longitudinal friction lL upon
variation of the road surface
conditions
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constant longitudinal force FL, the wheel creepage must be higher. If lateral forces
are also acting on the wheel (such as those, for example, that act on vehicles due to
wind, to centrifugal forces while travelling around a bend etc.) the velocity of the
centre of the wheel no longer lies in the midplane p of the wheel (Fig. 5.56), but
forms an angle a with this plane, called the yaw angle,18 defined by the arctangent
of the relationship between the component of the velocity transversal to the plane of
the wheel VT and the longitudinal component VL:

a ¼ atan
VT

VL

� �
ð5:147Þ

When there is drift, the generic infinitesimal element of the tread that enters the
contact patch leaves its midplane, enters a first zone A–B (Fig. 5.56) where there is
no relative slipping and then deflects, slipping on the ground until the exit, section
B–C, to then return to its plane of symmetry. For this reason, side-slip occurs in the
contact patch: as the applied lateral forces increase, so does the drift and the area
where local slipping occurs between tread and terrain.19 In the presence of external

N = 2kN
N = 3kN
N = 4kN
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Fig. 5.55 Tyre: coefficient of
longitudinal friction lL upon
variation of the normal load
N (zero yaw angle)

18In this discussion we refer to the typical nomenclature of those who are involved with road
vehicles, even if this may appear at first glance to be a different approach in defining the contact
forces in the case of road vehicles compared to the case of railway vehicles. This difference, in
actual fact, does not exist, even if the two approaches foresee, historically, slightly different
formalisms: the yaw angle used in road vehicles actually corresponds to the lateral creepage
adopted when analysing railway vehicles.
19In the event that there are no lateral forces or torques (driving or braking) applied to the wheel,
there is no micro-slip eL and the yaw angle a is zero: in these conditions the forward velocity of
the wheel centre, the direction of which in this case is parallel to the midplane of the actual
wheel, satisfies (5.138): pure rolling is thus established only under these conditions, conditions,
on the other hand, that have never occurred in reality (in fact there is always an aerodynamic
force, the hysteresis of the material causes the non-symmetry of the diagrams of pressure rx that
gives rise to rolling resistance, etc.).
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transversal forces only, the components of transversal contact force FT then prove
to be non-linear functions:

• of the normal load acting on the wheel N;
• of the characteristics of the tyre cp and the road surface cs;
• of the yaw angle a.

Similarly FT (odd function of α) can be expressed in non-dimensional form
using:

FT

N
¼ �lT a;N; cp; cs

� � ð5:148Þ

Figure 5.57 shows, upon variation of the module of the yaw angle a and of the
normal load N, respectively, the module of the FT (5.148) and the module of self-
aligning torque Maut (normal vector at the contact patch): this torque is established
in the contact patch due to the effect of non-symmetry, in a transversal direction, of
the distribution of the shear stresses sT .

20 FT and Maut again show a linear trend for
small yaw angles, while they become strongly non-linear for large a. There is also a
lateral mechanism of constraint saturation (the curves tend to a horizontal asymp-
tote after which they decrease).

Compared with the approach used traditionally in the rail sector to define the
transversal contact forces FT, estimated as a function of transversal creepage eT , in
the automotive sector we resort to the definition of the yaw angle: however, this
difference is purely formal as both these quantities represent the relationship
between the transversal and longitudinal components of the wheel’s velocity.
Although the two approaches are therefore conceptually quite similar, in any case it
is more convenient to use the different symbols and different procedures that are
now well established in the different road and rail sectors. Lastly, we will analyse
the more general case of external forces, both longitudinal and transversal, that
effect the vehicle: just like in the railway wheel, the contact forces FT and FL are
coupled, in both directions, by longitudinal slip eL and by the yaw angle a: the
dependence of the generic contact force on both microslip actions can be explained

Fig. 5.56 Tyre: contact patch with lateral forces

20This self-aligning torque Maut tends to straighten the wheel and is discharged on the steering
wheel. In the case of the railway wheel, there is a similar term (neglected in this discussion due
to its limited size for rectilinear motions), defined in railway jargon as spin momentum [99, 100].
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qualitatively by bearing in mind the fact that the combination of traction and lateral
forces generate a state of stress sT and sL which add together, thus increasing the
slipping zone and obviously affecting both the components of the contact force. In
other words, the adherence used in one direction, reduces the availability of
adherence in the other. Thus the components of the longitudinal FL and transversal
FT contact force are non-linear functions:

• of the normal load acting on the wheel N;
• of the characteristics of the tyre and the road surface;
• of the longitudinal slip eL and the yaw angle a;

FL ¼ �lL eL; a;N; cp; cs
� �

N

FT ¼ �lT eL; a;N; cp; cs
� �

N
ð5:149aÞ

Figure 5.58 shows the total force F exchanged between tyre and road:

F ¼ lFL þ tFT ð5:149bÞ

for a pre-established yaw angle a: as we can see, similarly to what we saw in the
railway wheel (Figs. 5.42, 5.43 and 5.44), the maximum lateral force can be
obtained when longitudinal forces are not required and vice versa. Figure 5.59
shows the same polar diagram for different yaw angles.

If a traction force (or a lateral force) is such as to create extensive slip eL in the
forward direction (or transversal direction) the same constraint cannot provide force
in a perpendicular direction, i.e. very similarly to what we saw in the previous
section, the constraint becomes saturated:
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Fig. 5.57 Tyre: contact force
in a lateral direction FT and
self-aligning torque Maut as a
function of the slip-angle a
and normal load N
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• we can, for example, think of a car that is trying to set off on snow; the driving
torque applied to the wheels makes them slide (correspondingly the longitudinal
slip eL is extensive, i.e. the entire patch is slipping): in these conditions a small
lateral force is enough to move the vehicle sideways;

• another well known case may be where a vehicle enters a bend while braking
sharply: the longitudinal slipping becomes extensive (the wheels could even
lock) the patch cannot provide extensive lateral forces (with the wheels locked it
cannot provide any lateral force). Instead of going into the curvilinear trajectory,
the vehicle will proceed in a straight line, regardless of the steering angle d
given to the wheels.

Lastly, Fig. 5.60 shows a curve that defines, in full, the characteristics of wheel-
terrain contact for a given load N, a certain type of tyre and road situation. The
inputs to this curve are the longitudinal slip eL and yaw angle a (i.e. side-slip): there
are curves with constant eL and curves with constant a. The intersection of a curve
for a certain value of eL with the curve corresponding to a certain value of a,
assumed to be known, defines a point where the abscissa and ordinate define,
respectively, the friction coefficient lL in the longitudinal and lT in transversal
directions, from which it is possible to obtain the contact forces transmitted in the
patch area using the formulae (5.149a). This graph clearly highlights the fact that
for example, if the longitudinal slip eL is zero, the side friction coefficient lT is

Fig. 5.58 Tyre: polar diagram of the force exchanged at a constant yaw angle

Fig. 5.59 Tyre: polar
diagram of the force
exchanged for different yaw
angles
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maximum (the entire contact patch can slip to resist the lateral forces only). On the
contrary, i.e. for high eL (the wheel slides eL > 0.25) the side-slip coefficient lT
tends to zero: the constraint has reached longitudinal saturation and therefore it
cannot provide any transverse force. For an analytical discussion on the behaviour
of the vehicle we must approximate these curves with simple functions: a good
approximation could be that shown in Fig. 5.61 where the various functions are
approximated with ellipses.21

Summarising the results highlighted in the last two sections, regarding wheel-rail
contact and tyre-road contact, the main characteristics of the phenomenon are:

• the condition of pure rolling does not actually exist and, in any case, is a primary
simplistic model of the real phenomenon;

• in the contact zone longitudinal FL and transversal FT forces are established
(5.149a) as functions of longitudinal eL or transversal eT creepage (or yaw angle a);

• the actual velocity distribution of a generic infinitesimal element integral with
the wheel is difficult to define, as is the real state of deformation and stress in the
contact zone;

• we therefore refer back to definition of the forces FL and FT via estimation of the
velocity of the contact area centre kinematic entity, considered integral with the
wheel which is assumed to be rigid: this entity is representative of the actual
phenomenon.

Fig. 5.60 Tyre: complete diagram of longitudinal lL and transversal lT friction coefficients as a
function of longitudinal creepage eL and yaw angle a (constant characteristics of the tyre and the
road, constant normal load)

21With a constant yaw angle a, the various curves can be interpolated, with good approximation
from curves such as:

lL
lLmax

� �2

þ lT
lT max

� �2

¼ 1: ð5:21:1Þ
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With this approach, the contact forces are modelled like a force field as the same
friction forces FL and FT are made to depend not only on the normal load N and the
type and conditions of the contact surface, but also:

• on the creepages eL and eT , in the case of the railway wheel;
• on the longitudinal slip eL and the yaw angle a (as we have seen, this quantity is

similar to transversal creepage eT ), in the case of the tyre.
• the condition of pure rolling does not actually exist and, in any case, is a primary

simplistic model of the real phenomenon;
• in the contact zone longitudinal FL and transversal FT (5.149a) forces are

established as functions of longitudinal eL or transversal eT creepage (or yaw
angles a).

With this approach, the contact forces are modelled like a force field as the same
friction forces FL and FT are made to depend not only on the normal load N and the
type and conditions of the contact surface:

• but also on the creepages eL and eT , in the case of the railway wheel;
• on the longitudinal slip eL and the yaw angle a (as we have seen, this quantity is

similar to transversal creepage eT ), in the case of the tyre.

These slips or creepages are a function, in turn, of the independent variables that
define the motion of the vehicle, or rather, the motion of the generic wheel. Thus a
field of non-linear forces is defined that could be linearised around a steady-state
configuration, giving rise to a matrix of equivalent damping and stiffness [RF] and
[KF] which could result, for example, in problems linked to the stability of the
actual vehicle. Now we will apply these concepts to analysing the dynamics of the
railway wheelset and the road vehicle.

μL

μL

μT

μT

μTmax

α = cost

Fig. 5.61 Tyre: simplified diagram of transversal friction coefficients lT as a function of the
longitudinal creepage eL and yaw angle a (constant characteristics of the tyre and the road, constant
normal load)
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5.5.2.2 The Dynamics of the Railway Wheelset in Straight Line Motion

After having analysed the problems relating to wheel-rail contact, we will now
address the analysis of the dynamic behaviour of a railway wheelset travelling at
constant velocity V on a straight track with no irregularities: more specifically we
will analyse its perturbed motion around this steady-state configuration. As men-
tioned previously, analysis of the perturbed motion around the steady-state should
be addressed using a mathematical model that reproduces the real system in the best
possible way: models generally adopted for the railway vehicle are like those shown
in Fig. 5.45. By using this type of model, which involves a high number of degree-
of-freedom (23–31 dof), studying stability becomes complex and requires the use of
numerical methods to calculate the eigenvalues of the matrices of the linearised
system. Alternatively, and mainly for educational purposes, we can make a sim-
plified qualitative study of stability by analysing just the wheelset (Fig. 5.62). This
simplified model still allows us to shed light on the nature of the problem and to
highlight how the non-conservative force field, due to the actions of contact, can
introduce energy into the system and thus induce unstable motions. More specifi-
cally, the simplified model is made up of a wheelset connected to a bogie with
springs and dampers (corresponding to primary suspensions). The bogie has purely
rectilinear translatory motion at constant velocity V and so its perturbed motion is
not taken into consideration. The wheelset, with mass M and moment of inertia
J around a vertical axis, shows steady-state forward motion in a straight line with
constant velocity V: the equations of perturbed motion are linearised around this
steady-state situation. The degree-of-freedom of the system are the lateral dis-
placement y and the yaw rotation r, with the conventions shown in Fig. 5.62. We
assume the wheelset in the generic deformed position (Fig. 5.63) according to a
lateral displacement y and a yaw rotation r22: the equations of dynamic equilibrium
in lateral direction and on yaw are the following (Figs. 5.62 and 5.63):

m€yþ 2ry _yþ 2kyy ¼ Fy ¼ FTs þ FTdð Þ cos r� FLs þ FLdð Þ sin r
J€rþ 2b2rx _rþ 2b2kxr ¼ Mr ¼ FLd � FLsð ÞS ð5:150aÞ

where ky and kx represent the lateral and longitudinal stiffnesses of the wheelset-
bogie connection, ry and rx are the corresponding dissipative terms and S represents
the wheelset semi-gauge. As we can see, the equations, as far as the structural part is
concerned, are uncoupled and coupling between the degrees of freedom lateral
y and yaw r is introduced by the terms:

Fy ¼ FTs þ FTdð Þ cos r� FLs þ FLdð Þ sin r
Mr ¼ FLd � FLsð ÞS ð5:150bÞ

22In this discussion we assume that the motion of the wheelset occurs in the plane containing the
two tracks.
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which represent the components of the contact forces which, as we will see, are
functions of the degree-of-freedom of the system.

Before proceeding to calculate the contact forces we need to define:

• the velocity Vc of the kinematic entity contact point;
• the creepages eL and eT in the longitudinal and transversal direction (unit vectors

l and t) with respect to the plane of the wheel (i.e. with respect to a system of
reference integral with the wheelset).

The contact forces, if considered applied to the wheels, will be directed in the
opposite direction to the lateral and longitudinal creepages in the reference of the
wheelset (Fig. 5.64) and, if linearised around the steady-state position defined by:

yo ¼ 0

ro ¼ 0
ð5:151aÞ

Fig. 5.62 Two-degree-of-freedom model for studying the stability of the railway wheelset

Fig. 5.63 Contact forces acting on the wheelset
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assume the following expressions:

FLs ¼ �foeLs; FLd ¼ �foeLd
FTs ¼ �foeT ; FTd ¼ �foeTd

ð5:151bÞ

where the subscripts L and T denote the longitudinal and lateral direction, while the
subscripts s and d are relative to the left and right wheel. As we have already seen in
(5.143b) and (5.143d), fo represents the tangent to the origin of the curve of the
forces FL ¼ �lLN and FT ¼ �lTN, i.e. the derivative of them with respect to
creepages eL and eT , N being the normal load on the single wheel with centred
wheelset and lL and lT the friction coefficients as functions of the actual creepages
[Figs. 5.50 and 5.51; Eqs. (5.143a)–(5.143d) and (5.144)].

Now we will proceed to calculate the longitudinal eL and transversal eT cree-
pages that are functions of the projections VcL and VcT , on a system of reference
integral with the generic wheel, of the velocity Vc of the contact point (Fig. 5.64),
of the left-hand wheel and the right-hand wheel, divided by the forward speed V,
(5.142b):

eLs ¼ VcLs

Vj j ; eTs ¼ VcTs

Vj j
eLd ¼ VcLd

Vj j ; eTs ¼ VcTd

Vj j
ð5:152Þ

To estimate the components of velocity of the kinematic entity contact point in
the reference system integral with the generic wheel, it is best to use several
reference systems of reference:

Fig. 5.64 Definition of the components VcL and VcT of the absolute velocity of the generic contact
point
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• a translating reference system ðO1-Z1-Y1-X1Þ (Fig. 5.65) with velocity V and
origin O1 placed, on the centreline of the track on a level with the rail plane, in
correspondence to the abscissa s ¼ Vt, in correspondence to the centre of gravity
of the centred wheelset;

• a reference system ðCd-Zd-Yd-XdÞ integral with the right-hand wheel (except for
the rotation X) and centre Cd coinciding with the geometric centre of the actual
wheel;

• a reference system ðCs-Zs-Ys-XsÞ integral with the left-hand wheel (except for
the rotation X) and centre Cs coinciding with the geometric centre of the actual
wheel.

The velocity Vcs of the contact point on the left wheel can thus be estimated
(Fig. 5.65) as the sum of the velocity Vcrs of the wheel centre (to be considered as
“dragging” velocity) plus the relative velocity Vcs;crs of the contact point with
respect to the reference system ðCs-Zs-Ys-XsÞ integral with the wheel:

Vcs ¼ Vcrs þ Vcs;crs ¼ Vcrs þ X
 Rs ð5:153aÞ

X being the vector of the angular velocity of rolling and Rs the vector representing
the radius of the left wheel. Similarly, for the right wheel, we will have:

Vcd ¼ Vcrd þ Vcd;crd ¼ Vcrd þ X
 Rd ð5:153bÞ

The velocity of the centre of the left wheel Vcrs can be, in turn, estimated as the
sum of the velocity VG of the centre of gravity G of the wheelset (meaning the
“dragging” velocity), plus the relative velocity Vcs;G of the wheel centre with
respect to the centre of gravity (relative velocity):

Z0

Z1 Z2

Y1

Y0

i 0

YS
y

Y2

O1

Crs

j s
i s

Zs

O2

O

Zd

Yd
σ

Crd

j did

S
ξ

= 
V

t

j 0

Fig. 5.65 Reference
reference systems assumed
for analysing the contact point
kinematics
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Vcrs ¼ VG þ Vcs;G ¼ VG þ _r 
 Ss ð5:154aÞ

_r being the angular velocity vector, that defines the absolute angular speed of the
wheelset in its yaw motion, and S ¼ Ss the semi-gauge. For the right wheel (as
S ¼ �Sd) we will have:

Vcrd ¼ VG þ Vcd;G ¼ VG þ _r
 Sd ð5:154bÞ

Denominating (Fig. 5.65) with:

• io and jo the unit vectors that define the directions of the axes of translating
reference system ðO1 -Z1 -Y1 -X1Þ with respect to the fixed reference system
ðO-Zo-Yo-XoÞ;

• is and js the unit vectors that define the directions of the axes of reference system
ðCs -Zs -Ys -XsÞ;

• id and jd the unit vectors that define the directions of the axes of reference
system ðCd-Zd-Yd-XdÞ23;

the absolute velocity of the centre of the left and the right wheel, taking into account
(5.154a) and (5.154b), becomes:

Vcrs ¼ ioV þ jo _y� is _r S ¼ isV cos r� is _y sin rþ js _y cos rþ jsV sinr� is _r S

¼ is V cos r� _y sin r� _r Sð Þ þ js V sin rþ _y cos rð Þ
ð5:155aÞ

Vcrd ¼ ioV þ jo _yþ id _r S ¼ idV cos r� id _y sin rþ jd _y cos rþ jdV sin ryþ id _r S

¼ id V cos r� _y sin rþ _r Sð Þ þ jd V sin rþ _y cos rð Þ
ð5:155bÞ

The absolute velocities of the contact points (in the reference system integral
with the wheel) estimated on the right and left wheel can be expressed as, taking
into account (5.153a and 5.153b) and (5.155a and 5.155b), see Fig. 5.65:

Vcs ¼ is V cos r� _y sin r� _r Sð Þ þ js V sin rþ _y cos rð Þ � isXRs

¼ is V cos r� _y sin r� _r S� XRsð Þ þ js V sin rþ _y cos rð Þ ¼ isVLs þ jsVTs

Vcd ¼ id V cos r� _y sin rþ _r Sð Þ þ jd V sin rþ _y cos rð Þ � idXRd

¼ id V cos r� _y sin rþ _r S� XRdð Þ þ jd V sin rþ _y cos rð Þ ¼ idVLd þ jdVTd

ð5:156Þ

Taking into account (5.156), for the left wheel and the right wheel, the longi-
tudinal creepages (Fig. 5.66) are, therefore:

23If we only consider the unit vectors lying in the plane containing the two tracks.
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eLs ¼ 1
V

V cos r� _y sin r� _r S� XRsð Þ

eLd ¼ 1
V

V cos r� _y sin rþ _r S� XRdð Þ
ð5:157aÞ

whereas the corresponding transversal creepages ((5.152b), Fig. 5.66) become:

eTs ¼ 1
V

V sin rþ _y cos rð Þ

eTd ¼ 1
V

V sin rþ _y cos rð Þ
ð5:157bÞ

These expressions are non-linear in the independent variables y and r. If we wish
to linearise the motion equations around the steady-state configuration, corre-
sponding to the position of centred wheelset (5.151a and 5.151b) we must develop
the terms cos r, sin r and the other non-linear terms around this position
(yo ¼ 0; ro ¼ 0):

cos r � cos ro þ � sin roð Þ r� roð Þ ¼ 1

sin r � sin ro þ cos roð Þ r� roð Þ ¼ r

_y cos r � cos roð Þ _y� _y sin roð Þ r� roð Þ ¼ _y

V sin r � V cos roð Þ r� roð Þ ¼ Vr

ð5:158Þ

and taking into account, in the products, of the linear terms only, we arrive at the
linearised expression of the longitudinal and transversal creepages as a function of
the system’s coordinates:

Fig. 5.66 Definition of longitudinal and transversal creepages
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eLs ¼ 1
V

V � _r S� XRsð Þ eTs ¼ _y
V
þ r

eLd ¼ 1
V

V þ _r S� XRdð Þ eTd ¼ _y
V
þ r

ð5:159Þ

In (5.159), we should remember that Rs and Rd indicate the rolling radii of left
wheel and the right wheel: in this regard, as mentioned in the introduction to this
section, we must bear in mind the actual profile of the wheel flange and the rail
(Fig. 5.67). For a positive lateral displacement y of the wheelset the right-hand
wheel moves close to the flange, while the left-hand wheel moves away from it: the
rolling radii of the two wheels are, therefore, a non-linear function of lateral dis-
placement. In the event that we analyse small oscillations around the position of
centred wheelset, contact remains in the truncated conical area of the wheel rim,
called the plane: in this area the tangent in contact remains constant and equal to the
conicity c (equal for both wheels). It follows that a lateral displacement y of the
wheelset (Fig. 5.67) results in a radius value equal to:

Rs ¼ R� yc

Rd ¼ Rþ yc
ð5:160Þ

R being the rolling radius in the centre wheelset position. When introducing these
expressions into the definition of longitudinal creepage and remembering that
V ¼ XR, we have:

eLs ¼ 1
V

V � _r S� X R� ycð Þð Þ ¼ yc
R
� _r S

V

eLd ¼ 1
V

V þ _r S� X Rþ ycð Þð Þ ¼ � yc
R
þ _r S

V

ð5:161Þ

The linearised contact forces (5.150a), taking into account (5.159) and (5.161)
can now be expressed as a function of the free coordinates of the system:

γs

γd2s

Fig. 5.67 Real profiles of the
wheel rim and the rail

530 5 Dynamical Systems Subjected to Force Fields



www.manaraa.com

FLs ¼ �foeLs ¼ �fo
yc
R
� _r S

V

� �

FLd ¼ �foeLd ¼ �fo � yc
R
þ _r S

V

� �

FTs ¼ �foeT ¼ �fo
_y
V
þ r

� �

FTd ¼ �foeTd ¼ �fo
_y
V
þ r

� �
ð5:162Þ

Note the expressions of the longitudinal and transversal components of the
contact forces, it is now possible to calculate components Fy and Mr (5.150a) of
these forces according to the free coordinates of the wheelset:

Fy ¼ FTs þ FTdð Þ cos r� FLs þ FLdð Þ sinr ¼ �2fo
_y
V
þ r

� �
cos r

Mr ¼ FLd � FLsð ÞS ¼ �2fo � yc
R
þ _r S

V

� �
S

ð5:163Þ

These components are still non-linear: it is possible to linearise these expressions
around the steady-state position by assuming:

cos r ¼ 1

sin r ¼ r
ð5:164aÞ

and, neglecting the higher order terms, we obtain:

Fy ¼ �2fo
_y
V
��2for

Mr ¼ 2fo
yS
R
c� 2fo

_r S2

V

ð5:164bÞ

At this point, it is more convenient, in the wheelset motion equation (5.150a) and
(5.150b), to bring the terms to first member (5.164a and 5.164b) due to the line-
arised contact forces:

m€yþ 2ry _yþ 2kyyþ 2fo
_y
V
þ 2for ¼ 0

J€rþ 2b2rx _rþ 2b2kxr� 2fo
yS
R
cþ 2fo

_r S2

V
¼ 0

ð5:165Þ

Now using z to define the vector of the free coordinates, ordered as:
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z ¼ y
r

� 
ð5:166Þ

it is possible to rewrite the equation of motion (5.165) in matrix form, highlighting
the contributions due to the linearisation of the force field:

M½ �€zþ Rs½ � þ RF½ �½ �zþ Ks½ � þ KF½ �½ �z ¼ 0 ð5:167Þ

where [M], [Rs] and [Ks] are the matrices of structural mass, damping and stiffness,
respectively:

M½ � ¼ M 0
0 J


 �
; Rs½ � ¼ 2ry 0

0 2rxb2


 �
; Ks½ � ¼ 2ky 0

0 2kxb2


 �
; ð5:167aÞ

In (5.167), however, the equivalent matrices [RF] and [KF], due to linearisation
of the force field of contact between wheel and rail, have the following expressions:

RF½ � ¼ 2 fo
V 0
0 2fo S2

V

" #
; KF½ � ¼ 0 2fo

�2fo
Sc
R 0


 �
; ð5:167bÞ

By examining the matrices [RF] and [KF], we can judge the stability of the
system, at least in qualitative terms. The equivalent stiffness matrix [KF] is non-
symmetric, indicating the non-conservative nature of the force field, furthermore,
the extra-diagonal terms are opposite in sign. Remembering what was said about
fields of purely positional forces, we can conclude that the introduction of energy
and the establishment of flutter instability are possible. The equivalent damping
matrix (diagonal) [RF] is definitely symmetric and positive definite: this indicates
that it is certainly dissipative, but its contribution decreases as forward speed
V increases. Flutter instability will, therefore, arise if the positional part of the force
field introduces energy and if the equivalent damping of the force field (matrix
[RF]), together with structural damping (matrix [Rs]) is not sufficient to dissipate the
energy introduced. For a quantitative analysis of the problem of instability, we can
calculate the values of ki ¼ ai � ixi which solve the homogeneous algebraic
equation that is obtained from (5.167) imposing the solution

z ¼ Zekt ð5:168Þ

i.e.:

k2 M½ � þ k Rs½ � þ RFðVÞ½ �½ � þ Ks½ � þ KFðVÞ½ �½ �� �
Z ¼ 0 ð5:169Þ

So we can examine the real part of the generic eigensolution kiðVÞ ¼
aiðVÞ � ixiðVÞ: if one of these presents a positive real part aiðVÞ[ 0, then the
system is unstable. Given that the force field is also a function of the forward speed
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V and so the actual matrices equivalent to the contact force field are functions of V,
by repeating this analysis for different velocities (Fig. 5.68) it is possible to obtain
the value of the flutter velocity Vcrit, corresponding to which the sign of the real part
aiðVÞ of one of the eigenvalues kiðVÞ changes (from negative to positive).

In conditions of instability, the resulting motion is a combination of lateral
displacement y and of yaw r. In the absence of the force field these motion occur at
different frequencies:

xy ¼
ffiffiffiffiffiffiffi
2ky
m

r

xr ¼
ffiffiffiffiffiffiffiffiffiffiffi
2kxb2

J

r ð5:170Þ

and which the force field brings closer together, coupling them via the extra-
diagonal terms of the equivalent stiffness matrix of the force field [KF]. As men-
tioned previously, studying the instability of the railway wheelset using a two-
degree-of-freedom model only qualitatively justifies the behaviour observed
experimentally: to quantitatively study the stability of a railway vehicle it is nec-
essary to resort to more sophisticated n-degree-of freedom models, which take into
account not just the wheelsets but also the presence of the bogies and the carbody
(Fig. 5.45).
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5.5.2.3 The Dynamics of a Road Vehicle (Stability in a Straight Line)

The road vehicle is another classic example of a mechanical system that is strongly
non-linear and surrounded by a force field, in this case these are contact forces that
determine and characterise its behaviour. The dynamics of a vehicle that moves
generically on a road (which in this discussion is considered flat) is complex; it also
depends on the actions of the driver who controls the vehicle by steering, as well as
on the drive actions and the braking actions imposed. The purpose of this discus-
sion is to analysis the stability of the motion of a vehicle around a steady-state
solution which can be represented by travelling in a straight line or around a bend;
to this end:

• we must write the equations of motion of the vehicle in the most general form;
• we must calculate the steady-state solution considered (bend or straight line);
• lastly, we must analyse the motion perturbed around this steady-state solution.

The model used will have the minimum number of degree-of-freedom necessary,
so as to simplify the discussion without, however, losing the essential character-
istics of the problem: again, for simplicity’s sake, we will also be considering
stability of motion in a straight line only, i.e. the response of the vehicle subjected
to perturbation around rectilinear motion, assuming that the forward speed V is
constant and set. This velocity will be determined by conditions of equilibrium
between aerodynamic resultant forces and driving forces reduced to the wheels,
resulting from the torques applied to them. This analysis is interesting in its own
right, and because it is possible in this way to highlight some characteristics of the
behaviour of the vehicle by resorting to simple matrix equations. For a more
detailed discussion of the problem, we refer the reader to specialised texts (see the
specific bibliography on the subject) where, amongst other things, there are
descriptions of more sophisticated mathematical models of the multi-body type
(linear and non-linear with several degree-of-freedom) to reproduce, not just
qualitatively but also quantitatively, all the problems regarding the dynamics of the
actual vehicle. The first simplification that we will introduce is that of neglecting the
following:

• relative vertical motions between chassis and wheels;
• roll (rotation around the forward movement axis of the vehicle);
• pitch (rotation around the transversal axis of the vehicle).

We also neglect, as a consequence of the previous assumptions, the dynamic
variations of the vertical load N acting on the wheels (due to vertical motions, of
pitch and roll). So it is legitimate to assume that the behaviour of the left wheel and
the right is equal, so that we can reduce to a simplified model of the type shown in
Fig. 5.69, i.e. a rigid beam (with mass m and moment of inertia with respect to the
vertical axis equal to J) which reproduces the chassis and just the two front and rear
wheels. These wheels have radius R and are considered to be without mass (and
therefore with moment of inertia equal to zero) and are constrained integrally with
the chassis: only rolling motion X is associated with them, but as we will see below
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this degree-of-freedom will not be considered in the equations of motion. The
simplified model of the vehicle (Fig. 5.69) is, in any case, represented by a system
with 3-degree-of-freedom, corresponding to the degree-of-freedom of a rigid body
in the plane, plus one that is introduced, to correspond to the steering angle δ of the
front wheels. We will be considering an absolute reference system with origin
O and axes X � Y � Z, (Fig. 5.69) and we will introduce a mobile reference system
with origin O1 coinciding with the centre of gravity of the body G and axes
X1 � Y1 � Z1 integral with the vehicle. We will consider as degree-of-freedom:

• the coordinates z and y of the vehicle’s centre of gravity G which define, with
respect to the fixed reference system, the origin of the mobile reference system;

• the angle r that axis Z1 forms with axis Z and which corresponds to the yaw
rotation of the vehicle.

Lastly, we will use CA and Cp to describe the torque applied, respectively, on the
front and rear wheels of the vehicle. The equations of motion of the system, defined
in this way, can be obtained by writing the equations of dynamic equilibrium in
longitudinal Z and transversal Y direction and at rotation around the centre of
gravity G (Fig. 5.70):

FL2 cos r� FT2 sin r� m€z� FT1 sin rþ dð Þ þ FL1 cos rþ dð Þ þ Faerz ¼ 0

FL2 sin rþ FT2 cos r� m€yþ FT1 cos rþ dð Þ þ FL1 sin rþ dð Þ þ Faery ¼ 0

FT2aþ J€r� FT1b cos d� FL1b sin dþMaer ¼ 0

ð5:171Þ
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y
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b

Fig. 5.69 Schematisation of
a road vehicle, conditions of
generic motion: reference
system and independent
coordinates
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FL1 and FL2 being the contact forces acting in a parallel direction to the midplane of
the generic wheel, FT1 and FT2 the corresponding transversal contact forces: these
forces depend on the longitudinal slip eL in the contact patch and on the yaw angles
a that the velocity of the wheel centre forms with its midplane. In Eq. (5.171) we
have neglected the self-aligning torques M1 and M2 on the front and rear wheel,
which are also functions of the yaw angles (respectively aA and aP). In (5.171) the
terms Faer and Maer represent, respectively, the resultant of the aerodynamic force
and the aerodynamic moment.

Equation (5.171) make it possible to define the motion of the vehicle by
assigning, for example:

• the initial conditions;
• the variation law of the steering d ¼ dðtÞ;
• the variation laws of the torques (drive and braking) CA ¼ CAðtÞ and

CP ¼ CPðtÞ.
As far as the longitudinal forces are concerned, assuming that we can neglect the

rotary moment of inertia JRy of the single wheel (the wheels are assumed to be
without mass):

JRy ¼ 0 ð5:172Þ

from the equilibrium at rotation of the same (Fig. 5.71) it is possible to obtain a link
between the generic applied torque C and the corresponding longitudinal compo-
nent FL of the contact force which for the front and rear wheel equals:

δ

σ
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mÿ

mz̈

FT 2

FT 1

FL2

FL1

Faer

G

b

J σ̈

Fig. 5.70 Road vehicle,
conditions of generic motion:
applied forces
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FL1 ¼ CA

R
; FL2 ¼ CP

R
ð5:173Þ

As the link between the longitudinal component FL of the contact force and the
normal load acting on the actual wheel N is known:

FL1 ¼ lL1NA

FL2 ¼ lL2NP
ð5:174Þ

it is possible to define the coefficient of longitudinal friction on both the wheels,
taking into account both (5.173) and (5.174):

lL1 ¼
CA

NAR

lL2 ¼
CP

NPR

ð5:175Þ

In (5.175) the normal loads N, with a defining the distance of the rear axle from
the centre of gravity G and b defining the distance of the front axle (Fig. 5.69), are
distributed as follows24:

NA ¼ mg
a

ðaþ bÞ
NP ¼ mg

b
ðaþ bÞ

ð5:176Þ

Fig. 5.71 Road vehicle:
equations of equilibrium at
rotation of the generic wheel

24In this discussion, we do not take into account the variations in the normal actions NA andNP due
to the longitudinal acceleration to which the vehicle is subject.
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Once the generic drive torque CA applied on the front axle (front-wheel drive) or
on the rear axle Cp (rear-wheel drive) has been defined, from (5.175) it is possible to
estimate the coefficient of longitudinal friction lL. As we saw in the previous
section (Fig. 5.60), the contact force in transversal direction FT depends not only on
the yaw angle a but also on the longitudinal slip eL as the required friction coef-
ficient lL in the longitudinal direction decreases the adhesion available in the
transversal direction: this implies (as can also be seen in the Footnote 19) a link
between the maximum value of the transversal friction coefficient lTmax and the
value of the longitudinal friction coefficient lL (Fig. 5.73):

lmax ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l2L þ l2

Tmax

q
ð5:177aÞ

Therefore, the asymptotic value lTmax that the transversal friction coefficient
lTmax can reach, becomes:

lTmaxA ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l2max � l2L1

q
e�cDNA

lTmax P ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l2max � l2L2

q
e�cDNP

ð5:177bÞ

If the longitudinal slip eL is such as to completely saturate the constraint, we will
obviously have (see, for example, Fig. 5.54b):

se eL1 [ 0:25 ) lL1 ) lmaxand lT maxA ) 0

se eL2 [ 0:25 ) lL2 ) lmaxand lT maxA ) 0
ð5:178Þ

In (5.177b) the term e�cDN has been added which, with a simplified empirical
formula, takes into account the reduction of the force that can be transmitted as a
function of the variation of the normal load compared to the reference load Nrif ,
defined via:

DNA ¼ NA � Nrif

Nrif
; DNP ¼ NP � Nrif

Nrif
; Nrif ¼ NA þ NP

2
ð5:178aÞ

So the lateral forces become:

FT1 ¼ lT1 aAð ÞNA

FT2 ¼ lT2 aPð ÞNP
ð5:179Þ

The dependency of the transversal friction coefficient lT on the yaw angle a
(Figs. 5.54 and 5.72), is subsequently approximated by an analytical expression of
the form:
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lT1 ¼ lT1 aAð Þ ¼ 1� e�k aAj j� �
lTmaxA sign aAð Þ

lT2 ¼ lT2 aPð Þ ¼ 1� e�k aPj j� �
lTmaxP sign aPð Þ

ð5:180Þ

where with the terms:

sign aAð Þ ¼ aA
aAj j

sign aPð Þ ¼ aP
aPj j

ð5:181Þ

we take into account the fact that the functions lT1 and lT2 are odd compared to the
yaw angle aA aP. In (5.179) the yaw angles aA and aP are functions of the inde-
pendent variables (Fig. 5.73):

aA ¼ atan
_y cos rþ dð Þ þ _rb cos d� _z sin rþ dð Þ
_z cos rþ dð Þ þ _y sin rþ dð Þ þ _rb cos d

� �

aP ¼ atan
_y cos rþ _ra� _z sinr

_z cos rþ _y sin r

� � ð5:182Þ

By replacing the expressions of the longitudinal forces of contact FL1 and FL2

(5.173) and lateral forces FT1 and FT2 (5.179) in the vehicle’s equations of motion
(5.171), we obtain equations that are non-linear in the same forces of contact. These
equations, integrated numerically, make it possible to calculate the generic motion
of the vehicle, once the law of variation of the steering angle d ¼ d tð Þ and of the
drive or braking torque has been assigned.

Fig. 5.72 Coefficients of longitudinal and transversal friction
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If we wish to analyse the stability of the vehicle travelling in a straight line, we
must linearise these expression, around the steady-state configuration defined by the
conditions:

_z ¼ V ; yo ¼ 0; ro ¼ 0; do ¼ 0 ð5:183Þ

By imposing (5.183) in (5.171), taking into account (5.173), we obtain the
equation of steady-state equilibrium:

CPo

R
þ CAo

R
� 1
2
qV2SCx ¼ 0 ð5:184Þ

S being the leading surface of the vehicle and Cx the drag coefficient. This equation
makes it possible to find the front CAo or rear CPo drive torque acting on the system
to make the vehicle move forward at a certain assigned velocity V. In order to solve
the actual equation, in the case of all-wheel drive, we need to put in a system with
(5.184), the equation that defines the motion of the transmission and which allows
us to correlate the front and rear torque, formally, using a generic relation:

CA ¼ CA CP; d;V ; vehicle; contact; transmission characteristicsð Þ ð5:185Þ

It is now possible to analyse the perturbed motion around the steady-state
position, defined like so with regard to the transversal motion and the yaw rotation,

σ Z 

ẏ 

ẏ sin ( σ + δ) + b σ̇ sin +δ ż cos (σ + δ) 

ẏ sin σ + ż cos σ 

ẏ cos σ + − ż sin σ − a σ̇  
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Fig. 5.73 Road vehicle, conditions of generic motion: yaw angles
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not considering the perturbation according to Z, thus assuming V = constant and
d ¼ do ¼ 0. Therefore, we will assume small displacements and rotations around
this position while considering the actual terms as infinitesimal. Lastly, in the
discussion we will neglect the linearised terms of the aerodynamic forces, i.e. we
will not consider the fluid-elastic effects. Now we will impose in (5.171) a change
of coordinates considering as independent variables, similarly to the previous
section, the perturbation of the motion y and r around the steady-state, rectilinear
configuration:

y ¼ yo þ y ¼ y

r ¼ ro þ r ¼ r
ð5:186Þ

By replacing (5.186) in (5.171) and replacing the cosines and sines of yaw
rotation, respectively, with one and with the actual angle, the linearised equations of
motion are:

�CPo

R
r� FT2 þ m€y� FT1 � CAo

R
r ¼ 0

FT2aþ J€r� FT1b ¼ 0
ð5:187Þ

FT ¼ FT að Þ ð5:188Þ

So the same can be linearised as follows:

FT ¼ FTo þ @FT

@a

� �
o
a� aoð Þ ¼ @FT

@a

� �
o
a� aoð Þ ð5:189Þ

directly expressing the generic term a in a linearised form. Taking into account
(5.189), (5.180) and (5.181) the generic term @FT

@a

� �
becomes:

@FT1

@aA

� �
¼ � k � e�k aAj j� �

lTmaxA NA

@FT2

@aP

� �
¼ � k � e�k aPj j� �

lTmaxP NP

ð5:190Þ

i.e. remembering (5.181)

@FT1

@aA

� �
o
¼ �klTmaxANA ¼ �k

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
f 2a � l2L1

q
e�cDNANA ¼ �kA

@FT2

@aP

� �
o
¼ �klTmaxPNP ¼ �k

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
f 2a � l2L2

q
e�cDNPNP ¼ �kP

ð5:191Þ

The terms present in (5.191) represent the derivative of the transversal force
function FT with respect to the yaw angle a estimated in the origin (Fig. 5.74). The
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linearised expression of the yaw angles, however, (5.182) becomes, being dis-
placements and rotations small (i.e. considered as infinitesimal terms):

aA ¼ atan
_yþ _rb� Vr

V

� �
¼ _yþ _rb� Vr

V

� �

aP ¼ atan
_y� _ra� Vr

V

� �
¼ _y� _ra� Vr

V

� � ð5:192Þ

Taking into account (5.189), (5.191) and (5.192) we directly arrive at the motion
equations perturbed around the steady-state rectilinear configuration:

�CPo

R
rþ kP

V
_y� a

kP
V

_r� kPrþ m€y� CAo

R
rþ kA

V
_yþ b

kA
V

_r� kAr ¼ 0

�a
kP
V

_yþ a2
kP
V

_rþ akPrþ J€rþ b
kA
V

_yþ b2
kA
V

_r� bkAr ¼ 0

ð5:193Þ

Using:

z ¼ y
r

� 
ð5:194Þ

to define the vector of the new independent variables that describe the perturbed
motion around the position of straight line motion at constant velocity V, the
equations, which are linearised at this point, become, in matrix form:

M½ �€zþ RF½ �_zþ KF½ �z ¼ 0 ð5:195aÞ

being in this case (5.194):

FT 1

FT 2

αA αP

K
_

P K
_

A

Fig. 5.74 Straight line
motion: physical meaning of
terms kA and kP
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M½ � ¼ m 0
0 J


 �
ð5:195bÞ

RF½ � ¼
kA
V þ kP

V

� �
b kA

V � a kP
V

� �
b kA

V � a kP
V

� �
b2 kA

V þ a2 kP
V

� �
2
4

3
5 ð5:195cÞ

KF½ � ¼ 0 �kA � kP � CPo
R � CAo

R
0 akP � bkA


 �
ð5:195dÞ

The limited stability of the steady-state motion is estimated by calculating the
eigensolutions of the Eqs. (5.196a) and (5.196b); imposing a solution of the form:

x ¼ Xekt ð5:196aÞ

where

ki ¼ ai � ixi ð5:196bÞ

represents the generic eigensolution which can be found by bringing (5.196a and
5.196b) back to an eigenvector- eigenvalues problem. The generic free motion
perturbed around the steady-state configuration will be stable if all the real parts ai
of all the eigenvalues are negative and unstable if at least one of them is positive.
The damping matrix [RF] is symmetric and positive definite [the terms kP and kA
certainly being positive, (5.191)] and therefore, its effect, being inversely propor-
tional to the forward speed V, is purely dissipative. The stiffness matrix [KF] is, on
the other hand, non- symmetric: it may present a term on the main diagonal that
could make the system statically unstable. This happens, for example, kP and kA
being equal, when the distance b of the front axle from the centre of gravity is
greater than the distance a of the rear axle from G, i.e. when the centre of gravity is
moved backwards.

Figure 5.75 shows an example of the trend of the eigensolutions ki ¼ ai � ixi

(5.196a) upon variation of the forward speed V (between 50 and 250 km/h) in the
case of a car with rear-wheel drive.

More specifically, the configuration with forward centre of gravity (indicated
with the “diamond” symbol) is always more stable, since the real parts ai of the
solutions are always zero or negative. Two complex conjugate solutions x2 ¼
�x4 6¼ 0 correspond to a damped oscillating motion; the solutions k1 ¼ k3 ¼ 0 are
associated with the instability of the system, a fact that is also confirmed by the
presence of a column of zero terms in the stiffness matrix [KF] (Eq. (5.195d).

In the case of a rearward centre of gravity, however (“dot” symbol), for speeds
of over 130 km/h, one eigenvalue has a positive real part a3 [ 0, indicating, being
x3 ¼ 0, static instability (or divergence).
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In order to describe the dynamics of a road vehicle more accurately, we must use
more complex numerical simulation models: see the bibliography about this, in
particular the section regarding the Dynamics of road and rail vehicles.

The schematisations that can be used often require 14-degree-of-freedom models
(Fig. 5.76, [69, 70]) which take into account the motions of the carbody, and the
shaking and rolling of the wheels, or more complex models which adopt the multi-
body techniques ([5, 75–78, 106], Fig. 5.76). However, this is not the place for a
detailed discussion on the dynamics of the motor vehicle and, for this purpose, we
refer the reader to the bibliography.

As an example, Figs. 5.78 and 5.79, show the behaviour of a vehicle travelling
on a bend, in steady-state conditions, estimated using a 14-degree-of-freedom
model [69]. In the case in question, we assume that the forward speed is constant
(V = 100 km/h) and impose rotation (gradually increasing) on the front wheels d (a
manoeuvre defined as steering pad constant velocity).

The two figures show, respectively:
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Fig. 5.75 Road vehicle with rear traction in a straight line: trend of the natural frequencies
kiðVÞ ¼ aiðVÞ þ ixiðVÞ upon variation of the forward speed with: forward centre of gravity
(diamond), rearward centre of gravity (dot)

Fig. 5.76 Road vehicle: model with 14 d.o.f.. and vehicle schematised using the multibody
system (ADAMS)
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• the trend of the actual steering angle d compared to the angle of Ackermann do
[97, 102, 107], that is, to what we would have in the ideal case of kinematic
steering, i.e. with yaw angles equalling zero (see Fig. 5.77);

• the trend of the radius of curvature q of the trajectory reached in steady-state
conditions, compared to that which we would obtain in conditions of kinematic
steering qo.

Both these quantities are represented as functions of non-dimensional lateral
acceleration compared to gravitational acceleration. The diagrams show the case of
a vehicle with rear-wheel drive (dotted line), of a vehicle with front-wheel drive and
forward centre of gravity (dashed line) and of a vehicle with rear-wheel drive but
with a rearward centre of gravity (continuous line).

As we can see, the vehicle with front-wheel drive and forward centre of gravity
is understeering, that is, it enters a steady-state trajectory with a greater radius
(Fig. 5.79) and, with the same transversal acceleration, requires a greater steering
angle (Fig. 5.78). On the contrary, the vehicle with rear-wheel drive and rearward
centre of gravity is oversteering, that is, it enters a trajectory that is narrower than
that defined by the kinematic trajectory (Fig. 5.79) and, to develop the same
transversal acceleration, requires a lower steering angle than the kinematic one: this
vehicle, above a certain value, is subject to static instability (yaw).

When estimating the dynamic behaviour of a vehicle it often becomes important
to introduce the active control introduced by the driver into the simulation model
[69–71]. The driver represents a complex control system that introduces actions
both in feed forward and in feed back (see, for example [55], ADAMS/DRIVER
and ADAMS/ANDROID).

Again, as an example, Figs. 5.80 and 5.81 show some simulations, developed
with a 14-degree-of-freedom model [69–71], introducing a simplified model of the
driver, described as a simple trajectory tracker [86]. The simulated manoeuvre is a
double change of lanes at constant speed (V = 100 km/h): Fig. 5.80 shows the

b
V

a

α

α

β

δ

δ

δo

Fig. 5.77 Definition of the
angle of Ackermann do and
angle of vehicle balance b
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trajectory travelled by the vehicle: more specifically, the figure shows the reference
trajectory (continuous line), the trajectory followed by the vehicle using a model of
it and of the driver (dashed line) and lastly, the trajectory travelled by the vehicle
where the steering wheel angle has been provided in an open loop (dotted line).
Figure 5.81, however, shows the history of the steering wheel angle imposed on
input in the open loop simulation and that imposed by the driver (dashed line) to
follow the assigned reference trajectory. The results obtained show, even using a
simplified driver model, the effect of whether this “component of the system” is
present or not in defining the dynamic behaviour of the actual vehicle.
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Fig. 5.78 Steering pad constant velocity manoeuvre (V = 100 km/h). Trend of the non-
dimensionalised steering angle as a function of transversal acceleration: vehicle with front-wheel
drive and forward centre of gravity (dashed line), vehicle with rear-wheel drive (dotted line),
vehicle with rear-wheel drive and rearward centre of gravity (continuous line)
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Fig. 5.79 Steering pad constant velocity manoeuvre (V = 100 km/h). Trend of the non-
dimensionalised radius of the trajectory as a function of transversal acceleration: vehicle with
front-wheel drive and forward centre of gravity (dashed line), vehicle with rear-wheel drive (dotted
line), vehicle with rear-wheel drive and rearward centre of gravity (continuous line)
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Summary This chapter introduces the mechanical systems subjected to force
fields, where the excitation depends on the state of the system. As known, these
force fields can change the stability characteristics of the mechanical system. The
analyses is conducted by introducing the force field characteristics (positional or
velocity dependent forces) obtained by linearizing the equations of motion (for 1, 2
and “n” degree-of-freedom systems) in the neighborhood of the static equilibrium
position. Stability is analyzed by applying the eigenvalues-eigenvector approach.
Some real applications are presented: aerodynamic forces on airfoils, contact force
effects in cutting tools, hydrodynamic lubrication in journal bearings and contact
force effects in rail and road vehicles. Some real applications are presented: aero-
dynamic forces on airfoils, contact force effects in cutting tools, hydrodynamic
lubrication in journal bearings and contact force effects in rail and road vehicles.
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Fig. 5.80 Manoeuvre: double lane change at constant speed (V = 100 km/h): reference trajectory
(continuous line), trajectory followed by the model vehicle + driver (dashed line), trajectory
followed by the vehicle with steering wheel angle provided in open loop (dotted line)
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Chapter 6
Rotordynamics

6.1 Introduction

So far in the discussion we have illustrated the methods used for the dynamic
analysis of mechanical systems. The main purpose of analysis has always been both
to study forced motion and to study the stability of these systems and, therefore,
analysis of perturbed motion around the steady-state or rest condition. In describing
the various types of system which, we should remember, has been subdivided into
dissipative systems and systems subject to force fields, we have included various
examples of applications, with the main aim of better highlighting the problem and
to better illustrate the methods of analysis used. The subject of rotordynamics which
will be addressed in this chapter is now proposed with a dual purpose:

• to provide basic knowledge to the engineer who has to handle the design and use
of machinery, since rotors are essential and vital organs in any machinery;

• to offer this subject, given the multitude of problems that it entails, as a valid
example of the use of the techniques illustrated in the previous chapters.

6.2 Description of the System Composed of the Rotor
and the Supporting Structure Interacting with It

Below we will describe the basic characteristics of the rotor—supporting—structure
—foundation system, while showing the schematisation that generally represents it.
The purpose is to define a mathematical model aimed at simulating the real
behaviour of rotor and foundation, as faithfully as possible, regardless of the spe-
cific problem being considered.

Figure 6.1 shows, as an example, a rotor of a turbogenerator group, while
Fig. 6.2 shows the rotor of a turbopump: upon examining both the figures, we can
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see how every rotor is usually similar to a beam with a circular cross section of
variable diameter with fitted elements (disks, blades or the like) that collaborate
mainly from an inertial point of view and to a lesser extent from an elastic point of
view, and which can be schematised as concentrated weights. The rotor body is
constrained to the casing via bearings which, especially in fast and loaded rotors,
are lubricated with fluid. The casing can be incorporated into a body that may be
cylindrical (see, for example, the pump in Fig. 6.2) or have a more complex form
(Fig. 6.1). The casing may, in turn, be constrained to the foundation of the machine
by a supporting structure via rigid or flexible elements. Between rotor and casing
there can be a fluid that transmits mutual actions to the rotor and the casing or an
electromagnetic field: the presence of these fields (fluid or magnetic) can influence
the dynamic behaviour of the rotor (fluid elasticity or electro-elasticity phenomena).
In the case of turbines, for example, the fluid acts not only on the blade system, but

Fig. 6.1 Turbogenerator group

Fig. 6.2 Turbopump
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also on the seals, giving rise to a complex series of problems as far as defining the
field of forces that interact with the rotor and with the casing is concerned.
Regardless of the problem being considered, to be able to adequately simulate the
dynamic behaviour of the “rotor-case-foundation” system, with the current state of
knowledge and research, the schematisation generally adopted for the structural part
(rotor, foundation) uses the finite element method, while the effects caused by
bearings and seals are schematised by linearising the force field of the interacting
fluid.

6.2.1 Schematising the Rotor

Figure 6.3 shows a photo of an example of a low pressure rotor on a turbogenerator
group. As already mentioned, the most suitable way of schematising such a rotor is
to consider it as being made up of an adequate number of beam-type finite elements
to reproduce the variations in section of the actual rotor. Figure 6.4 shows a beam
model that can represent the real rotor in Fig. 6.3: as we know, the greater the
number of beams considered in the mathematical model, the more refined the
schematisation used will be.

If, as usually occurs, we adopt the finite elements technique (other methods, such
as that of transfer matrices, [7, 25, 28] are less common nowadays), these beam
elements will generally have 6 degree-of-freedom (d.o.f.) for each node of the
actual element (Fig. 6.5) (note that in this example we will use a right-hand ref-
erence system, using Z, however, to indicate the longitudinal axis, to the contrary of
the method used in Chap. 4, Sect. 4.5.2). Usually the 2 d.o.f. of each node

Fig. 6.3 Low pressure rotor on a turbogenerator group
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associated with the axial Zi and torsional hzi displacements are considered decou-
pled as, in reality, axial and torsional vibrations are, in general, actually decoupled
from those of bending. If, in this discussion, we first wish to consider the problems
associated with bending motions only, it follows that each node of the beam finite
element must have 4 d.o.f. associated with it, more precisely:

• two representing the horizontal Yi and vertical Xi transversal displacements
(Fig. 6.6);

• two that represent rotations hyi and hxi of the section in correspondence to the
node.

Every generic kth finite element thus has 8 d.o.f. which represent the displace-
ments and rotations of the end to the left (indicated in Fig. 6.6 with the subscript “s”)
and the end to the right (subscript “d”):

Fig. 6.4 Low pressure rotor on a turbogenerator group: schematisation

x

z

z

x

y

θx

θz

θz
θy

θx
θy

y

Fig. 6.5 Finite beam element
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Xk ¼ Xks
Xkd

� �
¼

Xi

hyi
Yi
hxi
. . .
Xj

hyj
Yj
hxj

8>>>>>>>>>>>><>>>>>>>>>>>>:

9>>>>>>>>>>>>=>>>>>>>>>>>>;
¼

Xi
Yi
Xj
Yj

8>><>>:
9>>=>>; ð6:1Þ

according to the conventions used in defining the forces due to oil-film (Sect. 6.2.2,
Fig. 6.7). The stiffness matrix Kr½ � of the generic kth beam finite element can be
obtained from the overall stiffness matrix Kjl

� �
of the beam element with 12 d.o.f. in

space (Chap. 4, Sect. 4.5.3, Table 4.3). The lines and columns corresponding to the
longitudinal and torsional motion are eliminated and the matrix is reorganised
considering (6.1 as Sect. 4.5.2, (4.111)):

Kr½ � ¼
Kvii½ � 0 Kvij

� �
0

0 Kwii½ � 0 Kwij
� �

Kvji
� �

0 Kvjj
� �

0
0 Kwji

� �
0 Kwjj

� �
2664

3775 ð6:2Þ

The matrix Kr½ � defines the eight generalised elastic forces at the nodes of the
element in relation to the generalised displacements of the same nodes: in (6.2) the
single sub matrices are defined as follows:

xs

θzs

θysys

xd

θzd

θydyd

Fig. 6.6 Beam finite element used to schematise the rotor
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Kvii½ � Kvij
� �
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ð6:3bÞ

Kw½ � and Kv½ � being, respectively, the beam’s matrices (4 × 4) of stiffness upon
analysing the vertical and horizontal plane motion only (Chap. 4, Sect. 4.5.2.2.3).1

xC

Ω

OP 

yC

y 

x 

OC

Fxc

y 

x 

OC

OP Fyc

Ω

Fig. 6.7 Journal-bearing coupling

1In the following discussion, it is assumed that the rotor has equal bending stiffness in all directions
and, therefore, independent from the angular position of the rotor in directions x and y (in the
formulas (6.3a) and (6.3b) Jx ¼ Jy).
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In a similar manner it is possible to obtain the matrix of mass Mr½ � of the beam
element with 8 DOF (Fig. 6.6):

Mr½ � ¼
Mvii½ � 0 Mvij

� �
0

0 Mwii½ � 0 Mwij
� �

Mvji
� �

0 Mvjj
� �

0
0 Mwji

� �
0 Mwjj

� �
2664

3775 ð6:4Þ

since [Chap. 4, Sect. 4.5.2.2.3, Table 4.2, (4.69c)]:

Mw½ � ¼ Mwii½ � Mwij
� �

Mwji
� �

Mwjj
� �� �
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9
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� 11
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420 � l2k

140
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210

l2k
105

266664
377775 ð6:5aÞ

Mv½ � ¼ Mwii½ � Mwij
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Mwji
� �

Mwjj
� �� �
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35
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210 lk
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420
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420 � l2k

140
9
70

13lk
420

13
35 � 11lk

210

� 13lk
420 � l2k

140 � 11lk
210

l2k
105

266664
377775 ð6:5bÞ

6.2.2 Schematising Bearings

The bearings are the elements that connect the rotor to the casing or the external
supporting structure. Mutual forces are created between shaft and case, functions of
the relative motion between journal and bearing, that depend on the type of bearing
being considered. In order to achieve the definition of an adequate mathematical
model we must define these forces analytically. Referring to the case of fluid
lubricated bearings (see Chap. 5 on this, and more specifically Sect. 5.3.2.2, where
it is assumed that the bearing is stationary, i.e., the foundation infinitely rigid), the
force field acting between journal and bearing, as a result of the fluid film formed,
can be defined via two components, according to the vertical X and horizontal Y
direction (respectively, Fxc and Fyc, see Fig. 6.7) of the resultant action Fc of the
effective distribution of pressures formed in the actual fluid film. The components
Fxc and Fyc are functions of the relative position of the centre of the journal Op with
respect to that of the centre of the bearing Oc, that is:

Fxc ¼ Fxc xc; yc; _xc; _ycð Þ ð6:6aÞ

Fyc ¼ Fyc xc; yc; _xc; _ycð Þ ð6:5bÞ
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where xc and yc are the relative displacements of the centre of the journal Op with
respect to the centre of the bearing Oc in directions X and Y. These forces can be
defined analytically, as mentioned previously in Sect. 5.3.2.2, by integrating the
Reynolds equations. For the sake of convenience, below we will show the basic
references to the theory of lubrication which are necessary to understand the
development of the actual discussion (for further details, see [31, 47, 54]).

6.2.2.1 Analytical Definition of the Static and Dynamic Characteristics
of Bearings

For a lubricated bearing, the Reynolds equations [31, 54] have the following
expression:

@

@h
1

12lCs

@p
@h

h3

 �

þ 2R
b


 �2 @

@g
1

12lCz

@p
@g

h3

 �

¼ XR2

2
@h
@h

þWR2 ð6:7Þ

where:

• R is the radius of the journal;
• b the width of the bearing;
• η (Fig. 6.8) is the abscissa along the width b of the bearing expressed in

dimensionless terms:

g ¼ 2Z
b


 �
�1\g\1ð Þ ð6:8aÞ
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Fig. 6.8 Nomenclature and coordinates in the journal-bearing coupling
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• θ the anomaly that defines the angular position;
• p represents the pressure of the fluid inside the meatus, a function, in general, of

η and θ:

p ¼ p h; gð Þ ð6:8bÞ

• h represents the thickness of the fluid film, also a function of the position inside
the meatus2:

h ¼ h h; gð Þ ) h hð Þ ¼ d� xc sin hþ yc cos h ð6:8cÞ

• W is the approach velocity between the surfaces of the journal and the bearing:

W ¼ @h
@t

¼ W h; gð Þ ) W hð Þ ¼ � _xc sin hþ _yc cos h ð6:8dÞ

• Lastly Cs and Cz are suitable coefficients, functions of the Reynolds number,
which take into account the turbulence that may arise in the meatus [32, 42, 48].

In (6.7) μ represents the viscosity of the lubricant: μ is a function, in turn, of the
local temperature in the meatus:

l ¼ l Tð Þ ð6:9aÞ

Then as the temperature T is variable along the meatus:

T ¼ T h; gð Þ ð6:9bÞ

viscosity μ is, in turn, a function of θ and η, i.e.:

l ¼ l h; gð Þ ð6:9cÞ

In order to define function T h; gð Þ (6.9b) we must solve the problem relating to
the heat exchange that occurs in the bearing (see [52] on this). Given a generic
bearing (with radius R of the journal and width b of the bearing) and having
assigned the angular velocity of rotation Ω of the actual journal, to define Fxc and
Fyc we proceed in the following manner3:

2In general, h is considered to be constant on the longitudinal direction η, so we assume: h (θ,
η) = h(θ).
3More sophisticated methods for defining Fxc and Fyc also take into account the inertial terms
which are, on the contrary, neglected in the Reynolds equations and virtually use the complete
form of the Navier–Stokes equations [31], [54], with significant, unwarranted increases in
calculation times.
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• having assigned coordinates xc and yc, that is, the positions of the centre of the
journal with respect to the bearing;

• the function h ¼ h h; gð Þ and its derivate @h=@hð Þ are univocally defined;
• approach velocity W can also be defined from (6.8d): W is zero if _xc and _yc are

simultaneously zero;
• coefficients Cs and Cz can be brought back [42] to functions of the Reynolds

number referring to the height of the meatus, as shown in Fig. 6.9;
• now it is possible to integrate the Reynolds Eq. (6.7) in the only unknown with:

– finite difference methods [44], [31];
– finite element methods [46];
– approximate semi-analytical methods [54];

• in this way we can obtain the trend of the pressure p ¼ p h; gð Þ along the meatus,
and by integrating this we can calculate the components Fxc and Fyc of the forces
acting on the journal.

Once the forces Fxc and Fyc corresponding to a given position are known and,
obviously, once the various parameters needed to define the bearing’s operating
conditions have been assigned, i.e. the angular velocity Ω, the radial clearance
δ = (R − r) and the viscosity μ of the fluid used, it is possible to obtain the
position occupied by the centre of the journal Op in the bearing given a certain
external load Q.

The locus described by the centre of the journal Op upon variation of the load Q
applied, at constant angular velocity Ω, is defined as the load locus (Chap. 5,
Sect. 5.3.2.2): Fig. 6.10 shows the trend of the load locus for a cylindrical bearing.

For loads Q tending to zero (or velocity Ω tending to infinity), the position Op

occupied by the centre of the journal tends to coincide with the position Oc of the
centre of the bearing. For loads Q tending to infinity (or velocity Ω tending to zero)
the centre of the journal Op tends to the position indicated in Fig. 6.10 with letter A,
corresponding to a runout ec = δ, equal to the radial clearance: the journal in this
position touches the bearing along the lower generatrix.

In general, the centre of the journal Op, for a rotor operating at a given angular
velocity Ω, can be found in a generic position along the load locus (for example,
point C in Fig. 6.10) defined by a certain runout ec and by a certain angle β which,

1000
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10000 100000
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Fig. 6.9 Dependence of
coefficients Cs and Cz on
Reynolds

564 6 Rotordynamics

http://dx.doi.org/10.1007/978-3-319-18200-1_5


www.manaraa.com

for a given type of bearing, is a function of the actual runout, or rather, of the
dimensionless ratio v ¼ ec=d. Typical characteristics of each bearing are the
functions:

A ¼ A vð Þ
b ¼ b vð Þ ð6:10Þ

A vð Þ being defined by the following expressions:

N ¼ Q
b
¼ A vð ÞlXr r

2

d2
! A vð Þ ¼ N

lXr
d2

r2
ð6:11Þ

where N is the load per unit of width, Q is the applied load, b the width of the
bearing, χ the dimensionalised runout and A vð Þ a dimensionless coefficient known
as the “load coefficient”. The load coefficients A vð Þ (6.11) and the load locus (6.10)
for the different types of bearing can be obtained either analytically or experi-
mentally4: Fig. 6.10 shows the trend of the load coefficient A vð Þ in relation to the
dimensionless runout χ, again in the case of a cylindrical bearing.

Given a generic bearing (with radius R* of the journal and width b* of the
bearing), having assigned the angular velocity of rotation X� of the journal, and the
applied load Q� being known, to obtain analytically b vð Þ and A vð Þ we must proceed
in the following manner:

Fig. 6.10 Cylindrical bearing: load locus and load coefficient

4Once the type of bearing has been defined, a certain type of lubricant has been assigned, the input
temperature defined and if the steady-state of the fluid is laminar, A(χ) and β(χ) are univocally
defined. Otherwise, the same quantities are functions of both the input temperature and the
Reynolds number.
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• a numerical value is given to the coordinates of the centre of the journal:

xc ¼ x�c ð6:12aÞ

yc ¼ y�c ð6:12bÞ

• from (6.8c), the trend of the height of the meatus h� ¼ h� h; gð Þ is known;
• if we wish to analyse the steady-state situation (i.e. rotating shaft but with

velocity of the centre of the journal _xc and _yc zero) we will have:

W ¼ 0 ð6:12cÞ

• by integrating (6.7), as stated previously, it is possible to obtain the trend of the
pressures defined by p� ¼ p� h; gð Þ, which are created due to the effect of the
position of the journal x�c and y�c imposed;

• by integrating along the meatus the function p� ¼ p� h; gð Þ, it is possible to
obtain the values F�

xc and F�
yc which, for a generic position, will not generally

give a resultant force that is equal and opposite to load Q� acting on the journal.

The components F�
xc and F�

yc are, therefore, functions of the position x�c and y�c of
the centre of the journal Op with respect to the centre of the bearing Oc: therefore,
we must solve a system of nonlinear equations of the form:

F�
xc x�c ; y

�
c

�  ¼ Q�

F�
yc x�c ; y

�
c

�  ¼ 0
ð6:13Þ

The solution (Fig. 6.11) can be obtained by varying the value of x�c until F�
yc is

zero (using, for example, a bisection method), as load Q�, according to the con-
ventions used in Fig. 6.7, is acting in direction X: also if F�

xc ¼ Q� in correspon-
dence to this pair of values x�c and y�c , then the position defined by the values:

(Fx − P ) = ε2

Fy = 0

x

x2 + Δx

x0

y0y ∗
0 y

Fy = 0
(Fx − P ) = ε1

ε = (Fx − Q )

(Fy = 0)
ε1

ε2

ε
_

Fig. 6.11 Analytical definition of the load locus and the load coefficient
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x�c0 ¼ x�c
y�c0 ¼ y�c

ð6:14aÞ

thus obtained, defines the position of equilibrium of the journal under the action of
the load Q� and of the resultant of the pressures that are created in the meatus.
Since, in general, Fxc

� 6¼ Q�, we vary y�c by recalculating, each time, the value of x�c
which creates the condition Fyc

� ¼ 0, until, for a pair of values xc� ¼ x�co and
yc� ¼ yco�, we also obtain:

F�
xc � Q�\e ð6:14bÞ

with a predetermined tolerance ε. Once these values have been obtained, the runout
ec� can be obtained via:

ec
� ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x�2c0 þ y�2c0

q
ð6:15aÞ

while the angle b� ¼ b� v�ð Þ is given by:

tan b�ð Þ ¼ x�c0
y�c0

ð6:15bÞ

For the generic bearing with geometric characteristics R*, b*, δ* = (R* − r*) and
with a specific lubricant with viscosity μ*, the value of the load Q� acting on the
journal and the steady-state angular velocity X� can be inserted in (6.11) to obtain
from the same equation the value of the load coefficient A� ¼ A� v�ð Þ (since
v� ¼ e�c=d

�� 
) for the assigned pair of values Q� and X�.

By repeating the calculation for different values of Q� or of X� for the bearing
being analysed, it is possible to numerically determine the functions A vð Þ and b vð Þ
in the entire field of definition (0 < χ < 1).5

These functions, as mentioned previously, are univocally defined if, once a
certain ratio is assigned between the width b and the diameter D of the bearing, the
temperature T is assumed to be constant in the meatus: on the contrary, when
having to define the temperature distribution in the meatus, other independent
variables are involved in the problem such as, for example, the input temperature of
the lubricant in the meatus, so we obtain, for each pair of values Q� and X�, families
of curves A vð Þ and b vð Þ functions, in turn, of the input temperature of the lubricant
as well as of the ratio b/D.

Once the force field caused by the presence of the fluid film has been analytically
defined, it is possible to linearise the expressions of Fxc and Fyc around the generic

5As mentioned, A vð Þ and b vð Þ can also be defined experimentally using proximity sensors to
measure the position xco and yco described by the centre of the pin with respect to the bearing,
upon variation of the angular velocity Ω and upon variation of the load applied to bearing Q.
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position of equilibrium of the journal xco and yco, as already shown in Chap. 5,
Sect. 5.3.2.2, regarding systems surrounded by force fields, arriving at an expres-
sion of the form:

Fxc ¼ Fxc0 þ @Fxc

@xc


 �
0
xc � xc0ð Þ þ @Fxc

@yc


 �
0
yc � yc0ð Þ þ @Fxc

@ _xc


 �
0
_xc þ @Fxc

@ _yc


 �
0
_yc

Fyc ¼ Fyc0 þ @Fyc

@xc


 �
0
xc � xc0ð Þ þ @Fyc

@yc


 �
0
yc � yc0ð Þ þ @Fyc

@ _xc


 �
0
_xc þ @Fyc

@ _yc


 �
0
_yc

ð6:16Þ

Using xc and yc to indicate the independent variables that describe the perturbed
motion around the position of equilibrium we can make the change of variables:

xc ¼ xc � xc0 ð6:17aÞ

yc ¼ yc � yc0 ð6:17bÞ

the expressions (6.16) become:

Fxc ¼ Fxc0 þ Kxxxc þ Kxyyc þ Rxx _xc þ Rxy _yc ð6:18aÞ

Fyc ¼ Fyc0 þ Kyxxc þ Kyyyc þ Ryx _xc þ Ryy _yc ð6:18bÞ

The terms:

Fxc � Fxc0 ¼ Fxc ð6:19aÞ

Fyc � Fyc0 ¼ Fyc ð6:19bÞ

represent the dynamic contributions of the forces caused by the presence of the
meatus, since:

Fxc ¼ Kxxxc þ Kxyyc þ Rxx _xc þ Rxy _yc ð6:20aÞ

Fyc ¼ Kyxxc þ Kyyyc þ Ryx _xc þ Ryy _yc ð6:20bÞ

where Kxx, Kxy etc. are the terms of equivalent damping and stiffness due to the film
of lubricant previously defined in Chap. 5, Sect. 5.3.2.2. To define these coefficients
analytically we use their actual definition, i.e. (see Chap. 5, Sect. 5.3.2.2 on systems
surrounded by force fields):

Kxx ¼ @Fxc

@xc


 �
0
; Kyx ¼ @Fyc

@yc


 �
0
; . . . etc: ð6:21Þ
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As mentioned previously, the derivates are calculated in the position of equi-
librium of the journal obtained in the way described previously and defined, for a
given load Q� and for a specific angular velocity X�, from values:

xc ¼ x�c0; yc ¼ y�c0; _x�c0 ¼ 0; _y�c0 ¼ 0 ð6:22Þ

These derivates cannot be estimated analytically as the functions Fxc ¼
Fxc xc; yc; _xc; _ycð Þ and Fyc ¼ Fyc xc; yc; _xc; _ycð Þ can only be defined numerically by
integrating the Reynolds equation: so the derivates must by estimated by approx-
imating them with the relative difference quotients.

More specifically, defining as described above the position of equilibrium of the
journal, starting from that position, variable x�c0, for example, increases by a value
equal toDxc and is calculated using the same procedures described previously (i.e. by
integrating the Reynolds equation), the value of the forces caused by the meatus Fxc

and Fyc for the new position of the centre of the journal Op x�c0 þ Dxc; y�c0; 0; 0
� 

:

Fxc ¼ Fxc x�c0 þ Dxc; y�c0; 0; 0
�  ð6:22aÞ

Fyc ¼ Fyc x�c0 þ Dxc; y�c0; 0; 0
�  ð6:22bÞ

The variations of the forces due to the oil-film corresponding to increase Dxc of
the variable x�c0 only, are, therefore:

DFxc ¼ Fxc x�c0 þ Dxc; y�c0; 0; 0
� � Fxc x�c0; y�c0; 0; 0

�  ð6:23aÞ

DFyc ¼ Fyc x�c0 þ Dxc; y�c0; 0; 0
� � Fy x�c0; y�c0; 0; 0

�  ð6:23bÞ

By approximating the derivates (6.21) with the difference quotient, we can
calculate the quantities:

Kxx ¼ @Fxc

@xc


 �
0
� DFxc

Dxc
; Kyx ¼ @Fyc

@xc


 �
0
� DFyc

Dxc
ð6:24Þ

By subsequently increasing the variable y�c0 of Dyc, it is possible to similarly
obtain the stiffnesses Kxy and Kyy. In a similar way it is also possible to determine
the value of the equivalent damping terms Rxx etc. by starting with the configuration
of equilibrium and giving increases in velocity D _xc and D _yc and defining the
equivalent dampings via the respective difference quotients:

Rxx ¼ DFxc

D _xc
¼ Fxc x�c0; y

�
c0; D _xc; 0

� � Fxc x�c0; y
�
c0; 0; 0

� 
D _xc

ð6:25Þ

Ryx ¼ DFyc

D _xc
¼ Fyc x�c0; y�c0; D _xc; 0

� � Fyc x�c0; y�c0; 0; 0
� 

D _xc
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DFxc and DFyc being the increases of force caused by the presence of the oil-film
due to the effect of an increase in velocity D _xc. In these calculations we can vary the
values of the increases Dxc, Dyc, D _xc and D _yc to confirm that the difference quotient
actually converges at the value of the derivates.

6.2.2.2 Experimentally Defining the Dynamic Characteristics
of Bearings

The parameters of equivalent damping and stiffness of the oil-film can also be
defined experimentally: to do this, the journal or the bearing (or both) is excited to
vibrate around the position of equilibrium for a given value of external load Q� and
a given angular velocity of the rotor X�. The excitation is usually sinusoidal with
pulsation ω and can be due to either an unbalance (so ω = Ω = angular velocity of
the rotor) or to generic external excitations:

F ¼ F0e
ixt ð6:26Þ

so, not considering the nonlinearity and any disturbances, the response, i.e. the
relative vibration between journal and bearing caused by this excitation, is also
sinusoidal with equal pulsation. Under these assumptions forces Fxc and Fyc and
displacements xco and yco are sinusoidally varying quantities, which can be
expressed analytically by expressions such as:

xc ¼ Xc0e
ixt; Fxc ¼ Fxc0e

ixt ð6:27aÞ

yc ¼ Yc0e
ixt; Fyc ¼ Fyc0e

ixt ð6:27bÞ

where, we should remember, ω is the pulsation of the vibration, which does not
necessarily coincide with X�. The Eqs. (6.20a, 6.20b) can thus be expressed as:

Fxc0 ¼ KxxXc0 þ KxyYc0 þ ixRxxXc0 þ ixRxyYc0 ð6:28aÞ

Fyc0 ¼ KyxXc0 þ KyyYc0 þ ixRyxXc0 þ ixRyyYc0 ð6:28bÞ

where Fxc0; Fyc0; Xc0; Yc0 are complex quantities.
Using proximity sensors it is possible to measure the relative displacements xc tð Þ

and yc tð Þ between journal and bearing and, via pressure sensors, we can obtain the
distribution of pressure inside the meatus [42, 43] and then obtain forces Fxc tð Þ and
Fyc tð Þ by integrating on the entire bearing; alternatively, these forces can be
measured directly by dynamometric supports.

These forces, as well as displacements xc and yc, actually contain the contri-
bution to frequency ω and any higher harmonics, as well as the contribution caused
by excitation at the angular frequency X� of the rotor and any harmonics of a higher

570 6 Rotordynamics



www.manaraa.com

order, not to mention disturbances of an aleatory nature: so we must separate the
contribution to the response caused by the forcing element (with frequency ω) from
the contribution of the other harmonics caused by unbalances or other causes, by
performing harmonic analysis of the different quantities, with fundamental fre-
quency equal to ω, and thus obtain just the synchronous components
Fxc0; Fyc0; Xc0; Yc0 that appear in (6.28a, 6.28b).

From the two vectorial Eqs. (6.28a, 6.28b), corresponding to four scalar equa-
tions, it is not possible to obtain the eight unknowns Kxx; Kxy; . . .Ryx and Ryy: to do
this, we must write at least another four equations, which can once again be the

(6.28a, 6.28b) relating, however, to different values of X
ð2Þ
c0 and Y

ð2Þ
c0 and, therefore,

different values of the forces F
ð2Þ
xc0 and F

ð2Þ
yc0:

• if we work with the same pulsation of the forcing element ω, we need to change

the module and phase of excitation to obtain different values of F
ð2Þ
xc0 and F

ð2Þ
yc0

and, therefore, of X
ð2Þ
c0 and Y

ð2Þ
c0 , but not linearly dependent on previous Fxc0 and

Fyc0 and, therefore, of Xc0 and Yc0;
• alternatively, we must change the excitation pulsation ω, to equal angular

velocity X�, in order to obtain different values of X
ð2Þ
c0 and Y

ð2Þ
c0 , again, not

linearly dependent on the previous Xc0 and Yc0.

In both cases it is possible to arrive at a system of eight equations in the eight
unknowns Kxx; Kxy; . . .Ryx and Ryy with an approach that is, therefore, deterministic.

Alternatively it is possible to use a procedure of minimisation if the pairs of

values X
ðiÞ
co ; Y

ðiÞ
co ; F

ðiÞ
yco; F

ðiÞ
xco, are more than two.

Suppose we have n sets of values X
ðiÞ
co ; Y

ðiÞ
co ; F

ðiÞ
yco; F

ðiÞ
xco (i = 1, 2, …n) separate

from each other and not linearly dependent, obtained by varying, for example, the
frequency of excitation ωi while keeping the angular velocity X� constant: as n > 2,
(6.28a, 6.28b) will not be strictly satisfied, as the number of equations is higher than
the number of unknowns. Therefore, to define the values of stiffnesses Kxx; Kxy; . . .
and dampings Ryx; Ryy; . . ., we must use methods of minimisation such as, for
example, the least squares approach: for this purpose we define, as residuals, the
differences δix and δiy between the measured value of each component of the force
and the corresponding value given by the second member of (6.28a, 6.28b) in
correspondence to the generic ith test:

dix ¼ F
ðiÞ
xc0 � KxxX

ðiÞ
c0 � KxxY

ðiÞ
c0 � ixRxxX

ðiÞ
c0 � ixRxyY

ðiÞ
c0

diy ¼ F
ðiÞ
yc0 � KyxX

ðiÞ
c0 � KyyY

ðiÞ
c0 � ixRyxX

ðiÞ
c0 � ixRyyY

ðiÞ
c0 i ¼ 1; . . .; nð Þ

ð6:29aÞ
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Using the least squares method, we must minimise the residuals, i.e. impose:

f Kxx;Kxy;Kyx;Kyy;Rxx;Rxy;Ryx;Ryy
�  ¼Xn

i¼1

d2ix þ d2iy ¼ min ð6:29bÞ

at this point, f Kxx;Kxy; . . .
� 

is a function of the problem’s unknowns only, that is,
of the equivalent dampings and stiffnesses of the oil-film. To minimise function
f we must impose the following 8 relations

@f
@Kxx

¼ 0;
@f
@Kxy

¼ 0;
@f
@Kyx

¼ 0;
@f
@Kyy

¼ 0

@f
@Rxx

¼ 0;
@f
@Rxy

¼ 0;
@f
@Ryx

¼ 0;
@f
@Ryy

¼ 0
ð6:29cÞ

which result in writing 8 complete algebraic equations in the 8 unknowns Kxx; Kxy,
etc. These equations can be rewritten, with a more compact expression, in matrix
form: using δ to define the vector containing the scalars δix and δiy (with i = 1, n):

d ¼

d1x
d1y
. . .
dnx
dny

8>>>><>>>>:

9>>>>=>>>>; ¼ N � C½ �j ð6:30aÞ

j being the vector containing the problem’s unknowns:

j ¼

Kxx

Kxy

Kyx

Kyy

Rxx

Rxy

Ryx

Ryy

8>>>>>>>>>><>>>>>>>>>>:

9>>>>>>>>>>=>>>>>>>>>>;
ð6:30bÞ

[C] the coefficient matrix and, lastly, N the vector containing the components of
forces Fxc0; Fyc0. The function f to be minimised (6.29b) can then be rewritten as:

f ¼ dTd ¼ N � C½ �jð ÞT N � C½ �jð Þ ¼ min ð6:31aÞ
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or rather, if we wish to weigh each residual according to the accuracy with which
we assume it has been calculated, as:

f ¼ N � C½ �jð ÞT W½ � N � C½ �jð Þ ¼ min ð6:31bÞ

where [W] is a weighing matrix that can be obtained from the correlation matrix of
the measurements, to take into account the greater or lesser reliability of these
measurements [64, 68, 70, 72]. So (6.29c) can be rewritten as:

@f
@j

� �T

¼ @ N � C½ �jð ÞT W½ � N � C½ �jð Þ
@j

( )T

¼ 0 ð6:31cÞ

i.e.:

� 2 C½ �T W½ �N þ 2 C½ �T W½ � C½ �j ¼ 0

) j ¼ C½ �T W½ � C½ �� ��1
C½ �T W½ �N

ð6:31dÞ

Thus, similarly to the scalar approach, it is possible to obtain from (6.31d) a
system of eight equations, in the eight unknowns j that define the equivalent
damping and stiffness coefficients of the oil-film.

In this way it is possible, either deterministically or using minimisation
approaches, to define the curves that express the trend of the equivalent dampings
and stiffnesses of the oil-film, in relation to X� and load Q� borne by the bearing.

Usually these values, obtained both analytically and experimentally, are shown
in relation to the dimensionless runout v ¼ ec=d and themselves rendered dimen-
sionless, in respect to load and clearance, using the following relations:

Cxx ¼ Kxx

Q=d
; Cxy ¼ Kxy

Q=d
; Cyx ¼ Kyx

Q=d
; Cyy ¼ Kyy

Q=d
ð6:32aÞ

exx ¼ Rxx

Q=Xd
; exy ¼ Rxy

Q=Xd
; eyx ¼ Ryx

Q=Xd
; eyy ¼ Ryy

Q=Xd
ð6:32bÞ

Figure 6.12 shows the dimensionless functions (6.32a, 6.32b) calculated using
the Reynolds equation, while assuming a constant temperature in the meatus, for a
cylindrical bearing. Incidentally, we should remember, as already seen in the
chapter on systems surrounded by force fields, that, in general, Kxy 6¼ Kyx and
therefore the force field created by the presence of the oil film is nonconservative in
its positional part, with the exception of tilting pad bearings.
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6.2.3 Defining the Field of Forces in Seals or More
in General Between Rotor and Stator

In a compressor, a turbine or similar machinery, the rotor is wet by a fluid that
creates a force field which, as stated previously, can significantly influence the
dynamic behaviour of the rotor and its supporting structure. As current research
stands, in general, this force field is not well defined, either analytically or exper-
imentally, except in specific cases, such as, for example, that of the interstage seals
of fluid pumps.

This problem [55–58, 60] can be traced back to the issues already addressed
relating to lubricated bearings: the seal can be seen (Fig. 6.13) as a fluid film
bearing, fed laterally by the fluid which is at its highest pressure (the difference
between the pressures at the two sides of the seal can even be of several dozen
atmospheres). To define the force field that is created in the seal it is possible to use
the same analytical approaches already described and used for lubricated bearings,
as well as the same experimental methods, so we refer the reader to the previous
section on this subject. We should remember that while in bearings distribution of
pressures, and thus the force field generated by them, is created by the mechanism
of hydrodynamic lubrication induced by the circumferential flow, pressure distri-
bution in seals is governed mainly by the axial flow created by the difference in
pressure generated between stage and stage (the losses of load that the fluid
undergoes at the entrance of the seal are those that mainly define the force field).

Similarly to what we saw for bearings, we can, by linearising the force field, also
define the equivalent damping and stiffness coefficients for seals; also for seals,
generally, Kxy 6¼ Kyx and so there can be problems of instability [55, 59].
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Fig. 6.12 Trend of the
dimensionless stiffness and
damping coefficients for a
cylindrical bearing (T = const)
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In the case of seals where the fluid is a gas, like in steam turbines, the problem is
similar to that of seals with liquid fluid, but with the added complication associated
with the compressible nature of the actual fluid, which makes analytical schemat-
isation of the problem quite difficult, but then again, so is a correct experimental
definition of the same force field. As research currently stands, it is possible to
confirm that some experimental attempts to define stiffnesses and dampings of this
type of seal, although having already been performed, have shown a lack of reli-
ability in the results: in this case too, however, we obtain non-symmetrical
equivalent stiffness matrices. Vice versa, as regards the fluid’s actions on the entire
blade system to define the force field acting on a row of blades (Fig. 6.14) or on the
blade disks in relation to the relative shaft-stator displacement, the problem
becomes considerably more complicated, as it is affected not only by the fluid-
dynamic behaviour of the blade, caused by the displacements relating to the stator,
but also by the radial clearance of the row of blades in respect to the casing. In this
case, there are currently no approaches, either analytical or experimental, aimed at
providing indications on the nature of this force field, so when schematising the
rotor this effect is generally ignored.

6.2.4 Schematising the Casing and the Supporting Structure

As stated previously, the casing may, in turn, be similar to either a cylindrical body
(Fig. 6.2) or to a body with a more complex shape (Fig. 6.1):

• in the first case it can be easily schematised with beam elements, as shown in
Fig. 6.15;

• in the event, however, that the casing has a more complex shape, we can resort
to a schematisation of the casing with three-dimensional finite elements.

Fig. 6.13 Schematisation of an interstage seal
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However, this approach is very laborious and is also, for reasons that we will
explain below, generally discarded: we should also mention that the casing is
generally constrained to a foundation, so we must also take into account the
“casing + foundation” system. Although it is true that by using a schematisation
with finite elements we could take into account the foundation, however complex it
is, the difficulties in calculation associated with such a procedure can hardly be
justified if we consider the fact that, even using a sophisticated schematisation, it
would be difficult to reproduce the problems relating to the connection between
casing and foundation plate (elasticity of the connecting elements, more or less
accurate coplanarity of the supports, friction in the connections etc.).

So for these reasons, unless the casing can be easily schematised (like the
example in Fig. 6.15) it is preferable to reproduce the casing and relevant foun-
dation together, using simple models that reproduce the real forces exchanged
between supporting structure and shaft in qualitative and, as far as possible,
quantitative terms.

In this regard, we use models, for example, made up of mass-spring-damper type
systems with one d.o.f.: in doing so, the model of a shaft, considering the oil-film or

Fig. 6.14 Actions of the fluid on the blade system
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the seals and the foundation, becomes that shown in Fig. 6.16 where K0, R0 are used
to briefly indicate the stiffnesses and the dampings of the oil-film, while the weight
Ms, stiffness Ks and damping Rs simulate the behaviour of the casing and the
foundation, at the connection points with the rotor (bearings).

6.2.4.1 Matrix of the Mechanical Impedances A Xð Þ½ �

A more sophisticated model is that which reproduces the behaviour of the casing
and of the foundation using the mechanical impedances of this sub-system. The
matrix of the mechanical impedances of the structure supporting the rotor is the
matrix A Xð Þ½ � defined by the complex relation:

A Xð Þ½ �Xco ¼ Fco ð6:33Þ

where Xco is the vector of the displacements of the supporting structure, in corre-
spondence to the seals or the bearings, Fco is the vector of the forces transmitted by

Fig. 6.15 Schematisation of cylindrical shaped casing (Fig. 6.2)

Fig. 6.16 Simplified schematisation of the casing-foundation system in 1 d.o.f. systems
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the structure (casing + foundation) due to the effect of the same displacements Xco:
these forces are transmitted to the shaft via the seals or the oil-film. This formu-
lation, as we will see, is valid in the event that the displacements, i.e. the vibrations,
are sinusoidal with pulsation Ω, so vectors Xco and Fco are of the form:

Xco ¼ Xcoe
iXt

Fco ¼ Fcoe
iXt

ð6:34Þ

with Xco and Fco being, in general complex numbers. Therefore, the matrix of the
mechanical impedances A Xð Þ½ � is usually also complex: to define this matrix we can
use different methods, both analytical and experimental.

6.2.4.1.1 Analytical Determination of A Xð Þ½ �

As mentioned, defining the matrix of mechanical impedances A Xð Þ½ � can be done in
a purely analytical way, by schematising, for example, the casing and relative
foundation with the usual finite element techniques: Fig. 6.17 shows one possible
schematisation of the foundation of the turbogenerator group shown in Fig. 6.1.

Now we will analyse, separately, the two rotor + oil film and foundation sub-
systems that make up the overall rotor-oil film-foundation system, while high-
lighting the forces Fc that they actually exchange, Fig. 6.18.

Now we will analyse just the foundation: if we use xf to define the vector that
contains the total d.o.f. of the finite element model of the supporting structure,
considered to be divided into two sub-vectors xc and xfi:

xf ¼
xc
xfi

� �
ð6:35aÞ

Fig. 6.17 Finite element
schematisation of a
foundation frame
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having used xc to indicate the vector containing the d.o.f. relating to the connection
nodes of the shaft-supporting structure and xfi for the vector that contains the d.o.f.
of the remaining nodes of the foundation.

So the motion equations of just the foundation will be, having divided them as in
(6.35a):

Mcc½ � Mci½ �
Mic½ � Mii½ �

� �
€xc
€xfi

� �
þ Rcc½ � Rci½ �

Ric½ � Rii½ �
� �

_xc
_xfi

� �
þ Kcc½ � Kci½ �

Kic½ � Kii½ �
� �

xc
xfi

� �
¼ Fc

Ffi

� �
ð6:35bÞ

[Mf], [Rf] and [Kf] being, respectively, the matrices of mass, damping and stiffness
of just the foundation, assumed to be already constrained6:

Mf
� � ¼ Mcc½ � Mci½ �

Mic½ � Mii½ �
� �

; Rf
� � ¼ Rcc½ � Rci½ �

Ric½ � Rii½ �
� �

; Kf
� � ¼ Kcc½ � Kci½ �

Kic½ � Kii½ �
� �

ð6:35cÞ

In (6.35b) Fc and Ffi represent, respectively, the forces that the rotor discharges
on the foundation and the forces (if any) that act on other d.o.f. In the hypothesis of
analysing the dynamic response of the overall system at steady-state for sinusoidal
forces applied at just the shaft nodes:

Fr ¼ Froe
iXt ð6:36aÞ

forces, which are also sinusoidal, will only arrive on the foundation via the
bearings:

Ff ¼ Fc
0

� �
¼ Fco

0

� �
eiXt ð6:36bÞ

so, at steady-state, the solution of (6.35b) will be of the form:

xf ¼ Xfoe
iXt ¼ Xco

Xfio

� �
eiXt ð6:36cÞ

6The matrices defined in this way thus represent just the part relating to the actual free d.o.f. of the
finite element model of the foundation: with the nomenclature already defined in Chap. 4,
Sect. 4.4.7, we thus have:

Mf
� � ¼ MfLL

� �
; Rf
� � ¼ RfLL

� �
; Kf
� � ¼ KfLL

� �
: ð6:6:1Þ
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which replaced in the same equations leads to:

�X2 Mcc½ � Mci½ �
Mic½ � Mii½ �

� �
þ iX

Rcc½ � Rci½ �
Ric½ � Rii½ �

� �
þ Kcc½ � Kci½ �

Kic½ � Kii½ �
� �� �

Xc
Xfi

� �
¼ Fco

0

� �
ð6:37aÞ

Considering the second matrix equation of (6.37a):

�X2 Mic½ �Xco � X2 Mii½ �Xfio þ iX Ric½ �Xco þ iX Rii½ �Xfio þ Kic½ �Xco þ Kii½ �Xfio ¼ 0

ð6:37bÞ

it is possible to express Xfio as a function of the displacements of the connection
nodes Xco:

Xfio ¼ �X2 Mii½ � þ iX Rii½ � þ Kii½ �� ��1 �X2 Mic½ � þ iX Ric½ � þ Kic½ �� �
Xco

¼ Cic Xð Þ½ �Xco

ð6:37cÞ

Replacing (6.37c) in the first matrix equation of (6.37a):

� X2 Mcc½ �Xco � X2 Mci½ �Xfio þ iX Rcc½ �Xco

þ iX Rci½ �Xfio þ Kcc½ �Xco þ Kci½ �Xfio ¼ Fco

ð6:38aÞ

we arrive at:

�X2 Mcc½ � þ iX Rcc½ � þ Kcc½ �� �
Xco �X2 Mci½ � þ iX Rci½ � þ Kci½ �� �

Xfio ¼ Fco ð6:38bÞ

i.e.:

�X2 Mcc½ � þ iX Rcc½ � þ Kcc½ �� �þ �X2 Mci½ � þ iX Rci½ � þ Kci½ �� �
Cic Xð Þ½ �� �

Xco ¼ Fco

) A Xð Þ½ �Xco ¼ Fco

ð6:38cÞ

It is then possible to define the matrix A Xð Þ½ � of the Eq. (6.33) as:

A Xð Þ½ � ¼ �X2 Mcc½ � þ iX Rcc½ � þ Kcc½ �� �þ �X2 Mci½ � þ iX Rci½ � þ Kci½ �� �
Cic Xð Þ½ �� �

ð6:39Þ

As we can see, this operation, known as dynamic condensation, makes it pos-
sible to formally eliminate the d.o.f. xfi, relating to nodes that are not connected,
from the equations of motion, without introducing any simplification: we should
also remember that this operation is only possible in the frequency domain and not
in the time domain. Now we will analyse the rotor + oil film sub-system in
Fig. 6.18: we use x to define the vector that contains the total d.o.f. of the rotor
model xr and the connection nodes xc:
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x ¼ xr
xc

� �
ð6:40aÞ

The motion equations of just the rotor, including the terms relating to the
equivalent stiffnesses and the dampings of the oil-film, will be, in divided form, as
follows:

Mrr½ � Mrcf
� �

Mcfr
� �

Mcfcf
� �" #

€xr
€xc

� �
þ Rrr½ � Rrcf

� �
Rcfr
� �

Rcfcf
� �" #

_xr
_xc

� �

þ Krr½ � Krcf
� �

Kcfr
� �

Kcfcf
� �" #

xr
xcf

( )
¼ Fr

�Fc

� � ð6:40bÞ

[M], [R] and [K] being, respectively, the matrices of mass, damping and stiffness of
just the rotor and the oil-film:

M½ � ¼ Mrr½ � Mrcf
� �

Mcfr
� �

Mcfcf
� �� �

; R½ � ¼ Rrr½ � Rrcf
� �

Rcfr
� �

Rcfcf
� �� �

; K½ � ¼ Krr½ � Krcf
� �

Kcfr
� �

Kcfcf
� �� �
ð6:40cÞ

In (6.40b) Fr and Fc represent, respectively, the forces applied to the rotor and
the forces exchanged with the foundation (the negative sign satisfies the principle of
action and reaction, Fig. 6.18).7 Assuming we analyse the dynamic response of the
overall system at steady-state for sinusoidal forcing elements at just the shaft nodes
(6.36a), the solution of (6.40b) will be as follows:

Fig. 6.18 The overall model of the rotor-oil-film-foundation system

7It is assumed positive the direction of Fc as shown in Fig. 6.18.
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x ¼ Xoe
iXt ¼ Xro

Xco

� �
eiXt ð6:41aÞ

which replaced in the same equations leads to:

�X2 Mrr½ � Mrcf
� �

Mcfr
� �

Mcfcf
� �� �

þ iX
Rrr½ � Rrcf

� �
Rcfr
� �

Rcfcf
� �� �

þ Krr½ � Krcf
� �

Kcfr
� �

Kcfcf
� �� �� �

Xro
Xco

� �
¼ Fro

�Fco

� �
ð6:41bÞ

E Xð Þ½ � Xro
Xco

� �
¼ Fro

�Fco

� �
ð6:41cÞ

[E] being the elastodynamic matrix of the rotor + oil film sub-system:

E½ � ¼ �X2 Mrr½ � Mrcf
� �

Mcfr
� �

Mcfcf
� �� �

þ iX
Rrr½ � Rrcf

� �
Rcfr
� �

Rcfcf
� �� �

þ Krr½ � Krcf
� �

Kcfr
� �

Kcfcf
� �� �� �

ð6:41dÞ

At this point it is possible to rewrite (6.38c) as:

0½ � 0½ �
0½ � A Xð Þ½ �

� �
Xro
Xco

� �
¼ 0

Fco

� �
ð6:42aÞ

By replacing (6.42a) in (6.41b) we then obtain:

E Xð Þ½ � þ 0½ � 0½ �
0½ � A Xð Þ½ �

� �� �
Xro
Xco

� �
¼ Fro

0

� �
ð6:42bÞ

In this way, it is possible to rigorously define the dynamic response of the
complete rotor-oil film-foundation system, considering as independent variables
just the rotor nodes and nodes of connection with the foundation: the mechanical
impedance matrix A Xð Þ½ � is added algebraically to the elastodynamic matrix E Xð Þ½ �
of the rotor and the oil film. Once (6.42b) has been solved it is also possible to
obtain, via (6.37c), the displacements of the interior nodes of the foundation Xfio.

Using impedances to reproduce the behaviour of the supporting structure is
possible if we study the response of the complete system to a sinusoidal forcing
action: below we will see how most problems relating to the dynamics of rotors can
be analysed via the frequency response of the complete system, so, in most cases of
practical interest, it is possible to introduce the effect of the foundation via its
mechanical impedances.

The mechanical impedance method is also advantageous because it is possible to
estimate the matrix A Xð Þ½ � experimentally as shown in the following section.
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6.2.4.1.2 Experimentally Determining A Xð Þ½ �

To experimentally evaluate the mechanical impedance matrix A Xð Þ½ �, we must use a
sinusoidal force to excite just the foundation: in other words, the rotor must be
removed and in correspondence to the bearings we use suitable actuators to apply
harmonic forces (6.43a) and measure the corresponding displacements.8 Thus
applying, in a generic point “k” corresponding to a bearing, as shown in Fig. 6.19:

Fck ¼ Fckoe
iXt ð6:43aÞ

a harmonic force, we must simultaneously measure the displacements X kð Þ
c0 at all the

connection points between structure and shaft (i.e. the nc connection points of the
bearings and seals)9:

x kð Þ
c ¼ X kð Þ

c0 e
iXt ¼

X kð Þ
c01

X kð Þ
c02
. . .
X kð Þ
c0k
. . .
X kð Þ
c0nc

8>>>>>>><>>>>>>>:

9>>>>>>>=>>>>>>>;
eiXt ð6:43bÞ

The exciter must transmit a sinusoidal force at frequency Ω and this frequency is
made to vary continuously in the frequency range concerned, so as to obtain a

vector X kð Þ
c0 Xð Þ that provides the displacements in the supports (bearings and seals),

function of Ω, for a forcing element applied in the kth bearing. This procedure must

Fig. 6.19 Experimental determination of mechanical impedances

8This operation involves considerable difficulty during installation of the group and this consid-
eration makes the approach practically useless.
9In fact, although the excitation force is harmonic, the effect of noise is added to it: so for this
reason the output is, in part, random. To obtain the part that is coherent with the excitation
imposed, it is necessary to carry out a harmonic analysis of the output that is synchronous with the
excitation, so as to eliminate any possible external disturbances.
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be repeated for all the other bearings (k = 1, 2, …, nc). It is thus possible to define a
complex matrix B Xð Þ½ � of deformability, defined by the relation:

B Xð Þ½ �Fco ¼ Xco ð6:43cÞ

where Xco and Fco are the quantities defined previously. The matrix B Xð Þ½ � con-
tains, aligned by columns, the vectors X

1ð Þ
c0 ; X

2ð Þ
c0 ; . . .; X

kð Þ
c0 ; . . .; X

ncð Þ
c0 , obtained by

shifting the excitation force in different points (k = 1, 2, …nc) and dividing the

elements of vectors X
1ð Þ
c0 ; X

2ð Þ
c0 ; . . .; X

kð Þ
c0 ; . . .; X

ncð Þ
c0 (6.43b) by the value (complex)

of the applied force Fcko (6.43a): the deformability matrix B Xð Þ½ � is, in fact, defined
by the displacements Xco due to unitary force:

B Xð Þ½ � ¼ X
1ð Þ
co X

2ð Þ
co . . . X

kð Þ
co . . . X

ncð Þ
co

h i
ð6:44aÞ

Considering relations (6.33) and (6.43b) the following relation is obvious:

A Xð Þ½ � ¼ B Xð Þ½ ��1 ð6:44bÞ

i.e. it is possible to obtain the mechanical impedance matrix (complex) by inverting
the deformability matrix. The experimental approach has the advantage of not
relying on any analytical schematisation, but on the other hand is quite laborious as
it is necessary to carry out as many tests as there are bearings or shaft-supporting
structure connection points while having, amongst other things, to apply the
excitation force at each bearing according to two orthogonal directions (generally
horizontal and vertical). To make this procedure less laborious we can use ana-
lytical methods based on modal identification techniques (Chap. 8): with these
methods it is possible, by knowing just one column of the deformability matrix
B Xð Þ½ �, necessarily obtained in experimental form, to define the vibration modes
and the relative deformations (i.e. eigenvalues and eigenvectors) of the structure
and, via a modal approach (Chap. 2, Sect. 2.5), i.e. using the principal coordinates,
define the other columns without, however, repeating the tests regarding the other
bearings [29–31, 33, 41, 45, 49–51, 53, 87, 90].

6.2.5 The Overall Model (an Example of Application)

Now we will see how it is possible to arrive at writing the overall equations of the
entire system, made up of shaft, bearings and relative foundation, by referring to a
specific example. For ease of discussion we will consider the simplified model in
Fig. 6.20, where the foundation has been simulated by means of vibrating one d.o.f.
systems.
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We define with:

x ¼ xr
xc

� �
ð6:45aÞ

the vector containing the displacements of the rotor xr and supports xc. We assume,
again for simplicity, that the rotor is schematised with five beam elements: sche-
matisation will obviously vary depending on the rotor being considered and the
range of frequencies concerned. The following four coordinates will be associated
with the generic ith node [Fig. 6.6, (6.1)]:

xi ¼
xi
hyi
yi
hxi

8>><>>:
9>>=>>; i ¼ 1; 6ð Þ ð6:45bÞ

x4

θx4

θx4y4

PART. C 

PART. B 

X2

X I
c

R I
co

K I
co

K I
cv R I

cv

YI
c

Y2

PART. B PART. C

PART. A

1 1 2 3 
3 4 

4 
5 

5 
6 

2 

x5

θy5y5

xs

θxs

θysys

PART. A

RCV
I

MCV
I

KCV
I KCV

II RCV
II

MCV
II

F Iy

F Iy
F Ix

F Ix

Fig. 6.20 The rotor + oil film + foundation sub-systems for calculating the matrix of mechanical
impedances A Xð Þ½ �
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Each support requires two d.o.f.:

x jc ¼
x jc
y jc

� �
j ¼ I; IIð Þ ð6:45cÞ

namely, the displacement in a vertical x jc and horizontal y jc direction, for a total of
four d.o.f. (in the case with two bearings being analysed). These independent
variables xc are arranged, for convenience, in the total vector of the variables after
the d.o.f. of the shaft nodes xr:

x ¼

x1
hy1
y1
hx1. . .
x6
hy6
y6
hx6
xIc
yIc
xIIc
yIIc

8>>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>>:

9>>>>>>>>>>>>>>>>>>=>>>>>>>>>>>>>>>>>>;

¼

x1
x2
x3
x4
x5
x6
��
xIc
xIIc

8>>>>>>>>>>>><>>>>>>>>>>>>:

9>>>>>>>>>>>>=>>>>>>>>>>>>;
¼ xr

xc

� �
ð6:46aÞ

xc being the vector of the d.o.f. relating to just the supports:

xc ¼
xIc
yIc
xIIc
yIIc

8>><>>:
9>>=>>; ð6:46bÞ

and xr that relating to the nodes of just the shaft.
More specifically, we will analyse the conditions of perturbed motion around the

“steady-state condition” (i.e. that by which the journal rotates in the bearing with
constant angular velocity Ω, without performing oscillations within the bearing): for
this reason, the coordinates x used (6.46a) represent just the perturbation around this
condition, due to dynamic forces applied to the rotor. If we wish to write the motion
equations of the complete system using the Lagrange equations, we must define the
various forms of energy associated with the system being analysed. The total
potential energy V is given by the sum of terms Vr associated with the rotor
(schematised, as mentioned, with finite beam elements, see Sect. 6.2.1) and with the
terms correlated to the foundation Vc:

V ¼ Vr þ Vc ¼ 1
2

X5
k¼1

xTk Krk½ �xk þ
1
2
xTc Kc½ �xc ð6:47aÞ
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(6.45b) being:

xk ¼ xks
xkd

� �
¼ xi

xiþ1

� �
ð6:47bÞ

the vector relating to the generic kth finite beam element relating to the rotor and
Krk½ � its stiffness matrix (6.2). In (6.47a) Kc½ � is the elastic matrix relating to the
elastic support elements (6.46b):

Kc½ � ¼
KI
cv 0 0 0
0 KI

co 0 0
0 0 KII

cv 0
0 0 0 KII

co

2664
3775 ð6:47cÞ

The kinetic energy Ec is similarly made up of two terms:

Ec ¼ Ecr þ Ecc ¼ 1
2

X5
k¼1

_xTk Mrk½ � _xk þ
1
2
_xTc Mc½ � _xc ð6:48aÞ

Mrk½ � being the mass matrix of the finite generic element (6.4) and Mc½ � the mass
matrix relating to the supports:

Mc½ � ¼
MI

cv 0 0 0
0 MI

co 0 0
0 0 MII

cv 0
0 0 0 MII

co

2664
3775 ð6:48bÞ

The dissipative function D is also given by the sum of terms Dr associated with
the rotor and the terms correlated to the foundation Dc:

Dc ¼ Dr þ Dc ¼ 1
2

X5
k¼1

_xTk Rrk½ � _xk þ
1
2
_xTc Rc½ � _xc ð6:49aÞ

Rrk½ � being the damping matrix of the generic finite element assumed as a linear
combination of the mass and stiffness matrices (Chap. 4, Sect. 4.4.5.1):

Rrk½ � ¼ a Mrk½ � þ b Krk½ � ð6:49bÞ

In (6.49a) Rc½ � is the damping matrix relating to the supports (6.46b):

Rc½ � ¼
RI
cv 0 0 0
0 RI

co 0 0
0 0 RII

cv 0
0 0 0 RII

co

2664
3775 ð6:49cÞ

6.2 Description of the System Composed … 587

http://dx.doi.org/10.1007/978-3-319-18200-1_4


www.manaraa.com

The virtual work d�L of the external forces Fr applied directly to the nodes of the
rotor (due to a generically distributed unbalance, Sect. 6.4) and of the forces Fo due
to the oil-film (Sect. 5.3.2.2 and 6.2.2) can be defined as

d�L ¼ d�Lr þ d�Lo ¼ FT
r d

�xr þ FT
0d

�x ð6:50Þ

Since we are analysing the conditions of perturbed motion around the steady-
state condition, the forces due to the oil film, broken down into two components Fx

and Fy, can be defined, with the conventions shown in Fig. 6.20, as:

FI
x ¼ �KI

xx x1 � xIc
� � KI

xy y1 � yIc
� � RI

xx _x1 � _xIc
� � RI

xy _y1 � _yIc
� 

FI
y ¼ �KI

yx x1 � xIc
� � KI

yy y1 � yIc
� � RI

yx _x1 � _xIc
� � RI

yy _y1 � _yIc
� 

FII
x ¼ �KII

xx x6 � xIIc
� � KII

xy y6 � yIIc
� � RII

xx _x6 � _xIIc
� � RII

yy _y6 � _yIIc
� 

FII
y ¼ �KII

yx x6 � xIIc
� � KII

yy y6 � yIIc
� � RII

yx _x6 � _xIIc
� � RII

yy _y6 � _yIIc
�  ð6:51Þ

having indicated with:

• x1; y1; x6; y6 the vertical and horizontal displacements of the journal, in corre-
spondence to the rotor nodes where the bearings are attached (nodes 1 and 6 in
Fig. 6.20);

• xIc; y
I
c; x

II
c ; y

II
c the displacements of the foundation nodes;

• KI
ij;R

I
ij;K

II
ij ;R

II
ij are the equivalent stiffness and damping coefficients of the oil

film relating to the first and second bearing estimated as described extensively in
Sect. 6.3.1.

These forces are applied to both the shaft nodes and the support nodes, in a
vertical and horizontal direction: for this reason, the virtual work d�Lo due to the
forces of the oil-film is10:

d�Lo ¼ FI
xd

�x1 þ FI
yd

�y1 � FI
xd

�xIc � FI
xd

�yIc
þ FII

x d
�x6 þ FII

y d
�y6 � FII

x d
�xIIc � FII

x d
�yIIc

ð6:52Þ

10The contribution due to the forces of the oil-film must be introduced via the virtual work
performed by them as they represent a nonconservative force field.
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From the expression of virtual work it is possible to identify the Lagrangian
components according to the different d.o.f.:

Qx ¼ d�Lo
d�x1

¼ FI
x ¼ �KI

xx x1 � xIc
� � KI

xy y1 � yIc
� � RI

xx _x1 � _xIc
� � RI

xy _y1 � _yIc
� 

QI
y ¼

d�Lo
d�y1

¼ FI
y ¼ �KI

yx x1 � xIc
� � KI

yy y1 � yIc
� � RI

yx _x1 � _xIc
� � RI

yy _y1 � _yIc
� 

QI
xc ¼ �FI

x ¼ KI
xx x1 � xIc
� þ KI

xy y1 � yIc
� þ RI

xx _x1 � _xIc
� þ RI

xy _y1 � _yIc
� 

QI
yc ¼ �FI

y ¼ KI
yx x1 � xIc
� þ KI

yy y1 � yIc
� þ RI

yx _x1 � _xIc
� þ RI

yy _y1 � _yIc
� 

. . .. . .

ð6:53Þ

Hence, by generalising the discussion, the forces of the oil film Fo can be
rewritten as:

FO ¼ � Ro½ � _x� Ko½ �x ð6:54Þ

the overall matrices of damping and of stiffness Ro½ � and Ko½ � being defined as:

ð6:55aÞ
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ð6:55bÞ

Now we can apply the Lagrange equations: thus the motion equations become of
the form:

M½ �€xþ R½ � _xþ K½ �x ¼ F ð6:56Þ

where M½ � is the mass matrix of the complete system (rotor + foundation) which can
be obtained from the expression of the kinetic energy Ec shown in (6.48a, 6.48b):

ð6:56aÞ

R½ � is the damping matrix (rotor + supports + oil-film):
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R½ � ¼ Rs½ � þ Ro½ � ð6:56bÞ

which can be obtained, for the structural terms Rs½ �, from the expression of the
dissipative function D shown in (6.49a, 6.49b) and, for the terms due to the force
field of the oil-film Ro½ �, from (6.55a):

ð6:56cÞ

K½ � is the total stiffness matrix (rotor + supports + oil-film):

K½ � ¼ Ks½ � þ Ko½ � ð6:56dÞ

which can be obtained, for the structural terms Ks½ �, from the expression of the
potential energy V shown in (6.47a, 6.47b, 6.47c), and, for the terms due to the
force field of the oil-film Ko½ �, from (6.55b):
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ð6:56eÞ

Lastly, F is the vector of the generalised external forces which simulate, for
example, imbalances, cracks etc.:

F ¼ Fr
0

� �
ð6:56fÞ

In cases where the foundation is represented via mechanical impedances
[Sect. 6.2.4.1, (6.33)], instead of the elastic, damping and inertial terms relating to
the supports schematised with one d.o.f. systems, the terms of the mechanical
impedance matrix appear A Xð Þ½ �: this matrix, see (6.41a, 6.41b, 6.41c, 6.41d) and
(6.42a, 6.42b), pairs together the various d.o.f. of the supports, which in the weight-
spring model are, however, independent from each other. Lastly, we should
remember that the foundation can only be introduced via the mechanical impedance
matrix if we are analysing the system in the frequency domain, that is, by means of
a frequency response.

6.3 Analysing the Different Vibration Problems
Encountered in Rotordynamics

In this section we will review the main issues that can be seen when studying
rotordynamics, considering those that are more frequently encountered in
machinery and receive more attention in this sector: each topic will be covered in
detail in the following discussion.
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(a) Response of the rotor to imbalance: critical speeds (Sect. 6.4)
All rotors, whether real, stiff or deformable, are unbalanced. This unbalance
generates a force field that rotates with the shaft creating vibrations that are
synchronous with the angular frequency of the machine: in general, these
vibrations are defined as “the rotor’s response to unbalance”. The oscillations
intensify when the angular frequency Ω, and thus that of the force caused by
unbalance, coincides with the rotor’s natural bending frequencies xi: the
corresponding velocities are called “critical speeds”.

(a1) Warping in rotors
Rotors may be subject to warping caused by non-polar symmetry
temperature distribution which causes bending and, therefore, warping.
These effects can appear for different reasons, such as:

• in gas or steam turbines, associated with seals modulated flow;
• in alternators, where asymmetries of electrical impedance in the

rotor windings can create different currents and thus different
temperatures;

• in rotors where there is a cooling fluid (air or hydrogen cooling) with
non-symmetrical flows;

• in cases of friction, where the rotation of the rotor and its syn-
chronous oscillation combine to create repeated contact in the same
point of the rotor with consequent local increase in temperature (the
mechanism can be self-excited, [12, 13]).

(a2) Misalignments of rotors
Rotors on several bearings are generally coupled with stiff or deform-
able joints. Small radial or angular misalignments between the joints
can cause [1, 3–5, 9–11, 14–16] harmonic excitation forces, similar to
the forces caused by an unbalance, with frequency equal to that of
rotation. Greater misalignments cause the journals to oscillate inside the
bearings and this leads to the onset of excitations, even at frequencies
that are multiple that of rotation associated with the nonlinear effects of
the forces caused by the oil-film.

(b) Balancing rotors (Sect. 6.5)
This subject is closely linked to the previous: the term “balancing” is used to
define those operations where eccentric weights are added to the rotor to
minimise vibrations caused by unbalance in the rotor.

(c) Torsional critical speeds (Sect. 6.10)
As shafts also have torsional inertia and elasticity they can be subject to
torsional vibrations. The natural torsional frequencies, and the corresponding
vibration modes, can be excited by periodic torsional torques applied to the
actual shaft. When one of the harmonics of pulsation Xn ¼ nX of the periodic
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torque, the frequency of which is linked to that of rotation Ω, coincides with a
natural torsional frequency xit the corresponding angular velocity is defined as
“torsional critical speed”.

(d) Vibrations excited on rotors for different bending stiffnesses in the two
inflection planes (Sect. 6.6)
Many rotors have a bending stiffness that varies as the angular position varies:
this is caused by the presence of flaws, shaft keys, polar expansions and, at
times, due to the effect of cracks that are generated in the actual rotor. In these
shafts, the central ellipse of inertia, in the various sections along the longi-
tudinal axis of the rotor, is not a circumference. It follows that, if the rotor, for
example, is horizontal and, therefore, subject transversally to the weight force,
the position of static equilibrium will vary as the angular position varies:
variation of the static deflection occurs, as will be explained below, with a
frequency X2 ¼ 2X that is double that of rotation Ω. This mechanism inten-
sifies when these frequencies X2 coincide with one of the natural bending
frequencies xi: in these conditions we describe this as “second harmonic
bending critical speeds” due to the different stiffness of the rotor. In addition to
this mechanism, the presence of a crack creates vibrations, one per revolution
and multiple, due to the nonlinearity of the opening and closing mechanism of
the actual crack.

(e) “N” per revolution vibrations
“N” per rev vibrations, i.e. vibrations that have a multiple pulsation of the
fundamental pulsation Ω (equal to angular velocity), can often occur in rotors.
The causes that trigger these oscillations can be of different natures but, in
general, they all depend on the polar non-symmetry of the actual rotor. In a
turbine the N per rev vibrations are linked to the number of blades of the rotor
and of the stator and to their product. In rotors with gears the forms of
excitations are linked to the number of teeth: vibrations 2 or 3 per rev can also
be seen when there are problems of friction between the stator part and the
rotor part.

(f) Rotor instability
Whilst the problems of vibrations, mentioned earlier, can be classified as
vibrations forced on rotors due to different excitation causes, there is also a
series of problems where vibrations become unstable due to the presence of
nonconservative force fields. Below we will show the most common forms of
such instabilities:

(f:1) Oil-film instability (Sect. 6.9): this form of instability, previously dis-
cussed in Chap. 5, Sect. 5.3.2.2 on dynamic systems subject to force
fields, is caused by the nonconservative force field that is generated
between journal and bearing when there is a fluid (liquid or gas)
forming a supporting meatus. This instability arises, in general, when
the runout ec is limited compared to the radial clearance δ, and the
angular velocity Ω of the shaft is more than double the initial critical
speeds x1.
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(f:2) Instability caused by the flow in the seals: the seals, for example in the
inter-stages of steam turbines or in turbomachinery in general, are the
sites of nonconservative force fields (Sect. 6.2.3) and, therefore, are
responsible for possible phenomena of instability similar to that which
occurs in fluid lubricated journal bearings. These forms of instability
arise, in particular, when the bearings do not have sufficient damping
power.

(f:3) Instability caused by elastic hysteresis (Sect. 6.7): as rotating shafts can
be subject to bending oscillation, they may give rise to energy dissi-
pation, of a mainly hysteretic nature, or caused by the friction of ele-
ments in relative motion (for example, electric motor windings, teeth of
coupling joints, etc.). These dissipation forces give rise to nonconser-
vative force fields and, therefore, to problems of stability.

(f:4) Instability due to the different bending stiffness (Sect. 6.6): the different
bending stiffness of a rotor in the two inflection planes, in addition to
causing phenomena of vibrations with double frequency compared to
that of rotation, as already seen in point d), can also create conditions of
instability if the angular velocity Ω falls between the two natural
bending frequencies of the rotor, which are of different values in the
case where the bending stiffness of the actual rotor is different.

6.4 Critical Speed, Response of the Rotor to Unbalance

A rotor that has angular velocity Ω is the site of a field of centrifugal forces. To
define these forces we assume (Fig. 6.21) an absolute Cartesian coordinate system
(X-Y-Z) and a Cartesian coordinate system (ξ, η, ζ) that is integral with the shaft, i.e.

rotating with it. The centrifugal force per unit of length F
!

fð Þ acting on a generic
section of the rotor (with abscissa ζ) can be defined, using a complex formulation,
by the following expression:

F
!

fð Þ ¼ F0
�!

fð ÞeiXt ¼ m fð Þ e! fð ÞX2eiXt ¼ m fð Þe fð ÞX2� 
eic fð ÞeiXt ð6:57aÞ

where e! fð Þ represents the geometric vector defining the runout of the centre of
gravity in correspondence to the single elementary sections, defined in the rotating
coordinate system as:

e! fð Þ ¼ e! fð Þ�� ��eic fð Þ ¼ e fð Þeic fð Þ ð6:57bÞ

ε(ζ) being the module and γ(ζ) the anomaly of the actual runout and m = m(ζ) the
mass per unit of length, also, generally, a function of the abscissa ζ.
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The projection of this vector F
!

fð Þ on a fixed direction of an absolute reference
system produces sinusoidal excitation forces with frequency equal to that of rota-
tion Ω: so the vibrations caused by these unbalances, throughout the entire oper-
ating range, have a frequency equal to that of rotation. The effect of these
destabilising forces is, therefore, detrimental for different reasons:

• when the angular velocity Ω equals one of the bending natural frequencies xi of
the rotor, this finds itself in conditions of resonance, with a significant increase
in the amplitudes of vibration (in this case, as mentioned previously, this is
described as bending critical speed);

• throughout the entire operating field, and with amplified phenomena in prox-
imity of the bending critical speeds, the destabilising forces determine alternate
reactions to the supports: as a consequence the supporting structure (casing and
foundation) can be subject to considerable vibrations.

6.4.1 Two Degree-of-Freedom Model Without Damping

To introduce the problem regarding bending critical speeds, in simplified form, first
of all we will refer to a two d.o.f. model, known as the Laval rotor or Jeffcott rotor
(Fig. 6.22). This model foresees a homogeneous, elastically deformable shaft,
considered to be weight-free, and constrained to rotate around its own elastic curve

ε = ε ζ

ζ

Fig. 6.21 Distribution of unbalance on a real rotor
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(due to its own weight), with angular velocity Ω. A thin rigid disk is mounted on the
centre line of the rotor, it has mass M and is perfectly perpendicular to the axis of
the rotor: it is assumed that the disk moves in a direction that is perpendicular to the
rotation axis so that the gyroscopic effect can be neglected. The elasticity of the
shaft is defined via its bending stiffness k, assumed constant in all directions and
defined by the ratio between the constant force F applied to the centre line of the
shaft and the corresponding deflection f:

k ¼ F
f

ð6:58Þ

As a coordinate system we assume an absolute right-hand coordinate system
with axis Z coinciding with the supports axis, a vertical axis X and, lastly, with
O (Fig. 6.22) defining the origin of the coordinate system used, trace of the axis
Z on the plane X-Y. We use S to define the position of the geometric centre of the
disk and ε for the runout of the centre of gravity G in respect to its geometric centre
S, constant in respect to a suitable coordinate system (ξ, η, ζ) rotating integrally with
the shaft. For the simplifying assumptions made, the motion of the disk can be
considered as plane motion: x and y are the coordinates that define, in the absolute
coordinate system (X-Y-Z), the generic position assumed by the geometric centre
S of the disk.

The runout of the centre of gravity ea
! fð Þ is, in respect to the absolute coordinate

system chosen, a rotating vector with angular velocity Ω, thus equal to the angular
velocity of the shaft:

e!a fð Þ ¼ e!eiXt ¼ eeiXt ð6:59Þ

having used ε to indicate the module of the runout and having assumed the vector
ea
! fð Þ on the real axis at time t = 0.

G
S

O

X

Y

G

S
Ωt

ε

Fig. 6.22 The Laval or Jeffcott rotor (two degree-of-freedom model)
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We use z! to define the geometric vector, of components x and y, that identifies
the position of the centre S of the disk: in this case identifying the geometric vector
z! with a complex number is useful, identifying axis X with the imaginary axis11:

z!¼ yþ ix ð6:60Þ

If in a first stage we neglect damping, the forces acting on the rotor are:

• the elastic restoring force:

F
!

e ¼ �k z! ð6:61aÞ

• the weight force (assumed to be directed as axis X):

P
!¼ M g! ð6:61bÞ

• the force of inertia:

F
!

i ¼ �M €z
!

G ð6:61cÞ

where €z
!

G is the absolute acceleration of the centre of gravity of mass M which
can be defined via the following vector relations:

z!G ¼ z!þ e!¼ z!þ eeiXt ð6:62aÞ

€z
!

G ¼ €z
!� eX2eiXt ð6:62bÞ

Therefore, the equation of dynamic equilibrium in vector form is:

M €z
!þ k z!¼ M g!þMeX2eiXt ð6:63aÞ

and in scalar form:

M €yþky ¼ MeX2 cosXt ð6:63bÞ

M €xþkx ¼ �MgþMeX2 sinXt ð6:63cÞ

11In analysing the dynamic of rotors, and in particular when studying bending vibrations, using the
algorithm of complex numbers is useful, associating the complex plane to the plane X-Y of a Cartesian
coordinate system with axis Z coinciding with the longitudinal axis of the rotor: conventionally we
will assume that axis X coincides with the imaginary axis. With this approach, the displacement vector
(which can normally be represented in the two components x and y) becomes defined by just one
complex variable z of the kind shown in (6.60). With this approach, as we will see, the 2 scalar
equations that define the bending motion in space of a generic point of the rotor can be rewritten with
just one complex equation, often more convenient, both as representation and as solution.
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As we can see, the two equations obtained are characteristics of a forced
vibrating two d.o.f. system, which is thus subject to phenomena of resonance if the
pulsation Ω of the excitation force coincides with a natural frequency of the system:
in the specific case of the unbalanced rotor, the forcing terms have pulsation Ω
equal to the angular velocity of the shaft and intensity that depends linearly on the
runout of the rotor and on term Ω2. In the case being analysed the two natural
pulsations of the shaft in the two inflection planes coincide:

xx ¼ xy ¼ x0 ¼
ffiffiffiffiffi
k
M

r
ð6:64Þ

Now we will define the particular integrals of (6.63a) while remembering that
these integrals, as we know, define the steady-state vibration of the system. The
contribution of the weight force leads to:

z!¼ z!G ¼ M g!
k

¼ P
!
k
¼ f

!
p ð6:65Þ

where f
!

p is the static deflection assumed by the disk due to its own weight and is
fixed compared to the absolute coordinate system considered. The effect of the
centrifugal forces leads, on the other hand, to another particular integral of (6.63a):

z!¼ z!e ¼ Ye þ iXe ¼ e
x
X

� 2�1
h i eiXt ð6:66aÞ

from which:

z!e

e
¼ 1

x
X

� 2�1
h i eiXt ¼ A Xð ÞeiXt ð6:66bÞ

i.e. in scalar form:

Ye ¼ A Xð Þe cosXt
Xe ¼ A Xð Þe sinXt ð6:66cÞ

The vector z!e, therefore, rotates with the same angular velocity Ω of the rotor:

• below resonance X\x0ð Þ, the excitation force, being A Xð Þ[ 0, is in phase
with the vibration (Fig. 6.23), i.e. z!e is aligned and in the same direction as e!;

• in conditions of resonance X ¼ xo, z!e has a delay of 90o compared to the
vector e!, with module z!e

�� �� tending, due to the absence of damping, to infinite
amplitude, since A Xð Þ ! 1;
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• lastly, above resonance, z!e returns to alignment with e!, but in counter-phase,
as in Fig. 6.23: as in this condition A Xð Þ\0 and tends, for X ! 1, to −1, the
module of the oscillation amplitude z!e

�� �� tends to e!¼ j e!j, that is, the shaft
tends to self-centre.

As already stated, these results highlight the fact that:

• unbalance causes sinusoidal excitation forces that are synchronous with angular
velocity Ω;

• the critical speeds are nothing more than a phenomenon of resonance.

It is, in any case, possible to pass through critical speeds, even in the absence of
damping, provided that these passages are carried out quickly, so that the phe-
nomenon of resonance does not have time to amplify.

6.4.2 Two-Degree-of-Freedom Model with Damping

When introducing equivalent viscous damping r into the model shown in Fig. 6.22,
the motion equations of the system become of the form:

M €z
!þ r _z

!þ k z!¼ M g!þMeX2eiXt ð6:67Þ

The particular integral z!¼ z!eeiXt which describes the forcing vibrations
caused by the unbalance of the disk becomes:

z!e

e
¼ X2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x2
0 � X2� 2þ rX

M

� 2q ei/eeiXt ¼ Ar Xð Þei/eeiXt ð6:68aÞ

ε

zε

SG

O

X

Y

ε

zε

S

G

O

X

Y

ε
zε

S

G

O

X

Y

Fig. 6.23 Response of a rotor to unbalance upon variation of the ratio between angular velocity Ω
and natural pulsation of the system xo
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thus being:

Ar Xð Þ ¼ X2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2

0 � X2� 2þ rX
M

� 2q ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x0
X

� 2�1
� 	2

þ 2rx0
2XMx0

� 	2r
¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1
a

� 2�1
� 	2

þ 2h
a

� 2r ð6:68bÞ

tg /e Xð Þð Þ ¼ � X r
M

x2
0 � X2 ¼ �

2x0Xr
2Mx0

x2
0 � X2 ¼ � 2ha

1� a2ð Þ ð6:68cÞ

having indicated with:

h ¼ r
rc
; a ¼ X

x0
ð6:68dÞ

In this case, i.e. with the presence of damping, the following boundary condi-
tions may occur:

a � 1 ) X � x0 ) /e Xð Þ ffi 0� ) A Xð Þ ffi 0 ) z!e

�� �� ffi 0 ð6:69aÞ

a ¼ 1 ) X ¼ x0 ) /e Xð Þ ¼ 90� ) A Xð Þ ¼ 1
2h

ð6:69bÞ

a 	 1 ) X 	 x0 ) /e Xð Þ ffi 180� ) A Xð Þ ffi 1 ) z!e

�� �� ffi e!�� �� ð6:69cÞ

The trend of A ¼ A að Þ and of / ¼ /e að Þ is shown in Fig. 6.24 in relation to
different values of dimensionless damping h ¼ r

rc
.

Fig. 6.24 Rotor with 2 DOF
with damping: response of the
system upon variation of the
angular velocity Ω
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6.4.3 Determining the Generalised Forces Acting on a Rotor
Due to Unbalance

Now we will see how it is possible to take into account a possible unbalance in a
real rotor by adopting the finite element analytical model shown in Fig. 6.20 and
described in Sect. 6.2.5: the real rotor (Fig. 6.25) can be considered as being made
up of numerous consecutive elementary sections, each of which, as we have seen,
has its own runout e! fð Þ defined in a coordinate system that rotates integrally with
the actual rotor:

e! fð Þ ¼ e! fð Þ�� ��eic fð Þ ¼ e fð Þeic fð Þ ð6:70Þ

This runout is variable along the axis of the rotor from section to section, both in
module e! fð Þ�� �� ¼ e fð Þ and in phase c fð Þ. Compared to an absolute coordinate
system, however, the runout is represented by a rotating vector:

e! fð ÞeiXt ¼ e fð Þeic fð ÞeiXt ð6:71Þ

Now we will consider the generic kth beam finite element (Fig. 6.25) that makes
up the overall model of the rotor: for convenience, we will define with the complex
variable12 z! n; tð Þ13:

Fi(x )

Zi

Y

X

XS

Xd

y(ξ, t )

x(ξ, t )
ys θys

θyd

θxs

θxd

yd

ε (ξ)

εy (ξ)

εx (ξ)

ξ

ζ

γ (ξ)

Ωt

Ωt

Fig. 6.25 Definition of the generalised forces caused by unbalance on a real rotor schematised
with finite elements

12In this case too, we can resort to the algorithm of complex numbers, associating the complex plane
to the plane Y-X of a Cartesian coordinate system with axis Z coinciding with the longitudinal axis
of the rotor: conventionally we will assume that axis X coincides with the imaginary axis.
13In the following discussion we will use the letter ζ to indicate the generic abscissa along the
entire rotor (Fig. 6.21), while the letter ξ is the current coordinate in the generic finite “beam”
element used to schematise the actual rotor.
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z! n; tð Þ ¼ y n; tð Þ þ ix n; tð Þ ð6:72Þ

the generic displacement of the geometric centre of the generic section of the rotor
within the kth finite element. So, in (6.72) y n; tð Þ and x n; tð Þ represent, respectively,
the two horizontal and vertical components of this displacement in the same absolute
coordinate system assumed (X-Y-Z) with axis Z coinciding with the rotation axis.

Presuming the trend of the runout e! fð Þ in correspondence to the segment of rotor
schematised from the generic kth finite element is known, the generalised forces
caused by this unbalance can be obtained from the work d�Lk (scalar product ·14)
carried out by the unbalancing force ~Fi nð Þ:

14In this discussion it is useful to resort to the algorithm of complex numbers. Two generic vectors
V and W in the complex plane can, as we know, be associated with the two complex numbers
V and W:

V , V ¼ Vy þ iVx ¼ Vj jei/V

W , W ¼ Wy þ iWx ¼ Wj jei/W
ð6:14:1Þ

As we know, the scalar product between two geometric vectors equals:

V 
W ¼ Vj j Wj j cos /ð Þ ð6:14:2Þ

and the module of the vector product:

VKWj j ¼ Vj j Wj j sin/ ð6:14:3Þ

ϕ being the relative phase between the two vectors (see Fig. 6.83).
If we define the complex conjugate of W with W� ¼ Wy � iWx ¼ Wj je�i/W and if we con-

sider the product:

W� V ¼ Wj je�i/W Vj jei/V ¼ Wj j Vj jei /V�/Wð Þ ¼ Wj j Vj jei/ ð6:14:4Þ

it follows that the real part Re W� Vð Þ of the product W� V represents the scalar product V 
W
and that the imaginary part Im W� Vð Þ represents the module of the vector product VKWj j.

In general, it will then be possible to express the work using the algorithm of complex numbers as:

L ¼ F 
 S ¼ Re F�Sð Þ ð6:14:5Þ

having indicated with:

F , F ¼ Fy þ iFx ¼ Fj jei/F

S , S ¼ Sy þ iSx ¼ Sj jei/S
ð6:14:6Þ

respectively, the generic vector force and the generic vector displacement, from which:

L ¼ Re Fy � iFx
� 

Sy þ iSx
� � � ¼ FySy þ FxSx: ð6:14:7Þ
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d�Lk ¼
Zlk
0

~Fi nð Þ 
 d�~z dn ¼
Zlk
0

mX2~e nð Þ eiXt 
 d�~z dn ð6:73Þ

where d�~z represents the virtual displacement vector of the position of the geo-
metric centre S of the generic infinitesimal section of the rotor, placed in corre-
spondence to the generic current coordinate ξ (Fig. 6.25) caused by a virtual
displacement d�x k of the nodal independent variables, while ~e nð Þ represents the
relative runout defined with respect to a system rotating integrally with the shaft
(Fig. 6.25), which rotates, in turn, with respect to the absolute coordinate system of
axes (X-Y-Z), with angular velocity Ω. Lastly, in (6.73) m represents the weight per
unit of length considered constant within the generic finite element.

By projecting the runout vector in the two directions Y and X the same can be
represented as:

~e nð ÞeiXt ¼ ey nð Þ þ iex nð Þ ð6:74aÞ

since:

ey nð Þ ¼ e nð Þ cos Xt þ c nð Þð Þ
ex nð Þ ¼ e nð Þ sin Xt þ c nð Þð Þ ð6:74bÞ

Considering (6.74a), (6.74b) and (6.72), it is possible to rewrite the expression of
the virtual work completed by the unbalance within the generic finite element (6.73)

d�Lk ¼ mX2
Zlk
0

ey d
�y dnþ m X2

Zlk
0

ex d
�x dn ð6:75Þ

where, for convenience, we no longer indicate the dependence of the runout and the
generic displacement on the coordinate ξ.15

15If we wish to express this work by means of the complex number algorithm, it is possible to
define the following relations:

ey d
�y ¼ e cos Xt þ cð Þd�y ¼ e cosXt cos c� sinXt sin cð Þd�y

exd
�x ¼ e sin Xt þ cð Þd�x ¼ e sinXt cos cþ cosXt sin cð Þd�x ð6:15:1Þ

from which:

ey d
�y ¼ e cosXt cos cþ i cosXt sin cð Þd�y ¼ e cos cþ i sin cð Þd�yð Þ cosXt

exd
�x ¼ e �i cosXt cos cþ cosXt sin cð Þd�x ¼ e sin c� i cos cð Þd�xð Þ cosXt ð6:15:2Þ

i ¼ ffiffiffiffiffiffiffi�1
p

being the imaginary unit. Bearing in mind this formalism, the expression (6.75) can be
rewritten as:
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Now it is possible to correlate (Fig. 6.25) the virtual displacements d�x ¼ d�x nð Þ
and d�y ¼ d�y nð Þ of the generic section to the displacements x k (Sect. 6.2, (6.1),
Fig. 6.6) of the nodes of the generic finite element:

xk ¼ xks
xkd

� �
¼

xi
hyi
yi
hxi
xj
hyj
yj
hxj

8>>>>>>>>>><>>>>>>>>>>:

9>>>>>>>>>>=>>>>>>>>>>;
ð6:76Þ

via the following relations:

d�x nð Þ ¼ f T
x
nð Þd�xk ð6:77aÞ

d�y nð Þ ¼ f T
y
nð Þd�xk ð6:77bÞ

where (Chap. 4, Sect. 4.5.2.1, Sect. 6.2), the shape functions f
x
nð Þ and f

y
nð Þ

assume, in this case, the following expressions:

f
y
nð Þ ¼

0
0

2
l3k
n3 � 3

l2k
n2 þ 1

� 1
l2k
n3 þ 2

lk
n2 � n

0
0

� 2
l3k
n3 þ 3

l2k
n2

1
l2k
n3 � 1

lk
n2

8>>>>>>>>>>>><>>>>>>>>>>>>:

9>>>>>>>>>>>>=>>>>>>>>>>>>;
; f

x
nð Þ ¼

2
l3k
n3 � 3

l2k
n2 þ 1

1
l2k
n3 � 2

lk
n2 þ n

0
0

� 2
l3k
n3 þ 3

l2k
n2

� 1
l2k
n3 þ 1

lk
n2

0
0

8>>>>>>>>>>>><>>>>>>>>>>>>:

9>>>>>>>>>>>>=>>>>>>>>>>>>;
ð6:77cÞ

(Footnote 15 continued)

d�Lk ¼ mX2
Zlk
0

e cos cþ i sin cð Þ d�y dnþ m X2
Zlk
0

e sin c� i cos cð Þ d�x dn

0@ 1A cosXt

¼ mX2
Zlk
0

e! d�y dnþ
Zlk
0

i e! d�x dn

0@ 1A cosXt: ð6:15:3Þ
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(6.75), considering (6.77a)–(6.77c), becomes:

d�Lk ¼ mX2
Zlk
0

eyf
T
y
nð Þd�xk dnþ mX2

Zlk
0

exf
T
x
nð Þd�xk dn

¼ mX2
Zlk
0

eyf
T
y
nð Þ dnþ

Zlk
0

exf
T
x
nð Þ dn

8<:
9=;d�xk ¼ QT

k
d�xk

ð6:78Þ

Q
k
being the vector that contains the Lagrangian components of the destabilising

forces (Chap. 4, Sect. 4.4.6):

Q
k
¼ mX2

Zlk
0

eyf y nð Þdnþ
Zlk
0

exf x nð Þdn
8<:

9=; ð6:79Þ

If we wish to adopt the complex algorithm (see Eq. (6.14.3) of footnote 14), to
calculate the steady-state response of the rotor + bearings + foundation system,
(6.79) can be rewritten as:

Q
k
¼ mX2

Zlk
0

e! f
y
nð Þdnþ

Zlk
0

i e!f
x
nð Þdn

8<:
9=; cosXt ¼ Q

ky
þ Q

kx

n o
cosXt

¼ Q
ko
cosXt ) Q

ko
eiXt

ð6:80Þ

Bearing in mind (6.76) the vector Q
ko

is formed of eight terms representing,
respectively, the forces and the generalised torques applied to the end nodes
energetically equivalent to the distribution of unbalances on the same segment of
rotor:

QT
ko
¼ Qxio Qhyio Qxjo Qhyjo Qyio Qhxio Qyjo Qhxjof g ð6:81Þ

The vector of the total generalised forces acting on the rotor Fr ¼ Froe
iXt due to

the effect of the unbalance can be obtained with a normal assembly procedure.
Writing the equations that govern the vibrations of the unbalanced rotor [Sects. 6.2
and 6.6 and (6.56)], with reference to the model shown in Fig. 6.20, thus becomes:

M½ �€xþ R½ � _xþ K½ �x ¼ F ¼ Fr
0

� �
¼ Fro

0

� �
eiXt ¼ F0e

iXt ð6:82Þ
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where the matrices of mass, damping and stiffness M½ �, R½ � and K½ � of the overall
rotor + oil-film + foundation system have already been defined in Sect. 6.6,16 while
F is the vector of the excitation forces caused by the unbalance defined above
[(6.81) and Fig. 6.26]. The solution of (6.82) is given by:

x ¼ X0e
iXt ð6:83aÞ

which, placed in (6.82) leads to:

�X2 M½ � þ iX R½ � þ K½ �� �
x ¼ F0 ð6:84Þ

The solution Xo of (6.84) is estimated with complex algebraic numerical algo-
rithms (Chap. 2, Sect. 2.4.1.4 and Chap. 4, Sect. 4.4.8.2) and provides the steady-
state vibrations of the rotor caused by unbalance. In reality, we usually do not know
the actual distribution of the unbalances, until now assumed as known; in order to
simulate the behaviour of a real rotor we must, therefore, assign destabilising

Fig. 6.26 An example of the
response of a real rotor to
unbalance

16The matrices M½ �, R½ � and K½ � of (6.82) represent, given the particular choice of independent
variables x (6.40a), the matrices associated with just the free d.o.f., relative to the rotor-oil-film-
foundation constrained system, already indicated in Chap. 4, Sect. 4.4.7 as MLL½ �, RLL½ � and KLL½ � .
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weights placed on the actual rotor, defined using assumptions of a statistical nature.
The case of unbalance caused by bending of the shaft due to thermal effects or other
causes is different. In this case, the distribution of unbalances can be defined if the
actual inflection is known [61–63,65, 67, 69, 71, 73, 74]. As an example, Fig. 6.26
shows the trend of the amplitudes of vibration Xoj j and the phases of the dis-
placements of two shaft nodes, in relation to the angular velocity Ω, for the model
of a rotor shown in the same figure simulating an unbalance caused by an eccentric
weight placed in the jth node [83]. In the same figure we can see the presence of
vibration peaks that correspond to the bending critical speeds, and in correspon-
dence to these speeds we can see the typical variation of the phases of the vibrations
due to the passage through resonance.

Figure 6.27 shows the frequency response of a rotor presumed to be constrained
in one case to a rigid foundation and in the other to a flexible foundation [84]: the
peaks of resonance in the first case are due just to the characteristics of the shaft and
the oil-film, while in the second case the additional peaks indicate resonance due to
the characteristics of the foundation. This figure highlights the importance of
introducing a sufficiently sophisticated schematisation of the foundation in order to
predict the real behaviour of the rotor (Sect. 6.2.4).

6.5 Balancing Methods

The balancing of rotors is a subject of considerable interest, as the elimination or the
attenuation of high vibrations caused by unbalances in the rotors is a crucial ele-
ment for the good running of a machine. As mentioned, unbalance can be caused
by:

Fig. 6.27 Frequency response of a rotor: a rigid foundation; b deformable foundation
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• non-homogeneous distribution of material in the individual sections;
• permanent deformations of the rotor (for example permanent inflection of the

rotor causes a runout of the centre of gravity of the individual sections along the
rotor with respect to the elastic curve)17;

• imperfect couplings in the rigid joints, when the axis line is made up of several
rotors coupled on the same axis (Fig. 6.28).

The rotating forces that are discharged onto the supports due to the effect of
unbalances are a detrimental factor as they can shorten the life of a machine, for
various reasons:

• possible fatigue failure of material;
• friction and wear in seals and in bearings;
• difficulty of lubrication in journal bearings with hydrodynamic lubrication;
• problems caused by fatigue stresses in the supporting structure.

All the operations required to reduce to a minimum the forces that the unbal-
anced rotor discharges on the supports come, as mentioned, under the name of
balancing.

Fig. 6.28 Axis line made up of several rotors

17Warping in the rotor e!g fð Þ causes, as such, centrifugal forces that are proportional both to X2,
and to e!g if the centre of gravity coincides with the geometric centre of the section of the rotor
(figure below): this eccentricity e!g fð Þ arises even at low revs. This behaviour (characterising a
warped rotor) differs from that caused by just eccentricity e! fð Þ of the centre of gravity: in fact
e! fð Þ does not cause any vibration at low revs as the force generated by it tends to zero.

Warping effect
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6.5.1 Disk Balancing

To introduce the subject of balancing in a simplified manner, we can use the
example with two d.o.f. regarding a thin disk (rigid and of mass m) fitted on a
massless shaft (Fig. 6.29), already analysed in Sect. 6.4.1:

• conceptually, to balance the disk fitted on the shaft it is enough to place a mass
m� ¼ m positioned in the opposite direction to the position of the centre of
gravity G, which thus annuls the effect of the initial unbalance, causing a force
that is equal and contrary to that which already exists;

• however, as the position of the centre of gravity of the disk in relation to its
geometric centre is not usually known, this can be determined by experimentally
measuring the response of the rotor to the unbalance.18

6.5.1.1 Measurement Method for Balancing a Thin Disk

A disk (or a generic rotor), if not balanced, vibrates since, as already mentioned, it
is stressed by synchronous rotating excitation forces. As it is not possible to define
the real distribution of runout, in order to proceed with the balancing operation, we
need to experimentally measure the vibrations caused by the actual unbalance. For
this purpose, we must fit the shaft to be balanced with the appropriate instrumen-
tation (Fig. 6.30).

G
S

O

Fig. 6.29 Balancing a disk

18One simple balancing procedure involves identifying, by making the angular velocity Ω of the
rotor vary, i.e. by changing the pulsation of the excitation force, the peak of the resonance and
exploit the condition of 90° phase shift between the excitation force (applied to the centre of
gravity) and the actual vibration measured: thus the phase angle in correspondence to which we
need to position the balancing weight is known beforehand. Alternatively, it is possible to make
the rotor rotate well above resonance (critical speed) and exploit the fact that, in this condition,
vibration is about 180° in respect to the excitation force: in this case the balancing weight must be
set in phase with the vibration vector measured.
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Assuming that we have a sufficiently rigid supporting structure, it is possible to
measure the absolute vibrations induced on the disk by mounting appropriate
proximity sensors which, constrained rigidly to the supporting structure and facing
the rotor, provide an electrical signal that is proportional to the approach of the
surface of the rotor, thus measuring the vibrations V tð Þ along a predetermined plane
n� n (Fig. 6.31), without needing to come into contact with the actual rotor19:

V tð Þ ¼
XN
n¼1

V
!

n

��� ��� cos nXt þ Unð Þ þ random vibrations ð6:85Þ

The generic signal V tð Þ from the vibration sensor is normally periodic, with
fundamental frequency equal to the angular frequency Ω,20 plus random distur-
bances. Therefore, it is generally necessary to carry out the harmonic analysis of the
signals to identify the one-per-rev components associated with the synchronous
pulsation Ω, the only one that must be taken into consideration in problems of
balancing. In this section, introducing the issues linked to rotor balancing, for
simplicity’s sake, we presume that the signal is harmonic and synchronous with the
angular velocity, thus we will have:

V tð Þ ¼ V
!��� ��� cos Xt þ Uð Þ ð6:86aÞ

(refer to Sect. 6.5.2 for the more general discussion). In order to have a coordinate
system that is integral with the rotor, in respect to which the individual harmonics
are defined, we must place a reflective mark on the rotor or exploit the possible

Fig. 6.30 Instrumentation
required for balancing

19In fact, these sensors measure both possible surface irregularities and real vibrations: to separate
the two synchronous components we need to perform a test at low rotation speed (where the
dynamic effect can be neglected) and a test at the desired speed. The signal due just to vibration
can be obtained as the vector difference of the two previous signals.
20In fact, the output signal from the sensors could, e.g. in the case of flutter instability due to oil-
film, (see Chap. 5, Sect. 5.3.2.2), present subharmonics, i.e. pulsating frequencies lower than the
fundamental Ω of rotation of the actual rotor.
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presence of a mark: a photoelectric cell, or similar instrument, is then placed facing
the rotor to provide an electrical impulse (called the one-per-rev signal) each time
that the mark passes in front of it. The signals from the two instruments (proximity
sensor and photoelectric cell), can be, for example, displayed on an oscilloscope,
where two tracks will appear, as shown, in the case of synchronous vibrations, in
Fig. 6.32.

By measuring the amplitude V of the oscillation and the time delay Dt between
the one-per-rev signal from the photoelectric cell and the maximum of the signal

from the displacement sensor, it is possible to determine the vibration vector V
!
:

V
!¼ VeiU ð6:86bÞ

defined in respect to a coordinate system that is integral with the rotor21 (i.e.
rotating with it with angular velocity Ω, Fig. 6.32), Φ being the phase defined by the
relation:

U ¼ Dt
To

360� ð6:86cÞ

Ω

ΦS

V(s)

0 s

Fig. 6.31 Example of a signal in output from a displacement sensor

21In fact, more sophisticated instrumentation is currently used, made up of [102, 109]:

• a data acquisition system that makes it possible to transform the analogical output signal from
the sensors into a digital signal stored on a computer, including the filtering operations required
to eliminate the disturbances present along with the 1 per rev harmonic components (this
operation is carried out with a harmonic analysis synchronised with the rotation of the rotor);

• a part of data processing that makes it possible to carry out (in digital form) the subsequent
processing.

This instrumentation directly provides the quantities required for balancing: from an opera-
tional point of view, however, the sequence of operations remains that shown in the text and this
approach, amongst other things, remains the most significant from a didactic point of view. For
further details on the techniques used in automatic experimental data acquisition and in automatic
balancing, we refer the reader to specialist texts.

612 6 Rotordynamics



www.manaraa.com

where To represents the period of vibration (the distance between two consecutive
impulses of the one-per-rev) and Dt is the time that lapses between the one-per-rev
signal and the maximum of vibration.

6.5.1.2 The Influence Coefficient Method

At this point, there are various methods available for balancing a rotor: the most
common approach is that known as the influence coefficient method which we will
present for the simple case being analysed, but which will also be described below
(Sect. 6.5.2) in the case of real rotors. For this purpose (Fig. 6.33) the disk is made
to rotate at a given angular velocity Ω and, using the procedure described above, the

vibration V
!ðsÞ

caused by just the unknown unbalance is measured:

V
!ðsÞ ¼ V ðsÞeiUs ð6:87aÞ

Once the rotor has been stopped, an arbitrary mass mj is positioned on it at a
given distance ej from the rotation axis (these distances are actually preset, as they
are provided by the manufacturer during the design phase) and in a certain angular
position cj in the coordinate system that is integral with the rotating shaft (as the
zero reference angle is conventionally assumed to be the position of the reflective
mark). Now we will define, with a single complex number m!j, all the characteristics
of the test mass (assigned and constant at ej) which is thus defined by the vector
relation:

Ω

ΦS

V(s)

nn
0 s

0 s

Fig. 6.32 Output signals from the displacement and one-per-rev sensors
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m!j ¼ m!j

�� ��eicj ¼ mje
icj ð6:87bÞ

When the rotor rotates again at the same angular velocity Ω, the displacement

sensor will provide the measurement of a new vibration vector V
!ðsþmjÞ

(Fig. 6.34):

V
!ðsþmjÞ ¼ V ðsþmjÞeiUsj ð6:87cÞ

of module V ðsþmjÞ and phase Usj which differ compared to the previous case, now
due both to the natural unbalance of the disk and the presence of the test mass m!j.

Assuming:

• linear behaviour of the rotor, by which it is possible to apply the superposition
principle;

• the repeatability of tests, where all the characteristics of the system remain
unchanged between one test and the next;

the vibration induced by just the test mass m!j can be defined by vector W
!

j, which

has module W
!

j

��� ��� ¼ Wj and phase wj, which can be defined by the complex relation:

W
!

j ¼ Wje
iwj ¼ V

!ðsþmjÞ � V
!ðsÞ ð6:88aÞ

At this point it is possible to define as influence coefficient (a quantity that is also
complex) the ratio:

a!j ¼ W
!

j

m!j
¼ aje

iUaj ð6:88bÞ

Ω

ΦS

V(s )
η

ξ

Fig. 6.33 Procedure for
balancing a disk
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which can be seen as the effect on the disk vibrations of a mass m!j with unitary
modulus and zero phase shift compared to the origin22 (Fig. 6.35).

The disk is balanced when vector V
!ðsÞ

, caused by the initial unbalance, is

counter-balanced by a vector W
!�

j generated by an unknown mass m!�
j :

m!�
j ¼ m!�

j

��� ���eic�j ¼ mje
ic�j ð6:89aÞ

i.e. when:

V
!ðsÞ þW

!�
j ¼ 0 ) V

!ðsÞ þ a!j m
!�

j ¼ 0 ð6:89bÞ

This vector relation corresponds, obviously, to two scalar relations:

V ðsÞ cosUs þ ajm
�
j cos Uaj þ c�j

� 	
¼ 0

V ðsÞ sinUs þ ajm
�
j sin Uaj þ c�j

� 	
¼ 0

ð6:90Þ

Ω

mj

γj

εjΦ
sj

η
V(s + mj )

Fig. 6.34 Meaning of vector

V
!ðsþmjÞ

22We should remember that the relationship between two complex numbers has as its modulus the
ratio of the moduli:

aj
!�� �� ¼ W

!
j

m!j
ð6:22:1Þ

and as phase the difference of phases:

uaj ¼ Wj � cj ð6:22:2Þ

where we should remember that uaj represents the relative angle between the induced vibration

vector W
!

j and the vector m!j:
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from which it is possible to obtain the complex unknown m!�
j , that is, the value of

the balancing mass m!�
j

��� ��� ¼ m�
j , and its angular position c�j , since, as mentioned, the

distance ej from the rotation axis is assigned.23

6.5.2 Balancing a Real Rotor

A real rotor (Fig. 6.36) is made up of a solid body, with a certain spatial distribution
of mass m fð Þ, rotating around a given rotation axis Z: the unbalance present can be
described, as seen, in the various sections, by a runout vector e! fð Þ that rotates
integrally with the actual rotor:

~e fð Þ ¼ ~e fð Þj jeiðXtþcðfÞÞ ¼ e fð ÞeiðXtþcðfÞÞ ð6:91aÞ

Due to the effect of rotation Ω only, the distribution of inertial forces is:

d~FiðfÞ ¼~eðfÞ 
 mðfÞ 
 X2df ð6:91bÞ

directed (Fig. 6.36) in the same way as the runout vector e! fð Þ.

23Equation (6.90) can be rewritten as:

Re V
!

s

� 	
þ iIm V

!
s

� 	
þ Re a!j

� þ iIm a!j
� � �

Re m�
j

�!� 	
þ iIm m�

j

�!� 	h i
¼ 0 ð6:23:1Þ

from which

Re V
!

s

� 	
þ Re a!j

� 
Re m�

j

�!� 	
� Im a!j

� 
Im m�

j

�!� 	
¼ 0

Im V
!

s

� 	
þ Re a!j

� 
Im m�

j

�!� 	
þ Im a!j

� 
Re m�

j

�!� 	
¼ 0

ð6:23:2Þ

the real part and the imaginary part of the unknown appear directly as real unknowns Re m�
j

�!� 	
and Im m�

j

�!� 	
from which it is easy to obtain:

m�
j ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Re m�

j
�!� 	2

þIm m�
j

�!� 	2r

c�j ¼a tan
Im m�

j

�!� 	
Re m�

j

�!� 	
0@ 1A:

ð6:23:3Þ
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The generic vibration mode of the rotor is excited to a greater or lesser extent
(and thus the degree of vibration is higher to a greater or lesser extent) depending on
the distribution of the destabilising forces d~FiðfÞ along its axis. More precisely, if

we use /
!ðnÞðfÞ to indicate the generic vibration mode, that is, the deformation,

generally complex (see Fig. 6.37), function of the position f in correspondence to
the nth mode of bending vibration, the oscillating motion of the rotor will be excited
to a greater or lesser extent depending on the value assumed by the Lagrangian
components of the destabilising forces QðnÞ (Chap. 2, Sect. 2.5.3, Sect. 6.4.3):

QðnÞ ¼
ZL
0

d~FiðfÞ 
 x ~/ðnÞðfÞ ð6:92Þ

Ω

mj  = 1Φαj

αj

Fig. 6.35 Meaning of influence coefficient a!j

ε = ε (ζ)

ζ

Fig. 6.36 A possible unbalance in a real rotor
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The generic vibration mode /
!ðnÞðfÞ can be represented via the deformations

/
ðnÞ
x ðfÞ and /ðnÞ

y ðfÞ according to two directions X and Y normal to the rotation axis of
the rotor (Fig. 6.37) to which, as usual, we can associate a vector that can be
represented in the complex plane:

~/ðnÞðfÞ ¼ /ðnÞ
y ðfÞ þ i/ðnÞ

x y
ðfÞ ð6:93aÞ

The force d~Fi represents (6.91b) a rotating vector the projection of which on two
planes X and Y provides two harmonic quantities out of phase with each other by 90o,
so (6.92), bearing in mind (6.93a), becomes (also see the expression of the scalar
product using the known algorithm of the complex numbers (see footnote 12)):

QðnÞ ¼
ZL
0

~/ðnÞ
yðfÞ~eðfÞj jmðfÞX2 cosðXt þ cðfÞÞ

þ
ZL
0

~/ðnÞ
xðfÞ~eðfÞj jmðfÞX2 sinðXt þ cðfÞÞ

ð6:93bÞ

This integral, as we know, represents the work of d~Fi for a deformation corre-

sponding to the nth vibration mode /
!ðnÞðfÞ of the rotor.

The behaviour of the rotor with a given distribution of unbalance differs
depending on the condition in which the rotor is operating: for the same rotor, in
fact, the behaviour differs depending on whether it rotates:

• with angular velocity Ω sufficiently lower than the initial critical speed x1

calculated on rigid supports:

X\
1
2
x1 :

1
3
x1 ð6:94aÞ

X

Y

φ(n)(ζ)

φ(n)
y(ζ)

φ(n)
x(ζ)

φ(n)(ζ)

ζ

Fig. 6.37 A real rotor: generic vibration mode
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• above this value:

X[
1
2
x1 ð6:94bÞ

The balancing methods to be adopted in the two cases, although conceptually
identical, are formally different: in the first case (6.94a) we talk of rigid rotors
balancing, whereas if (6.94b) occurs we talk of deformable rotors balancing. We
should remember that the spatial distribution of inertial forces d~Fi always allows a

resultant R
!

i and a moment M
!

i, in whatever way the rotor behaves, that is, both in
the case where the rotor is considered to be a rigid rotor [condition (6.94a) and in
the case of a “deformable rotor” (condition (6.94b)]: a distribution of destabilising

forces d~Fi, while having resultant R
!

i and a moment M
!

i zero, can, however, have a
very high value of generic QðnÞ, excluding, of course, the rigid modes.

By way of explanation:

• assuming, for simplicity’s sake, that the anomaly of the centre of gravity of the
individual sections is constant along the rotor (c fð Þ ¼ c ¼ const): in this case
the destabilising forces d~Fi all lie in a single plane;

• assuming that the trend of the d~Fi is that shown in Fig. 6.38: if the sum of the
positive areas equals the sum of the negative ones, the distribution of the forces

caused by unbalance has resultant R
!

i zero and, due to the symmetry of the

unbalances, also the moment M
!

i is zero.

ε = ε (ζ)

ζ

Fig. 6.38 A real rotor: one specific case of runout
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In this case, if the rotor rotates in the neighbourhood of its third vibration mode
X ¼ x3 (Fig. 6.38) the Lagrangian component Qð3Þ relating to the third vibration
mode (see Eq. (6.93b), assuming n = 3) is quite high and so the corresponding
mode is highly excited. In such conditions, although balanced if considered as a
rigid rotor (see next section) the rotor, in correspondence to angular velocity Ω
close to the frequency x3, has high vibration amplitudes which are often intoler-
able. Considering the corresponding Lagrangian components QðnÞ as exciting
quantities of a mode, i.e. the work done by the centrifugal forces d~Fi for a virtual

displacement /
!ðnÞ

fð Þ that reproduces the form of the mode being considered, is a
concept that has already been widely examined in connection with vibrating n d.o.f.
systems in the modal approach (Chap. 2, Sect. 2.5). Bearing this in mind, we can
say that a rigid or flexible rotor is considered balanced when all the Lagrangian
components QðnÞ (6.93b) of the destabilising forces d~Fi relative to the vibration
modes that can be excited (i.e. those that give a non-zero contribution to the
deformation of the rotor) are zero. This purely modal approach requires knowledge

of the vibration modes /
!ðnÞ

fð Þ of the complete rotor—bearings—casing—foun-
dation system. The definition of these modes can be done:

• experimentally (but this approach is complicated);
• analytically, with different types of schematisation (the most common is with

finite elements, Sect. 6.3).

To balance a real rotor, in addition to the modal method just mentioned, there are
other methods that are easier to apply in practice:

• the method of influence coefficients (already introduced in Sect. 6.5.1.2);
• the so-called hybrid method.

The first approach has the advantage of not having to rely on any analytical
method, but on the other hand, has the disadvantage of not having a logical support
like the modal approach. What is more, as we will see below, this method has two
drawbacks:

• in order to determine the influence coefficients experimentally we require a
number of launches, i.e. start-ups of the rotor, equal to the number of balancing
masses plus one (carried out without the balancing masses and known as the
zero launch);

• as we have seen, the method assumes that the system being examined does not
change its characteristics over the course of the tests (linear and repetitive
behaviour).

On the other hand, the so-called hybrid method seeks unite the advantages of
both the previous methods.
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6.5.2.1 Balancing Rigid Rotors

A rotor characterised by an initial natural pulsation xo, calculated on rigid supports,
that is sufficiently higher than the angular velocity xo [ 2X, as already stated, is
classified as a rigid rotor.24 The generic deformation of the rotor z(ζ, t) can always
be seen as a linear combination of different modes:

~zðf; tÞ ¼ yðf; tÞ þ i 
 xðf; tÞ ¼
X1
n¼1

~/nðfÞqnðtÞ ð6:95Þ

but if (6.94a) are confirmed, the excitation of the deformable modes is negligible, as
the frequency of excitation Ω is much lower than the natural frequencies (quasi-
static area, see Chap. 1, Sect. 1.3.3 and Sect. 2.3.3.1). So for a rigid rotor the
deformation is described by a combination of just the rigid modes: although the
balancing operation is always linked to cancellation of the Lagrangian components
of the inertial forces for the different excited modes, the fact of having to consider
just rigid vibration modes makes it possible to define the balancing conditions in an
operationally more convenient way. In fact, we can say that [2, 68]:

1. a rigid rotor is balanced when the resultant of the inertial forces R
!

i and the

torque M
!

i due to these forces is zero, since these resultants coincide with the
Lagrangian components of the destabilising forces for the rigid modes;

2. a rigid rotor is said to be perfectly balanced when its rotational axis passes
through its centre of gravity and is a principal axis of inertia, as it is possible to
demonstrate [17, 23] that, for constant angular velocity Ω, the following rela-
tions apply:

24From this definition we can deduce that a rotor is to be considered rigid or flexible only on the
basis of the angular velocity it is subject to: in other words the same rotor can be considered either
rigid or flexible depending on the different steady-state angular velocity in different working
conditions. Due to the effect of the real deformability of the supports a rotor can have natural
pulsations xid that are lower than the pulsation xo defined previously. The rotor in these
conditions, that is, with 2X\xo, remains rigid even if Ω is close to or even greater than xid .
The deformation of the rotor in the passage of the four critical speeds xid is represented by a
rigid rotation-translation of the shaft in the two directions X and Y, as shown in the following
figure.

Characteristic deformation of a rigid rotor 
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~Ri ¼ MX2~eG
~Mi ¼~jcJxzX

2 �~icJyxX
2

ð6:96Þ

having used~eG to indicate the vector defining the centre of gravity’s runout in
respect to the rotational axis, with M being the rotor’s overall mass and Jxz and
Jyz being the products of inertia defined in respect to the coordinate system
rotating integrally with the rotor of versors~jc and~ic; this relation highlights that,
in order for the resultant ~Ri of the inertial forces to be zero, it is sufficient for~eG
to be zero, i.e. that the axis of rotation is barycentric; for the torque M

!
i to be

zero, the axis of rotation Z must coincide with a principal axis of inertia (the axis
such that Jzx ¼ Jyz ¼ 0).

3 a system of forces equivalent to those generated by the effective distribution of
the unbalances is given by the forces caused by two concentrated masses
positioned in two arbitrary planes (i.e. to balance a rigid rotor it is enough to
position 2 masses in the two balancing planes).

4 so bearing in mind the third point, we can say that in rigid rotors the unbalance,

which is actually distributed, can be attributed to two forces F
!

1 and F
!

2 caused
by two masses m1 and m2, with suitable value and position, placed on two
planes p1 and p2 and defined by the following relations (see Fig. 6.39):

~Ri ¼ ~F1 þ~F2 ¼ m1X
2~e1 þ m2X

2~e2
~Mi ¼ ~F1 ^~l1 þ~F2 ^~l2 ¼ m1X

2~e1 ^~l1 þ m2X
2~e2 ^~l2

ð6:97Þ

Mi

x

F1

z

y

l 1

l 2

F1

F2

π2

x

Fm2

Fm1

Ff 2

Ff 1

z

y

π1

Fig. 6.39 Rigid rotor: equivalent system of forces caused by unbalance
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These forces must be such that their vector sum is equal to the resultant of the
forces of inertia and that they provide the resultant torque of the forces of inertia.

F
!

1 and F
!

2 can also be defined in the following way: the resultant of the forces of

inertia F
!

i can be broken down into two forces F
!

f 1 and F
!

f 2 lying on planes p1 and

p2, parallel to F
!

i. The moment can, in turn, be represented by two forces F
!

m1 and

F
!

m2 lying on planes p1 and p2 equal in module and of opposite direction, so as to

give rise to the torque M
!

i (Fig. 6.39). Thus we will have:

~F1 ¼ ~Ff 1 þ~Fm1

~F2 ¼ ~Ff 2 þ~Fm2

ð6:98Þ

The values of F
!

1 and F
!

2 depend on the arbitrary choice of balancing planes,
but, once this position has been chosen, the actual forces are obviously univocally
defined. In fact, once planes p1 and p2, known as the balancing planes have been
chosen in an arbitrary manner (i.e. once the values of l1 and l2 have been chosen)

F
!

1 and F
!

2 can be expressed as:

~F1 ¼ m1~e1j jeic1
~F2 ¼ m2~e2j jeic2

ð6:99Þ

where m1 and m2 represent the masses which once positioned in the balancing
planes p1 and p2 at distance e1j j and e2j j from the rotation axis and the angular
position c1 and c2 produce the actual forces due to the initial unbalance of the rotor.
This new set of forces represents a system of equivalent forces: it is possible to

cancel R
!

i and M
!

i by placing two suitable masses m�
1 and m�

2 on two module
balancing planes equal, respectively, to m1 and m2 and positioned at 180o in respect
to these: to solve the problem of balancing rigid rotors we must define which are the
masses m1 and m2 that are equivalent, for the purposes of the unbalance, to the real
distribution of mass of the rotor.

To do this we must remember, as stated repeatedly, that it is not actually possible
to know the actual trend of the runout along the rotor, but we can learn about its
effect by measuring the vibrations induced on the rotor. So before describing bal-
ancing procedures in real rotors, we will briefly recall the experimental procedures
to be adopted for experimentally defining the dynamic behaviour of a rotor (already
partly introduced in Sect. 6.2.1 in relation to balancing a thin disk).

6.5.2.1.1 Methods for Measuring Vibrations in Real Rotors

A generic rotor on one or more supports, if not balanced, vibrates because, as
mentioned, it is excited by synchronous rotating excitation forces. To proceed with
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the balancing operation, we must experimentally measure the vibrations V
!

at each
measurement point: these measurements are made along one or two directions
(arbitrary, as long as they are normal to the rotation axis). The sections where these
measurements are taken usually correspond to the position of the supports: these
supports can be either those of the machine that the rotor actually belongs to, or
other suitably built supports, like in the case of balancing machines.

So, in correspondence to the supports we must measure (Fig. 6.40):

• the absolute vibrations Vs
!

of the actual supports using accelerometers or
velocimeters;

• the relative displacements V
!

r of the shaft with respect to the supports [111]
using proximity sensors which, facing the rotor, provide a voltage signal that is
proportional to the approach between the surface of the rotor and the relative
support, without having to come into contact with the rotor.

Both the absolute vibrations Vs
!

tð Þ of the support and the relative vibrations Vr
!

tð Þ
of the shaft with respect to the support, are of a periodic nature, with fundamental
frequency equal to the angular frequency Ω: in the same signals, as already men-
tioned in Sect. 6.5.1.1, we can often see random disturbances caused by external
sources of excitation that cannot be defined in advance or generically in presence of
noise (6.85). So for these reasons it is usually necessary to carry out harmonic
analysis of the signals in order to identify the one-per-rev components, as described
in Sect. 6.5.1 notes 17 and 18, and Fig. 6.41 Vs1j jei/s1 and Vr1j jei/r1 associated
with the fundamental frequency harmonic equal to the angular frequency Ω.

Fig. 6.40 Procedure for
measuring the vibrations in a
real rotor
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The absolute vibration Va
�!

with respect to a coordinate system that is integral with
the shaft, that is, rotating with angular velocity Ω, is given by:

~Va1 ¼ Va1j jei/a1 ¼ Vs1j jei/s1 þ Vr1j jei/r1 ð6:100Þ

The values of the vibration amplitudes, defined both in module and in phase, can
be conveniently stored and used later as input data for subsequent programs to
automatically calculate the balancing masses. A program to prepare data must,
therefore, mainly carry out the operations summarised below:

(a) acquisition of the signals from the displacement, speed and acceleration sen-
sors positioned on the rotor and its supports;

(b) analogue-digital conversion of these signals, i.e. transformation of electrical
signals into numerical values proportional to the quantities measured, con-
sidering scale factors. This operation can be carried out separately from
acquisition using magnetic tapes as the support media or it can be done at the
same time by an online processor [103–108, 110, 112];

(c) transformation of signals, by means of their harmonic analysis, to calculate the
synchronous vibration components;

(d) cleansing of the signals from the sensors of component displacement caused
by ovalisation or surface irregularities of the rotor. This operation is usually
carried out by subtracting, from the signals acquired at different speeds, the
amplitudes of the displacements measured with an angular velocity low
enough to be able to exclude vibration phenomena of a dynamic nature;

(e) execution of mathematical operations between the various signals: this step
makes it possible to determine the absolute displacements of the shaft as the
sum of the signals from the sensor of absolute displacement of the supports
and from those from the proximity sensors: more specifically, these signals
can be obtained by transforming the signals of the accelerometers into dis-
placements signals by double integration performed using harmonic analysis.

Fig. 6.41 Data acquisition procedure
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6.5.2.1.2 Balancing Machines

The balancing of rigid rotors is usually carried out with special machines known as
“balancing machines” which, with suitable procedures, determine the value of the
two balancing masses. These machines can be divided into two basic categories:

• balancing machines with measurement of the forces on the supports;
• balancing machines with measurement of the vibrations of the supports.

Figure 6.42 shows the schematisation that can be adopted to reproduce the
behaviour of the generic rotor mounted on the balancing machine. The system can
be modelled while considering the rigid rotor constrained to two deformable sup-
ports with stiffness k, i.e. with a system with 4 d.o.f.

Wewill now describe the analytical discussion required to reproduce the behaviour
of this system, as it is useful in understanding the formulations associated with it. To
simplify the discussion, below, we will only consider the motion in the vertical plane,
thus reducing the model to a two d.o.f. system. By assuming as independent variables
the displacement xG of the rotor’s centre of gravity and the angle θ that the rotor’s axis
forms with the horizontal plane, the motion equations of the system become,25,26:

M €x
G
þðr1 þ r2Þ _xG � ðr1l1 � r2l2Þ _hþ ðk1 þ k2ÞxG � ðk1l1 � k2l2Þh ¼ RIV

JG€h� ðr1l1 þ r2l2Þ _xG þ ðr1l21 � r2cÞ _h� ðk1l1 þ k2l2ÞxG þ ðk1l21 � k2l
2
2Þh ¼ MIV

ð6:101aÞ

The forces of inertia caused by the unbalance that arise due to the effect of just

rotation, i.e. resultant R
!

i and moment M
!

i which are given by (6.101b), are vectors

r 1

JG

l 1 l 2

r 2

M

XG

K1 K2

θ

Fig. 6.42 Model for studying
the vibrations in the vertical
plane of the rigid rotor

25In this discussion we neglect the gyroscopic effects.
26Similar equations can be written in the horizontal perpendicular plane.
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that rotate integrally with the shaft and their projection on the vertical axis provides
the force component RIV and the moment component MIV , which are both sinu-
soidal with frequency that is equal to that of rotation Ω:

RIV ¼ ~Ri

�� �� sinðXt þWFÞ
MIV ¼ ~Mi

�� �� sinðXt þWMÞ
ð6:101bÞ

The steady-state solution to these equations is given by:

xG ¼ XG sinðXt þW1Þ
h ¼ H sinðXt þW2Þ

ð6:101cÞ

The values of XG, w1, θ and w2 depend on the parameters that define the system:
in general, the trend of XG and θ as a function of the angular velocity Ω of the rotor
is of the type shown in Fig. 6.43, where x1 and x2 are the two natural frequencies
of the free system.

In force measurement machines, adopting very rigid supports, we must ensure
that the angular velocity Ω, i.e. the frequency of the excitation force, is lower than
the first natural frequency x1 of the system. In this situation the forces that are
external to the system are balanced by just the elastic forces and, for this reason,
measurement of the forces discharged on the supports makes it possible to directly
estimate the resultant and the moment of the unknown inertial forces. In machines
for measuring displacement, however, the supports are extremely deformable:
measuring the displacements makes it possible, once we know the inertial, elastic
and damping characteristics of the system, i.e. the terms to the left of the equals sign

in (6.101a), to define the resultant R
!

i and the moment of the forces of inertia M
!

i

caused by unbalance and so unknown. We will now analyse both types of machine
in more detail.

Balancing machines with force measurement

In such machines the rotor is mounted on two supports that are constrained to the
machine’s structure with dynamometric elements (Fig. 6.44). These dynamometers
(either quartz or strain gauges) are chosen so that the deformability of the

Fig. 6.43 Trend of the modulus of vibration XG and θ (rigid rotor)
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support + dynamometer assembly is low, so that the supports can be considered
rigid and the rotor’s rotation axis can be considered fixed: these conditions are
obtained, as mentioned, by ensuring that the first natural frequency of the rotor x1,
calculated with these supports, is sufficiently higher than the angular velocity Ω of
the actual rotor:

X\
1
2
� 1
3
x1 ð6:102Þ

The stiffness of the supports k1 and k2 is chosen so that it satisfies (6.102). In
these conditions the resultant and the moment of the inertial forces (i.e. the exci-

tation forces external to the system) are balanced by the elastic reactions R
!

1 and

R
!

2 measured at the supports since the contributions caused by the actions of inertia
associated with vibration27 are negligible: in other words the resultant and the
moment of the constraining reactions are exactly equal, except for the direction, to

the resultant R
!

i and the moment M
!

i of the destabilising inertial forces:

1 - 1

Fi

Mi

R1

l 1

l 2

R2

2 - 2

XG

21

21
Fi

Mi

π1

π2

S1

d1

d2

S2

(a)

(b) (c)

Fig. 6.44 Model of the balancing machine with force measurement

27If the axis of rotation, due to the effect of deformability in the supports, should oscillate, the
reactions would balance both the forces caused by unbalance (i.e. the unknowns of the problem)
and the inertial forces caused by vibration of the axis of rotation: for this reason, in this case
measuring the forces acting on the supports would not provide the value of just the unbalance
present in the rotor. In this situation (measurement of reactions with oscillating rotational axis) we
would not be able to separate the contributions due to vibration of the axis of rotation from those
associated with eccentricity as both pulsate with the same frequency Ω as the angular velocity of
the rotor.
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~Ri þ~R1 þ~R2 ¼ 0

~Mi þ~R1 ^~l1 þ~R2 ^~l2 ¼ 0
ð6:103aÞ

where the vectors~l1 and~l2 represent the distances of the supports from the centre of
gravity. These reactions are defined by measuring, for example, the components
R1ðtÞ and R2ðtÞ of the reactions in the horizontal plane:

R1ðtÞ ¼ Reð~R1e
iXtÞ ¼ R1j j cosðXt þW1Þ

R2ðtÞ ¼ Reð~R2e
iXtÞ ¼ R2j j cosðXt þW2Þ

ð6:103bÞ

and obtaining the two modules R
!

1

��� ��� and R
!

2

��� ��� from the amplitudes of the time

signal and the corresponding phases w1 and w2, similarly to what was done for the
vibrations: these values are obtained via the harmonic analysis of the signal from
the dynamometers and by analysing the 1 per rev signal. The real unbalance, as
seen in Sect. 6.5.2.1, can be represented with two masses m1 and m2, placed at a
distance e1 and e2 from the rotation axis, positioned in two suitable balancing planes

p1 and p2 distant d
!

1 and d
!

2 from the centre of gravity (Fig. 6.44c):

~S1 ¼~e1m1X
2 ¼ ~e1j jei/1m1X

2 ¼ e1e
i/1m1X

2

~S2 ¼~e2m2X
2 ¼ ~e2j jei/2m2X

2 ¼ e2e
i/2m2X

2
ð6:104aÞ

where u1 and u2 are the angles that the radius vector, conducted from the axis of
rotation to the mass, form with a reference line that is integral with the actual rotor.

Since the system of forces S
!

1 and S
!

2 (6.104a) represent a system of forces

equivalent to resultant R
!

i and moment M
!

i of the forces caused by the unbalance, to
cancel the effect of the actual real unbalance the following vector relations must be
verified (Fig. 6.44c):

~S1 þ~S2 ¼ ~Ri

~S1 �~d1 þ~S2 �~d2 ¼ ~Mi

ð6:104bÞ

which, considering (6.104a), become:

~S1 þ~S2 ¼ ~R1 þ~R2 ) e1e
i/1m1X

2 þ e2e
i/2m2X

2 ¼ ~R1 þ~R2

~S1 �~d1 þ~S2 �~d2 ¼ ~R1 �~l1 þ~R2 �~l2 ) e1e
i/1m1X

2 �~d1

þ e2e
i/2m2X

2 �~d2 ¼ ~R1 �~l1 þ~R2 �~l2

ð6:104cÞ

These vector equations correspond to 4 scalar equations in the 4 unknowns m1

and m2, u1 and u2 that define the value and the position of the balancing masses, as
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R
!

1 and R
!

2 (in module and phase) are known, because measured, as are distances
e1 and e2 since they are imposed.

Balancing machines with vibration measurement

One alternative approach that can be used for balancing rotors is based on evalu-

ating the equivalent system of destabilising forces R
!

i and M
!

i by measuring the
displacements xG and θ (6.101a)–(6.101c). In order to apply this procedure, unlike
force measurement balancing machines, we need to know the single parameters of
the system beforehand (mass, stiffnesses and dampings) i.e. to know, in analytical
form, the transfer matrix of the actual system. In fact, once we know this, as well as
the vibrations caused by unbalance xG and θ, as they are measured, it is possible to
trace the forces that generated it (6.101a)–(6.101c). This procedure is not usually
followed (given the uncertainties which are, above all, linked to determining the
parameters of damping) and we prefer to characterise the system experimentally
using the method of influence coefficients which, in the case of a linear system,
makes it possible to experimentally define the link between excitation forces and
vibrations.

6.5.2.1.3 The Influence Coefficient Method

To determine the relationship between excitation forces and vibrations, expressed
by (6.101a), it is preferable to proceed with a purely experimental method defined
as the influence coefficient method, which has already been introduced for balancing
a rigid disk in Sect. 6.5.1.1. Let us consider two generic balancing planes pm and

pn: in correspondence to the supports, we measure the vibrations V
!ðsÞ

a and V
!ðsÞ

b
caused by the unbalance, using the procedure already defined in Sect. 6.5.1.1. Then
we put a known test mass mm on the balancing plane pm at a distance~em from the
rotational axis and positioned angularly according to angle cm in respect to the
chosen coordinate system which is integral with the rotor (Fig. 6.45) and repre-
sented by the complex number:

~mm ¼ mme
icm ð6:105Þ

m1
A 

x 

y 

A 

AA

z 

m 

ε1

γ1

Fig. 6.45 Positioning the generic test mass
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and we measure the vibrations on supports, V
!ðsmÞ

a and V
!ðsmÞ

b in correspondence to a
given angular velocity Ω. Assuming a linear system and the possibility of repeating

testing, by subtracting from these vibrations, the vibrations V
!ðsÞ

a and V
!ðsÞ

b caused
only by the existing unbalance, that is, without the test mass, it is possible to

estimate vibrations W
!

am and W
!

bm caused by the presence of just the mass mm, as:

Wam ¼ ~V ðsmÞ
a � ~V ðsÞ

a

Wbm ¼ ~V ðsmÞ
b � ~V ðsÞ

b

ð6:106aÞ

By dividing these vibrations by the mass m!m we obtain the two influence
coefficients (complex) a!am and a!bm:

~aam ¼
~Wam

~mm
¼ aame

iWam

~abm ¼
~Wbm

~mm
¼ abme

iWbm

ð6:106bÞ

aam and abm being the modules of the vibration vectors and wam and wbm the phases
in respect to the coordinate system that is integral with the rotor. These quantities
represent the vibrations, to the supports caused by a unitary mass positioned in the
balancing plane pm at an assigned distance ~em at a zero angle in respect to the
coordinate system that is integral with the rotor. In a similar way, by placing a
known mass m!n on the balancing plane pn at assigned distance e!n from the
rotational axis:

~mn ¼ mne
icn ð6:107aÞ

by measuring the vibrations on the supports V
!ðsnÞ

a and V
!ðsnÞ

b and subtracting them
from the existing ones we obtain the influence coefficients aan and abn caused by a
unitary mass placed on the plane pn, which are:

~aan ¼ aane
iWan ¼

~Wan

~mn
¼

~V ðsnÞ
a � ~V ðsÞ

a

~mn

~abn ¼ abne
iWbn ¼

~Wbn

~mn
¼

~V ðsnÞ
b � ~V ðsÞ

b

~mn

ð6:107bÞ

Once the influence coefficients have been obtained experimentally, it is possible
to set the vibrations caused by unbalance plus those caused by balancing masses to
zero, i.e.:
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~V ðsÞ
a þ ~m�

m~aam þ ~m�
n~aan ¼ ~V ðsÞ

a þ m�
me

iWm~aam þ m�
ne

iWn~aan ¼ 0

~V ðsÞ
b þ ~m�

m~abm þ ~m�
n~abn ¼ ~V ðsÞ

b þ m�
me

iWm~abm þ m�
ne

iWn~abn ¼ 0
ð6:108Þ

where wm and wn represent the unknown angles that define the position of the
masses in respect to the coordinate system that is integral with the rotor, m�

m and m�
n

being the masses placed at the same distances e!m ¼ e!n from the rotational axis
used to determine the influence coefficients a!ij. (6.108) represent two complex
equations in the scalar unknowns m�

m and m�
n, wm and wn and they make it possible

to obtain the balancing masses m�
m and m�

n and their position wm and wn once the

vibrations V
!ðsÞ

a and V
!ðsÞ

b caused by the unbalance have been measured. The
Eq. (6.108) can be solved automatically by a calculator incorporated in the bal-
ancing machine; in this case, the calculator:

• receives the information from the vibration sensors;

• calculates the differences between vibration V
!ðsmÞ

i caused by the simultaneous

presence of the sample masses and unbalance and vibrations V
!ðsÞ

i caused by
unbalance only;

• calculates the influence coefficients a!ij and places them in (6.108);
• by solving the actual set of equations, provides the value of the balancing

masses.

we can see that the influence coefficients a!ij defined by (6.107b) are a function
of the angular velocity Ω in correspondence to which they were actually deter-
mined: for this reason, the relation (6.108) is valid for that particular velocity. The
relation (6.108) used with the influence coefficient method is essentially equal to
(6.101a), used, on the other hand, with the method based on measuring the dis-
placements: the only difference between the two relations is due to the fact that, in

the first case, the link between V
!ðsÞ

a and V
!ðsÞ

b and the unbalance is obtained on the
basis of an analytical approach to the problem, whereas, in the second case the same
relation is obtained directly via experimental testing. With the first approach, the
uncertainty in the results obtained is related to the difficulty in determining the
characteristics of the vibrating system, while with the experimental approach
(influence coefficient method) this difficulty is overcome, even if with this method it
is still advisable to verify the repeatability of the results obtained.

6.5.2.2 Balancing Flexible Rotors

As illustrated previously, a generic rotor is considered deformable when its steady-
state angular velocity Ω is close to or greater than its first natural bending fre-
quency, calculated on rigid supports (Sect. 6.5.2.1). For these rotors the procedures
used to balance rigid rotors, as seen in the previous sections, cannot be applied
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since, for flexible rotors, cancelling the resultant R
!

i and moment M
!

i of the inertial
forces (Sect. 6.5.2.1) does not represent the necessary and sufficient condition for
balancing, which instead, consists of cancelling the Lagrangian components QðnÞ

caused by unbalance of all the vibration modes that can be excited [66, 72].

6.5.2.2.1 Influence Coefficient Method

This method has already used in balancing thin disks (Sect. 6.5.1) and rigid rotors
(Sect. 6.5.2.1): in concept this approach remains unchanged in the case of
deformable rotors too. The runout [as seen in Sect. 6.4 (6.57b)] can be represented
by a vector e! fð Þ that rotates with the same angular velocity Ω as the shaft, the
module and phase of which are functions of the current coordinate f. The steady-
state response of the system, in a generic point j, can also be represented with a

rotating vector V
!

j. If we assume a coordinate system n� g� fð Þ that is integral
with the rotor (Fig. 6.33) both the runout and vibration vectors are fixed: normally,
an axis of this rotating coordinate system is placed in correspondence to the
reflective mark applied to the rotor and this axis is taken as the origin for defining
the phases of the individual quantities under examination. For this reason, during
the balancing operation it is convenient to refer to this coordinate system that rotates
integrally with the shaft. Now let us assume that the rotor has ne balancing planes
(planes where the balancing masses can be applied) and nm measurement planes
(sections where the vibrations caused by unbalance can be measured). We can give
the following definitions:

• V
!ðsÞ

i is the synchronous harmonic components caused by unbalance (one-per-
rev component, measured with the procedure already explained in Sect. 6.5.1.2)
at the generic point of measurement i ði ¼ 1; 2; . . .; nmÞ;

• V
!ðsþmjÞ

i is the complex amplitude of the vibration measured at the ith mea-
surement point, and caused by the simultaneous presence of the rotor’s natural
unbalance (unknown) and of a mass m!j, also assumed to be complex, placed in

the generic jth balancing plane (with j ¼ 1; ne: so m!j represents an arbitrary
module mass mj, placed at a certain distance from the rotation axis ej and at a
certain angle cj with respect to the coordinate system that is integral with the
shaft.

• a!ij is the generic influence coefficient, also complex, estimated via the fol-
lowing relation:

~aij ¼
~V ðsþmjÞ
i � ~V ðsÞ

i

~mj
(i = 1,2,. . .; nmÞ; ðj ¼ 1; 2; . . .; neÞ ð6:109Þ
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This influence coefficient gives the vibration amplitude at the generic mea-
surement point i due to a single arbitrary mass placed with zero phase in respect to
the rotational coordinate system assumed in the jth balancing plane. In general,
these coefficients depend on the angular velocity Ω: in fact, as this varies the
deformation with which the rotor vibrates also varies (the contribution of those
modes predominantly excited by the unbalance changes) and so the Lagrangian
components of the inertial forces of the rotor caused by unbalance, and the com-
ponents due to the individual additional masses, also change. By varying the points
of measurement i ¼ 1; nm and the plane where the mass j ¼ 1; ne is applied, it is
possible to define all the coefficients a!ij. To annul the vibrations caused by

unbalance, steps must be taken to ensure that the masses added m!�
j , which have

now become the unknowns of the problem, satisfy the relation:

~V ðsÞ
1 þ~a1;1~m

�
1 þ~a1;2~m

�
2 þ . . .þ~a1;ne~m

�
ne ¼ 0

~V ðsÞ
2 þ~a2;1~m

�
1 þ~a2;2~m

�
2 þ . . .þ~a2;ne~m

�
ne ¼ 0

. . .. . .. . .

~V ðsÞ
nm þ~anm;1~m

�
1 þ~anm;2~m

�
2 þ . . .þ~anm;ne~m

�
ne ¼ 0

ð6:110Þ

With m! defining the vector of the nm balancing masses placed in the ne balancing
planes:

~m ¼
~m�

1
~m�

2
. . .
~m�

ne

8>><>>:
9>>=>>; ð6:111aÞ

and defined with:

V
!ðsÞ ¼

~V ðsÞ
1

~V ðsÞ
2
. . .
~V ðsÞ
nm

8>><>>:
9>>=>>; ð6:111bÞ

the vector of the vibrations caused by unbalance on the nm measurement planes, the

link, expressed in scalar form by (6.110), between the vibration vector V
!ðsÞ

and that
of the balancing masses m! can thus be expressed in matrix form as:

~V
ðsÞ þ C½ �~m ¼ 0 ð6:112aÞ
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where [C] is the complex matrix of the influence coefficients:

C½ � ¼
~a1;1 ~a1;2 . . . ~a1;ne
~a2;1 ~a2;1 . . . ~a2;ne
. . .
~anm;1 ~anm;2 . . . ~anm;ne

2664
3775 ð6:112bÞ

If the number ne of balancing planes coincides with the number nm of mea-
surement planes, i.e. the matrix [C] is squared, (6.112a) makes it possible to obtain

the values of the masses m! that cancel out the vibrations V
!ðsÞ

, i.e. those that mean

that (6.112a) is verified. However, as stated previously, both vector V
!ðsÞ

and matrix
[C] are generally functions of the angular velocity of the rotor Ω. If we wish to
stabilise the rotor (i.e. balance it) for different speeds, we must verify the relation
(6.112a) for all the nv speeds chosen, i.e. impose simultaneously:

V
!

s X1ð Þ þ C X1ð Þ½ � m!¼ 0
V
!

s X2ð Þ þ C X2ð Þ½ � m!¼ 0
. . .. . .. . .
V
!

s Xnvð Þ þ C Xnvð Þ½ � m!¼ 0

8>><>>: ð6:113aÞ

or also, in matrix form:

W
!

s þ ~C
� �

m!¼ 0 ð6:113bÞ

having indicated W
!

s with:

W
!

s ¼
V
!

s X1ð Þ
V
!

s X2ð Þ
. . .

V
!

s Xnvð Þ

8>><>>:
9>>=>>; ð6:113cÞ

a column vector of nm 
 nv terms, made up of the subvectors V
!

s ¼ V
!

s X1ð Þ of the
vibrations measured for different speeds (made up of n = nm · nv dummy mea-
surement points) and with ~C

� �
the matrix of the influence coefficients at the various

speeds:

~C
� � ¼ C X1ð Þ½ �

C X2ð Þ
. . .

C Xnvð Þ

2664
3775 ð6:113dÞ

Equation (6.113a) cannot generally be satisfied as the number of balancing
planes should be equal to the number nm of measurement planes multiplied by the
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nv speeds (n = nm · nv). So we must proceed with a process of minimisation. Once

the residues of the vibrations have been defined with d
!
, these (6.113a) can be

rewritten as:

W
!

s þ ~C
� �

m!¼ d
! ð6:113eÞ

where d
!

is a vector that contains the residual vibrations in the measurement planes
at all the different speeds analysed:

d
!¼

V
!

res X1ð Þ
V
!

res X2ð Þ
. . .

V
!

res Xnvð Þ

8>><>>:
9>>=>>; ð6:113fÞ

In other words, the added masses m! (since n = nm · nv > ne) will not be able to
cancel the vibrations caused by unbalance of the rotor at all the angular velocities,
but they will only be able to limit them: so at the various running speeds

Xk ðk ¼ 1; nvÞ, residual vibrations V
!

res Xkð Þ will always exist. Therefore, we must
calculate the balancing masses m! so that the residual vibrations are reduced to a
minimum, i.e. we must impose that:

f m!�  ¼ d
!T

d
!¼ min ð6:114aÞ

Replacing (6.113e) in (6.114a) we obtain:

f m!�  ¼ W
!

s þ ~C
� �

m!
� 	T

W
!

s þ ~C
� �

m!
� 	

¼ W
!T

s W
!

s þ W
!T

s
~C
� �

m!þ m!T ~C
� �

TW
!

s þ m!T ~C
� �

T ~C
� �

m!
ð6:114bÞ

This function takes the minimum value, upon zeroing of the first derivative of
the actual function f m!� 

with respect to vector m!28:

@ f m!� 
@ m! ¼ 0 ð6:115aÞ

By applying (6.115a)–(6.114b) we obtain:

@ f m!� 
@ m! ¼ ~C

� �
TW
!

s þ ~C
� �

TW
!

s þ ~C
� �

T ~C
� �

m!þ ~C
� �

T ~C
� �

m!¼ 0 ð6:115bÞ

i.e.:

28In the case in question, the minimum condition is guaranteed [61].
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~C
� �

T ~C
� �

m!¼ � ~C
� �

TW
!

s ð6:115cÞ

The system of complex matrix Eq. (6.115c) makes it possible to determine the
vector m! of the unknown balancing masses, which minimises the sum of the
squares of the vibrations in nm measurement points and for the nv speeds being

considered. The vibrations V
!ðsÞ

Xkð Þ which appear at the second member in
(6.115c) in correspondence to a certain value of Xk can be given a mass that is
proportional to the importance that their minimisation assumes in respect to the
vibrations caused by unbalance in correspondence to other speeds. In fact, it is
logical that, for example, the behaviour of steady-state vibrations is of greater
importance than that relating to other intermediate speeds: to increase the mass to be
associated with these vibrations, compared to the others that appear in (6.115c) we
can simply introduce a diagonal weight matrix P½ �, whose elements are greater than
one for the speeds that must be more massed and equal to one for the others: when
introducing this, matrix (6.114a) becomes29:

d
!T

P½ � d!¼ min ð6:116Þ

The influence coefficient method is currently the most common method used for
balancing high-speed rotors. The advantages and disadvantages of balancing rigid
rotors have already been explained (Sect. 6.5.2.1.3): we should remember only the
considerable advantage of this method lies in the fact that it does not require the
support of any analytical model, unlike the modal balancing method described in
the following section.

6.5.2.2.2 Modal Balancing

To balance a flexible rotor we can also use an alternative approach defined as the
modal approach because it actually uses the concepts of modal analysis seen in
Chap. 2, Sect. 2.5. The first step in applying this method is to define the principal
vibration modes of the shaft: this can be done either experimentally or analytically.
In the case of an industrial plant, the difficulty in defining vibration modes
experimentally is linked to the difficulty in obtaining a sufficient number of mea-
surement points to describe the deformation of the rotor in correspondence to the
individual critical speeds. On the other hand, if we address the problem in an
analytical way, the uncertainties are linked to the schematisation adopted. If we use
an analytical approach and adopt the model of the rotor described in Sect. 6.2, the
system’s equations of motion are:

29The matrix [P] can also be introduced to take into account the greater or lesser reliability of some
measures compared to others: in this case this can be the matrix of covariance [19–22, 24, 26, 27].
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M½ � €xþ R½ � _xþ K½ � x ¼ F ð6:117aÞ

where x is the vector of the generalised displacements relating to both the shaft
nodes and the bearing nodes. If we wish to obtain the real and orthagonal vibration
modes we must eliminate both the term of the generalised forces F and the
damping, thus arriving at a matrix equation of the form:

M½ � €xþ K½ � x ¼ 0 ð6:117bÞ

In general, due to the presence of journal bearings with hydrodynamic lubri-
cation (Sect. 6.2.2), the matrix K½ � is not symmetrical and so the solution of
(6.117b) would be of the form:

x ¼ Xekt ð6:118Þ

with complex λ and vibration modes X that are also complex. To overcome the
problem, the overall stiffness matrix of the rotor-oil-film-foundation system can be
expressed as the sum of a symmetric matrix Ks½ � and a hemisymmetric one Kes½ �:

K½ � ¼ Ks½ � þ Kes½ � ð6:119aÞ

The generic term Kijs of Ks½ � is given by the relation:

Kijs ¼ Kij þ Kij

2
ð6:119bÞ

where Kij and Kij represent the extra-diagonal terms of the system’s matrix K½ �,
while the generic term Kijes of Kes½ � is defined as:

Kijes ¼ Kij � Kij

2
ð6:119cÞ

In real rotors the non-symmetric terms of stiffness Kijes have a negligible effect
on calculating natural pulsations, so it is possible to determine them, while
neglecting the contribution of Kes½ �, i.e. by solving:

M½ � €xþ Ks½ � x ¼ 0 ð6:120aÞ

the solutions are of the form:

x ¼ Xeixt ð6:120bÞ

with vibration modes XðiÞ characterised by real relationships between the elements.
In order to decouple the equations of motion we must calculate the natural fre-
quencies xi and the vibration modes XðiÞ of (6.120a) and then impose the trans-
formation of coordinates (Chap. 2, Sect. 2.5.2):
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x ¼ U½ � q ð6:121aÞ

where U½ � is the real modal matrix defined as:

U½ � ¼ Xð1Þ Xð2Þ . . .
� �

: ð6:121bÞ

By placing the transformation (6.121a) in Eq. (6.117a) and using F to name the
vector of the forces introduced by unbalance, we obtain:

m½ � €qþ U½ �T R½ � U½ � _qþ k½ � qþ U½ �T Kes½ � U½ � q ¼ U½ �TF ¼ Q ð6:122aÞ

where m½ � is the diagonal mass matrix, in modal coordinates:

m½ � ¼ U½ �T M½ � U½ � ð6:122bÞ

and k½ � is also diagonal:

k½ � ¼ U½ �T K½ � U½ � ð6:122cÞ

In general, however, the product U½ �T R½ � U½ � represents a non-diagonal matrix as,
above all, due to the presence of hydrodinamically lubricated bearings, R½ � is not
attributable to a matrix linear combination of the mass matrix M½ � and the stiffness
matrix Ks½ �. Similarly, the matrix U½ �T Kes½ � U½ � is full. In order to decouple the
equations of motion obtained, and then apply the modal approach, we must:

• diagonalise the damping matrix U½ �T R½ � U½ � _q: one simple way of doing this may
be to neglect the extra-diagonal terms;

• neglect the terms of the matrix Kes½ �: this simplification is acceptable when
calculating the response to unbalance, if the modes are sufficiently separate.30

With these simplifications we can arrive at a system of n decoupled equations in
the n principal independent coordinates qi of the form:

mi €q
i
þri _qi þ kiqi ¼ Qi ði ¼ 1; 2; . . .nÞ ð6:123Þ

where the term Qi represents the virtual work carried out by the unbalances for the
generic vibration mode qi. For each natural pulsation xi concerned the corre-
sponding decoupled equation is then defined and the corresponding deformation is
expressed by means of vector XðiÞ, whose components are the vibration amplitudes
of the generic ith vibration mode. The generic vibration mode XðiÞ is thus defined by

30However this assumption is not acceptable when we analyse the free motion of the system, or
when we wish to define the conditions of stability, which are linked to the non-symmetrical terms
of the stiffness matrix.
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a spatial deformation that can be projected onto two orthogonal planes containing
the axis of the rotor. Assuming a complex plain with the real axis corresponding to
the axis Y and the imaginary axis corresponding to the vertical axis X, the rotor’s
generic vibration deformation can be represented as a complex vector defined as:

XðiÞ ¼ XðiÞ
y þ iXðiÞ

x ð6:124Þ

having used XðiÞ
x and XðiÞ

y to indicate the vertical and transversal components of the
displacements of the rotor nodes. If we assume that the real spatial distribution of
the unbalances along the rotor is known (distribution which is actually unknown):

d F
!

i ¼ e!X2m fð Þ eiXtdf ð6:125aÞ

it is possible to define the work carried out by this unbalance for the ith vibration
mode as follows. Once the components of the vector unbalance in vertical and
lateral direction have been defined with dFxi and dFyi, the work carried out by the
same unbalance becomes (see note 12 about this):

QðiÞ
s ¼

Z l

o
XðiÞ
x dFxi þ

Z l

o
XðiÞ
y dFyi ð6:125bÞ

By introducing the shape function, which binds the physical coordinates to the
free coordinates, the work can be rewritten in the form:

QðiÞ
s ¼ F

!T

i 
 X!ðiÞ ð6:125cÞ

where F
!

i is the vector of the generalised forces (vector quantities) at the nodes of
the finite element model due to the natural unbalance of the rotor. To ensure that the
rotor is balanced, we must add enough ne balancing masses m!i to ensure that the

work QðiÞ
m carried out by them for the ith vibration mode cancels out the work

performed by the unbalance:

QðiÞ ¼ QðiÞ
s þ QðiÞ

m ð6:126Þ

In fact, in this situation the generic vibration mode is not forced and therefore,
for the angular velocity around this pulsation, the rotor is balanced since this mode
is not excited by the unbalances and balancing masses, since the Lagrangian
components of the sum of the two systems of forces are zero for that vibration
mode. As mentioned previously, it is not possible to know the real distribution of
the unbalances along the rotor and, for this reason the modal approach is practically
useless. However, it is possible to use the so-called hybrid method, described in the
following section, which uses the method of the modal approach but coupled with
the influence coefficients, defined previously.
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6.5.2.2.3 Balancing with the Hybrid Method

To be able to actually proceed with balancing, first of all we must define the value

of the QðiÞ
s unknowns in the problem, to then calculate the balancing masses. To do

this we need to solve the inverse problem, that is, once the vibration component qðiÞs
has been estimated for each mode obtained from the vibration measurements and

knowledge of the vibration modes (6.121a), we need to obtain QðiÞ
s . In fact, this

route is not generally taken but, as mentioned, the hybrid method is preferred as an
alternative. The method’s name stems from the fact that this approach simulta-
neously uses the techniques of the modal approach and the influence coefficients
method. Once the rotor deformation has been measured or calculated, the method
involves installing systems of masses that have a high Lagrangian component for
the mode that is to be balanced. For example, for a rotor on two supports, to balance
the first mode a mass is placed at the centre, for the second mode two masses are
placed at one quarter and three quarters, in phase opposition, for the third mode
three masses are, again, placed in the dips of the deformation of the mode in
question and so on. The value of the masses is obtained with the influence coef-
ficient method described previously, by applying the chosen system of masses
directly to the rotor, instead of applying one mass at a time, as will be described
below. The mass systems must be orthogonal with the deformations of the vibration
modes that are different to the one that needs to be balanced, so as to avoid affecting
previous balancing. For example we assume that the operating speed is between the
first and second critical speeds. First of all we can use the influence coefficient
method to balance the first critical speed X ¼ x1, by positioning some masses m!1
in phase along the rotor. Once the masses m1 that result from this first phase of
balancing have been positioned, we can balance the rotor at the steady-state speed
X ¼ Xr again with the influence coefficient method while, however, imposing the

orthogonality between the new masses m!r and the first vibration mode X
!ð1Þ

(already balanced):

X
!ð1ÞT

m!r ¼ 0 ð6:127aÞ

where X
!ð1Þ

is the vector that contains the vibration amplitudes in the first vibration
mode (defined up to a constant and derived from the measurements taken at the first
critical speed) in correspondence to the nm balancing planes on which the masses
m!r that balance the rotor at steady-state speed are placed. If we remember that the

Lagrangian component Qð1Þ
r of the forces due to the masses m!r for the first

vibration mode can be expressed as:

Qð1Þ
r ¼

Xnc
j¼1

mrj e
!

jX
2 
 X!ð1Þ ð6:127bÞ
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and that this scalar product, using the complex number algorithm (see note 12), is
equal to the real part of the product between the two complex numbers

mrj e
!

jX
2 
 X!ð1Þ

, it is easy to see how the condition (6.127a) is also equivalent to

requiring that the Lagrangian component Qð1Þ
r of the forces due to the steady-state

balancing masses m!r is zero for the first vibration mode, i.e. that:

Qð1Þ
r ¼ 0 ð6:127cÞ

In other words, the distribution of masses m!r that results when we impose the
condition of orthogonality (6.127a) is such as to not excite, and therefore unbal-
ance, the first vibration mode. If the rotor does not have a running speed Xr that is
higher than the second critical, it is possible to extend the method in the following
way:

• balancing at the first critical X ¼ x1 with the influence coefficient method;
• balancing at the second critical X ¼ x2 as for the first, but with the added

condition that the distribution of the balancing masses m!2 of the second critical
does not excite the first vibration mode;

• balancing at steady-state X ¼ xr as for the previous cases, but with two addi-
tional conditions: the distribution of masses m!r must not excite either the first or
the second vibration mode.

One practical application of the aforementioned method involves using mass
systems that are applied to the rotor so that each system gives a non-zero
Lagrangian component QðiÞ for the ith vibration mode, and zero for all the other
modes. So each system of masses is applied to balance just one mode: the choice of
the value to be attributed to the balancing masses of each system that maintain
between them a ratio and a fixed relative position, is defined using the influence
coefficient approach. Suppose, for example, that the rotor in Fig. 6.46a has an
angular velocity Ω that is higher than both the first critical speed x1 and the second
critical speed x2 and that the vibration shapes are those shown in Fig. 6.46. So to

balance the first critical speed it is possible to place two masses m!ð1Þ
m and m!ð1Þ

n , in
phase with each other, as shown in Fig. 6.47. If the rotor is symmetrical with
respect to the centreline of the two supports, the first mode will have an antinode at
midspan, while the second mode will always have the node at midspan. If the
masses are placed in symmetrical positions with respect to the centreline, then the
condition of orthogonality of the first mass system, for the second mode, is that the

masses are in phase, with equal modulus. After having measured the vibrations U
!

1

caused by the initial unbalance of the rotor for an angular velocity close to, or if

possible, equal to the critical speed, two test masses m!ð1Þ
m and m!ð1Þ

n are applied in

the aforementioned positions and the vibrations U
!

m1 caused by the natural
unbalance of the rotor and the presence of the two test masses are measured:
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m!ð1Þ ¼ m!ð1Þ
m

m!ð1Þ
n

( )
ð6:128Þ

Therefore, the only unknown is the angular position of the mass system and the
value of one of them, since due to the constraints imposed by orthogonality, the
relative angular position between the two masses (in this case, in phase) and their
ratio (in this case, equal to unity) have already been established. As there are only
two unknowns, then just one measurement point is necessary to calculate the
influence coefficient defined by the complex relation:

a!ð1Þ ¼ U
!

m1 � U
!

1

m!ð1Þ
m

ð6:129Þ

where the difference of the vibrations measured with and without the test mass
system, is divided by the value of one of the two masses of the system, given that
the relative angular position and the value of the second mass in respect to the first
have already been defined. The first critical speed will be balanced by placing a

Fig. 6.46 Generic flexible rotor: vibration modes

m∗
m

(1)

m∗
n

(1)

m∗
m

(2)

m∗
n

(2)

Fig. 6.47 Hybrid balancing: system of balancing masses
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system of masses, the first of which is defined by the solution of the complex
equation:

U
!

1 þ a!ð1Þ
m!�ð1Þ

m ¼ 0 ð6:130Þ

and the second by the relation of orthogonality with the second mode which
requires, in this case:

m!
�ð1Þ
m

¼ m!
�ð1Þ
n

ð6:131Þ

Similar considerations can be made and steps carried out (once the first has
already been balanced) for the second critical, see Fig. 6.47:

U
!

1 þ a!ð2Þ
m!�ð2Þ

m ¼ 0 ð6:132Þ

m!
�ð2Þ
m

¼ �m!
�ð2Þ
n

ð6:133Þ

6.6 Two-Per-Rev Vibrations Excited by Different Rotor
Stiffnesses, in Horizontal Shafts

A horizontal shaft, being subject to the weight force, has a static deflection whose
value depends on the elastic and inertial properties of the rotor and which, for
example, in large turbogenerator groups, is in the region of several millimetres. If
we refer to a shaft resting on two rigid supports, with evenly distributed mass and
stiffness (Fig. 6.48), the static deflection assumes a value that depends on the
position along the axis of the rotor:

l

q

f (ζ)ζ

Fig. 6.48 Rotor with uniform section subject to its own mass
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f fð Þ ¼ ql4

24EJ
f
l


 �4

�2
f
l


 �3

þ f
l


 � !
ð6:134Þ

where q is the mass per unit of length of the rotor and EJ its bending stiffness.
If the rotor has a circular cross-section, all the axes lying on this section are

principal axes of inertia: in this case, in fact, the inertia ellipsoid degenerates into a
circumference. The deflection assumed by the shaft, considering it rotating at a low
speed to eliminate dynamic effects on the response, is constant in modulus and
direction, so independently of the angular position of the rotor with respect to a
fixed coordinate system. However, if we consider a rotor where there is no polar
symmetry of the section: a typical case is that of a shaft of a generator or electric
motor with two polar expansions, in which there are grooves, needed to accom-
modate windings, but which contribute little to the overall stiffness of the section
(Fig. 6.49).

In order to better understand the problem, without introducing any restrictive
hypotheses, we can assume that the section of the rotor is rectangular, as shown in
Fig. 6.50, and that the principal axes of inertia ξ and η are those shown in the same
figure. If the rotor is in a generic angular position, Fig. 6.50, there is biaxial bending
as the plane of stress s-s caused by the natural weight does not coincide with a
principal axis of inertia: this leads to deflection with components both in a vertical
and horizontal direction. The component of deflection in a horizontal direction fo
will be zero whenever the axis of stress, during rotation of the shaft, coincides with
a principal axis of inertia; the vertical component fv will have a maximum in
correspondence to the passage of the axis of stress that is responsible for lower
moments of inertia and minimum value in correspondence to the passage for the
other principal axis.

Fig. 6.49 Schematisation of
the section of a rotor with
non-polar symmetry
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As we can see in Fig. 6.51, the presence of different stiffnesses of the transversal
section of the rotor causes two-per-rev variations of the deflection: the vertical
component fv has a mean value fm that is different to zero, while the horizontal fo
oscillates around zero. This effect obviously has an impact on the dynamics of the
rotor, which is forced by parametric variation of stiffness that concerns, above all,
deformable rotors, i.e. rotors with running speeds Ω higher than the first critical
speed. In order to analyse the phenomenon qualitatively we can define the dynamic
behaviour of the Jeffcott rotor (introduced previously, see Sect. 6.6.1, Fig. 6.52),
i.e. a rotor where only the elasticity of the shaft is considered, by concentrating the
mass in the central disk (Fig. 6.52): with this hypothesis the rotor is reduced to a
vibrating two d.o.f. system. We will later extend the discussion to a real rotor
schematised with finite elements, Sect. 6.6.2.

Fig. 6.50 Non-uniform
section of an alternator rotor

Fig. 6.51 Vertical fv and
horizontal fo deflection for
different angular positions of
the rotor (rectangular cross-
section)
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6.6.1 Two-Degree-of-Freedom Model

We will now consider a massless shaft with a rectangular section, with a mass
m fitted in the centreline (Fig. 6.52) and runout zero (centre of gravity coinciding
with the rotation axis). As usual, X-Y-Z is a right-handed Cartesian coordinate
system, with axis Z coinciding with the rotor’s rotation axis and ξ − η − ζ is a
rotating coordinate system that is integral with the rotor and with axes ξ and η
coincident with principal axes of inertia of the cross section of the actual shaft. k1
and k2 are the stiffnesses of the shaft in the centreline according to directions ξ and
η: we can define the kinetic energy Ec, the elastic potential energy V and the virtual
work d � L performed by the weight force as:

Ec ¼ 1
2
_zT m½ �_z ¼ 1

2

_x

_y

� �T m 0

0 m

� �
_x

_y

� �
V ¼ 1

2
cT k½ �c ¼ 1

2

n

g

� �T k1 0

0 k2

� �
n

g

� �
d � L ¼ PTd � z ¼ mg

0

� �T d � x
d � y

� � ð6:135Þ

having used, to define the generic position of the geometric centre of the rotor with
x and y and ξ and η the position of the mass m, respectively, in the absolute and
relative Cartesian coordinate system (gathered, respectively, in vectors z and c).
Between the two coordinate systems, the following relations apply:

c ¼ k½ �z ) n
g

� �
¼ cosXt sinXt

� sinXt cosXt

� �
x
y

� �
ð6:136Þ

Fig. 6.52 Jeffcott rotor: model with two DOF for studying the two-per-rev vibrations caused by
different stiffnesses of the rotor section
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Xt being the angle formed by the mobile coordinate system with respect to the
fixed one. By imposing the coordinate transformation (6.136) in the expression of
the potential energy V (6.135), the same form of energy can be defined as a function
of the independent coordinates x and y as:

V ¼ 1
2
zT k½ �T k½ � k½ �z ¼ 1

2

x

y

� �T cosXt � sinXt

sinXt cosXt

� �
k1 0

0 k2

� �
cosXt sinXt

� sinXt cosXt

� �
x

y

� �
¼ 1

2

x

y

� �T k1 cos2 Xt þ k2 sin2 Xt k1 cosXt sinXt � k2 cosXt sinXt

k1 cosXt sinXt � k2 cosXt sinXt k2 cos2 Xt þ k1 sin2 Xt

" #
x

y

� �
ð6:137Þ

Now by applying Lagrange is possible to define the system’s equations of
motion, which, in matrix form become:

m€xþ k1x cos2 Xt þ k1y cosXt sinXt þ k2x sin2 Xt � k2y cosXt sinXt ¼ mg

m€yþ k1y sin2 Xt þ k1x cosXt sinXt þ k2y cos2 Xt � k2x cosXt sinXt ¼ 0

ð6:138aÞ

By ordering the terms according to the d.o.f. x and y we obtain:

m€xþ k1 cos2 Xt þ k2 sin2 Xt
� 

xþ k1 cosXt sinXt � k2 cosXt sinXtð Þy ¼ mg

m€yþ k1 sin2 Xt þ k2 cos2 Xt
� 

yþ k1 cosXt sinXt � k2 cosXt sinXtð Þx ¼ 0

ð6:138bÞ

Now we can introduce, with km, the mean value of stiffness:

km ¼ k1 þ k2
2

ð6:139aÞ

and, with Dk, the variation of stiffness around the mean value:

Dk ¼ k1 � k2
2

ðcon k1 � k2ð Þ[ 0Þ ð6:139bÞ

Considering definitions (6.139a) and (6.139b) the equations of motion (6.138b)
can be rewritten as:

m €xþ km þ Dkð Þ cos2 Xt þ km � Dkð Þ sin2 Xt� 
xþ km þ Dkð Þ cosXt sinXt � km � Dkð Þ cosXt sinXtð Þy ¼ mg

m €yþ km þ Dkð Þ sin2 Xt þ km � Dkð Þ cos2 Xt� 
yþ km þ Dkð Þ cosXt sinXt � km � Dkð Þ cosXt sinXtð Þx ¼ 0

ð6:140aÞ
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i.e.:

m€xþ kmxþ Dk cos2Xt � sin2 Xt
� 

xþ Dk y sin 2Xt ¼ mg

m€yþ kmyþ Dk cos2Xt � sin2 Xt
� 

yþ Dk x sin 2Xt ¼ 0
ð6:140bÞ

or also:

m€xþ kmxþ Dk x cos 2Xt þ Dk y sin 2Xt ¼ mg

m€yþ kmyþ Dk y cos 2Xt þ Dk x sin 2Xt ¼ 0
ð6:140cÞ

In matrix terms it is possible to rewrite (6.140c) as:

M½ �€xþ K½ �x ¼ F ð6:141aÞ

having used M½ � to indicate the mass matrix:

M½ � ¼ m 0
0 m

� �
ð6:141bÞ

and K½ � to indicate the stiffness matrix, sum of two terms:

K½ � ¼ Km½ � þ DK½ � ¼ km 0
0 km

� �
þ Dk cos 2Xt Dk sin 2Xt

Dk sin 2Xt Dk cos 2Xt

� �
ð6:141cÞ

The system to be solved is made up of two linear differential equations with
coefficients that vary periodically over time (Mathieu equations [18]): these equa-
tions are difficult to solve analytically. In general, however, we should bear in mind
that in real cases, the ratio (Dk=km) is in the region of a few percent: this consid-
eration makes it possible to introduce suitable simplifications in (6.140a)–(6.140c)
aimed at making these equations easier to solve. So, if we assume a change in
variables, such as:

x ¼ xs þ xd
y ¼ ys þ yd ¼ yd

ð6:142aÞ

where xd is used to indicate the variation of the deflection assumed by the rotor in a
vertical direction with respect to the mean deflection xs:

xs ¼ mg
km

ð6:142bÞ
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and yd is the variation with respect to the horizontal component, whose mean value
ys is zero. If we consider the small oscillations around the mean position of equi-
librium defined by (6.142b), i.e. we consider that:

xd � xs; yd small ð6:142cÞ

by introducing the transformation (6.142a) into (6.140c) the same equations of
motion can be rewritten as:

m€xd þ kmxd þ kmxs þ xdDk cos 2Xt þ xsDk cos 2Xt þ ydDk sin 2Xt ¼ mg

m€yd þ kmyd þ ydDk cos 2Xt þ xsDk sin 2Xt þ xdDk sin 2Xt ¼ 0

ð6:143aÞ

Considering the hypotheses (6.142b) adopted and remembering that Dk is small,
the products xdDk and ydDk can be considered negligible, thus (6.143a) becomes:

m€xd þ kmxd ¼ �xsDk cos 2Xt

m€yd þ kmyd ¼ �xsDk sin 2Xt
ð6:143bÞ

Due to the presence of the term Dk caused by the non-polar symmetry of the
section of the rotor, the system can be attributed to a system that is forced by an
excitation with natural pulsation equal to 2Ω, i.e. equal to double the angular
velocity Ω. The solutions of (6.143b) are of the form:

xd ¼ Xd cos 2Xt ¼ �xsDk

km � 4X2m
cos 2Xt

yd ¼ Yd sin 2Xt ¼ �xsDk

km � 4X2m
sin 2Xt

ð6:144aÞ

Resonance conditions will occur when:

km � 4X2m ¼ 0 ) 2X ¼
ffiffiffiffiffi
km
m

r
) X ¼ 1

2
xo ð6:144bÞ

i.e. when the angular velocity Ω of the asymmetric rotor is half of the natural
pulsation xo of the actual rotor (estimated with mean stiffness).

6.6.1.1 Studying Stability

In the previous section, we saw how the effect of weight in a horizontal rotor with
different stiffnesses causes a forcing element with double frequency compared to
that of rotation Ω. Now we will investigate the possible conditions of instability,
again caused by the presence of different stiffnesses of the rotor. For this purpose
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we will once again be considering the Jeffcott rotor described in the previous
section (Fig. 6.52): the equation of motion obtained (6.140c), with parameters that
vary over time, can be defined as a Mathieu equation and characterises the small
oscillations not around a condition of static equilibrium, but around a situation of
motion: so even if the system is conservative it is possible that conditions of
instability may arise. So the periodic motion that the rotor is subject to will be stable
if all the solutions of the equation of perturbed motion around the steady-state
solution tend to zero as time increases, otherwise it will be unstable. To verify the
stability of the system it is easier to rewrite the equations of motion with respect to
the rotating coordinate system n� g� f, that is integral with the rotor, introducing,
in the various forms of energy associated with the system in question (6.135), the
inverse transformation of coordinates compared to that used in the previous
section (6.136):

z ¼ k½ ��1c ¼ k½ �Tc ) _z ¼ _k
h iT

c þ k½ �T _c ð6:145aÞ

i.e. in scalar form:

_x ¼ _n cosXt � Xn sinXt � _g sinXt � Xg cosXt

_y ¼ _n sinXt þ Xn cosXt þ _g cosXt � Xg sinXt
ð6:145bÞ

The kinetic energy can be expressed in matrix form as:

Ec ¼ 1
2
_zT m½ �_z ¼ 1

2
_cT k½ � þ cT _k

h in o
m½ � _k

h iT
c þ k½ �T _c

� �
ð6:145cÞ

and in scalar form, by developing the matrix product (6.145c):

Ec ¼ 1
2
m _n

2 þ _g2 þ Xnð Þ2þ Xgð Þ2�2X _ng� 2X _gn
� 	

ð6:145dÞ

By applying the Lagrange equations to expressions (6.135) and (6.145b), this
time assuming, as independent variables, the coordinates ξ and η, the equations of
motion of the system, expressed in the rotating coordinate system, become:

m €n� 2mX _gþ k1 � mX2� 
n ¼ 0

m €gþ 2mX _nþ k2 � mX2� 
g ¼ 0

ð6:146aÞ

By dividing both equations by the mass of the disk m and gathering the variables
in the only vector c [see Eq. (6.135)], (6.146a) become, in matrix form:
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1 0
0 1

� �
€cþ 0 �2X

2X 0

� �
_cþ x2

1o � X2 0
0 x2

2o � X2

� �
c ¼ 0 ð6:146bÞ

i.e.:

M½ �€cþ R½ � _cþ K½ �c ¼ 0 ð6:146cÞ

since:

x10 ¼
ffiffiffiffiffi
k1
m

r
; x20 ¼

ffiffiffiffiffi
k2
m

r
ð6:146dÞ

As we can see, the matrices that define the free motion of the rotor, defined with
respect to the coordinate system that rotates integrally with the shaft, do not depend
on time. If we wish to analyse the possible conditions of instability, we must first
consider just the positional terms: matrix K½ � (6.146c) is symmetrical and positive
definite if all the principal minors are positive, that is, in particular, if:

x2
1o � X2� 

x2
2o � X2� 

[ 0; x2
1o � X2� 

[ 0; x2
2o � X2� 

[ 0 ð6:147Þ

All the conditions (6.147) are satisfied for X\x1o; on the other hand, for
X[x1o static divergence type instability arises, i.e. corresponding to a solution
that is purely expansive in the rotating coordinate system. Considering the link
between the coordinates x and y in the absolute coordinate system and the coor-
dinates ξ and η in the rotating coordinate system (6.145a), this diverging expansive
solution in the rotating coordinate system corresponds to an oscillating expansive
solution in the absolute coordinate system (Fig. 6.54c). This solution is purely
hypothetical as the terms of velocity have been ignored: now by analysing (6.146c)
in its complete form and imposing:

c ¼ Cekt ð6:148aÞ

Fig. 6.53 Conditions of stability in a rotor with different stiffnesses
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we obtain a complex, homogenous algebraic system in unknown C:

k2 M½ � þ k R½ � þ K½ �� �
C ¼ 0 ð6:148bÞ

Non-trivial solutions of (6.148b) are those that zero the determinant of the
coefficient matrix:

k2 þ x2
1o � X2 �2Xk

2Xk k2 þ x2
2o � X2

�����
����� ¼ k4 þ k2 x2

2o þ x2
1o þ 2X2� þ x2

1ox
2
2o

� x2
2o þ x2

1o

� 
X2 þ X4 ¼ 0

ð6:148cÞ

The solutions of free motion, which can be calculated using (6.148c), are of the
form:

k1 ¼ a1  ix1

k2 ¼ a2  ix2
ð6:148dÞ

By way of example, Fig. 6.53 shows the results of a numerical application
having considered x1o ¼ 140:85 rad=s and x2o ¼ 165:10 rad=s: the same figure
shows the trend of the natural pulsations x1 and x2 and exponential terms a1 and a2
as a function of the angular velocity of the rotor Ω. For X\x1o and X[x2o, i.e. in
an operational field outside of the range between the two natural pulsations x1o and

ξ,η η

η

t

t

x, y

x

y

x

y

ξ

ξ(a) (b)

(c)
(d)

Fig. 6.54 Rotor with different stiffnesses: time history of the rotor’s horizontal and vertical
displacements in conditions of instability (a rotating and c absolute coordinates); trajectories in
conditions of instability (b rotating and d absolute coordinates)
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x2o the system is stable, although not asymptomatically, and the solutions are
purely imaginary of the form k1 ¼ þix1 and k2 ¼ þix2. As we can see, in the first
zone of stability (X\x1o) condition (6.147) is satisfied, i.e. matrix K½ � (which is
always symmetrical, being even diagonal) is positive definite, so will not give rise
to static divergence. In the second zone of stability (X[x2o) however, the system
does not diverge even though the positive definite condition of K½ � cannot be
verified: this is due to the presence of damping terms. For Ω included in the range
defined by the two natural pulsations of the system there is instability: the first
solution k1 ¼ a1 (with a1 [ 0) becomes real and positive (Fig. 6.53a), while k2 ¼
þix2 remains purely imaginary. The general integral of (6.146c) is a linear com-
bination of the particular integrals of the homogenous, i.e.:

n
p

� �
¼ c tð Þ ¼ Re Cð1Þea1teix1t þ Cð2Þea2teix2t

� 	
ð6:149aÞ

(6.153a) becomes in the zone of instability, i.e. for x1o\X\x2o:

f tð Þ ¼ c tð Þ ¼ Re Cð1Þea1t þ Cð2Þeix2t
� 	

ð6:149bÞ

that is, an oscillating motion overlying an expansive exponential motion, as shown
in Fig. 6.54 which shows both the time history ξ and η of the displacement of the
centre of the journal, and its trajectory compared to the rotating coordinate system
assumed. If, in these conditions, we wish to define the motion with respect to the
absolute coordinate, since:

z tð Þ ¼ x
y

� �
¼ k½ �c tð Þ ¼ cosXt � sinXt

sinXt cosXt

� �
c tð Þ ð6:149cÞ

(6.149a) becomes:

xðtÞ ¼ nð1Þea1t þ nð2Þ cos x2t þ /2ð Þ
� 	

cosXt � lð1Þea1t þ gð2Þ cos x2t þ /2ð Þ
� 	

sinXt

yðtÞ ¼ nð1Þea1t þ nð2Þ cos x2t þ /2ð Þ
� 	

sinXt þ lð1Þea1t þ gð2Þ cos x2t þ /2ð Þ
� 	

cosXt

ð6:149dÞ

i.e. an expanding oscillating motion, represented in Fig. 6.54c and 6.54d.

6.6.2 Schematisation of the Problem on a Real Rotor

We will now consider a rotor that has two supports, and which has a portion of shaft
where there are different stiffnesses due, for example, to hollows or stiffening
(Fig. 6.55). The finite element model that could be adopted to reproduce the
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behaviour of the rotor is that shown in the same figure. The definition of the
matrices of mass Mj

� �
and stiffness Kj

� �
of all the finite elements that make up the

mathematical model, have already been fully explained in Sect. 6.2.1. With refer-
ence to the discussion in Sect. 6.6.1, Eqs. (6.141a)–(6.141c), we must define the
matrix DKj

� �
of the element that simulates the section of rotor with different

stiffnesses only (element with end nodes 4 and 5 in the Fig. 6.55, [6].
We will now consider this element and define a rotating coordinate system that is

integral with the shaft (axes n and g): we will assume as independent variables the
nodal displacements xjl of the end nodes of the element considered in the local
rotating coordinate system (Fig. 6.56). These variables are chosen so that we have
directions that are parallel to the principal directions of inertia of the cross section. It
is then possible to define the potential energy Vj associated with this element:

Vj ¼ 1
2
xTjl Kjl
� �

xjl ð6:150aÞ

Fig. 6.55 Schematisation of a rotor with a non-circular section
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where Kjl
� �

denotes the stiffness matrix with respect to the local rotating coordinate
system:

Kjl
� � ¼

12EJy
l3

6EJy
l2

4EJy
l sym

0 0 12EJx
l3

0 0 � 6EJx
l2

4EJx
l

� 12EJy
l3

6EJy
l2 0 0 12EJy

l3
6EJy
l2

2EJy
l 0 0 � 6EJy

l2
4EJy
l

0 0 12EJx
l3

6EJx
l2 0 0 12EJx

l3

0 0 � 6EJx
l2

2EJx
l 0 0 6EJx

l2
4EJx
l

26666666666664

37777777777775
ð6:150bÞ

In order to define the equations of motion of the overall system, we need to
express all the various forms of energy, and in particular the potential energy Vj

(6.150b) of the element with non-polar symmetry, in a single global coordinate
system, assumed to be fixed, as shown in Fig. 6.54. For this purpose, we can
express the link between the coordinates xj referring to the absolute coordinate
system and those relating to the local coordinate system xjl. The link between the
two sets of coordinates can be expressed, in matrix form, as:

xjl ¼ KXt½ �xj ð6:151aÞ

yG 

η
Ω 

xG 

x5

y5 

x4 

y4 

5 

4 

θx 5 
θy5 

θx4 
θy4 

ξL

yI

xI

Fig. 6.56 Finite element with non-polar symmetry: local and global coordinate systems adopted
for the section
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where (see (6.136)) the matrix KXt½ � is of the form:

KXt½ � ¼

cosXt 0 sinXt 0 0 0 0 0
0 cosXt 0 � sinXt 0 0 0 0

� sinXt 0 cosXt 0 0 0 0 0
0 sinXt 0 cosXt 0 0 0 0
0 0 0 0 cosXt 0 sinXt 0
0 0 0 0 0 cosXt 0 � sinXt
0 0 0 0 � sinXt 0 cosXt 0
0 0 0 0 0 sinXt 0 cosXt

266666666664

377777777775
ð6:151bÞ

Therefore, it is possible to express the potential energy Vj in the global coor-
dinates xj, to obtain:

Vj ¼ 1
2
xTj KXt½ �T Kjl

� �
KXt½ �xj ¼

1
2
xTj KjðtÞ
� �

xj ð6:152aÞ

The stiffness matrix of the finite element with non-polar symmetry KjðtÞ
� �

defined in the absolute coordinate system will, therefore, be given by the product:

KjðtÞ
� � ¼ KXt½ �T Kjl

� �
KXt½ � ð6:152bÞ

Therefore, the terms of this matrix are a function, via sine and cosine terms, of:

• time t;
• different moments of inertia J1 and J2 of the section;
• angular velocity Ω.

The term KjðtÞ1;1, for example, will be equal to:

KjðtÞ1;1 ¼
12EJ1
l3

cos2 Xt þ 12EJ2
l3

sin2 Xt ð6:153aÞ

Similarly to what was done for the 2 d.o.f. system, Sect. 6.6, using Jm to define
the mean value of the moment of inertia of the section:

Jm ¼ J1 þ J2
2

ð6:153bÞ

and DJ for the semi-difference of the moments of inertia:

DJ ¼ J1 � J2
2

ð6:153cÞ
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the generic term (6.153a) can, therefore, be rewritten as the sum of a constant term
and one that is variable over time with pulsation equal to double the angular
velocity Ω of the rotor:

KjðtÞ1;1 ¼
12E
l3

Jm þ DJð Þ cos2 Xt þ 12E
l3

Jm � DJð Þ sin2 Xt

¼ 12EJm
l3

þ 12EDJ
l3

cos 2Xt
ð6:153dÞ

The same transformation can be performed on all the other terms of the stiffness
matrix KjðtÞ

� �
, which can then be broken down into the sum of two matrices:

KjðtÞ
� � ¼ Kjm

� �þ DKj
� � ð6:154aÞ

where Kjm
� �

is symmetrical, independently of the time t and the angular velocity of
the rotor:

Kjm
� � ¼

12EJm
l3

6EJm
l2

4EJm
l sym

0 0 12EJm
l3

0 0 � 6EJm
l2

4EJm
l

� 12EJm
l3

6EJm
l2 0 0 12EJm

l3
6EJm
l2

2EJm
l 0 0 � 6EJm

l2
4EJm
l

0 0 12EJm
l3

6EJm
l2 0 0 12EJm

l3

0 0 � 6EJm
l2

2EJm
l 0 0 6EJm

l2
4EJm
l

26666666666664

37777777777775
ð6:154bÞ

while matrix DKj
� �

is symmetrical but dependent on the time and the angular
velocity Ω of the rotor:

DKj
� � ¼

12
l3 cos 2Xt
6
l2 cos 2Xt

4
l cos 2Xt sym

12
l3 sin 2Xt

6
l2 sin 2Xt

12
l3 cos 2Xt� 6

l2 sin 2Xt � 4
l sin 2Xt � 6

l2 sin 2Xt
4
l cos 2Xt� 12

l3 cos 2Xt � 6
l2 cos 2Xt � 12

l3 sin 2Xt � 6
l2 sin 2Xt

12
l3 cos 2Xt

6
l2 cos 2Xt

2
l cos 2Xt

6
l2 sin 2Xt � 2

l sin 2Xt � 6
l2 sin 2Xt

4
l cos 2Xt� 12

l3 sin 2Xt
6
l2 sin 2Xt � 12

l3 cos 2Xt
6
l2 cos 2Xt

12
l3 sin 2Xt � 6

l2 sin 2Xt
12
l3 cos 2Xt

12
l3 sin 2Xt

12
l3 sin 2Xt � 6

l2 cos 2Xt
2
l cos 2Xt

6
l2 cos 2Xt � 4

l sin 2Xt
6
l2 sin 2Xt

4
l cos 2Xt

266666666664

377777777775
ð6:154cÞ

By assembling [98–101]:

• the matrices of mean stiffness Kjm
� �

(6.154b) of the element with non-circular
cross-section (Fig. 6.57) in the overall matrix of the system Km½ � of the entire
system (rotor + oil-film + foundation) as shown in Fig. 6.56;

• the matrix DKj
� �

(6.154c) in the matrix DK½ � as shown in Fig. 6.58;
• the mass matrix Mj

� �
in the overall mass matrix M½ �;
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and considering:

• the mass of the rotor as an external force;
• the effect of the oil-film (Sect. 6.2.2.1);
• the foundation (Sect. 6.2.4);

Fig. 6.58 Assembly of the
stiffness matrix DKj

� �
due to

the different stiffnesses in the
overall matrix DK½ � of the
rotor + foundation + oil-film
system

Fig. 6.57 Assembly of the
mean stiffness matrix Kjm

� �
in

the overall matrix Km½ � of the
rotor + foundation + oil-film
system
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The equations of motion of the complete rotor + oil-film + foundation system
become of the form:

M½ �€xþ R½ � _xþ Km

� �
xþ DK½ �x ¼ P ð6:155Þ

where x is the vector relating to the overall d.o.f. of the system in global coordi-
nates, R½ � is the damping matrix obtained by summing the contributions of the rotor
(proportional to the matrix of mass M½ � and of mean stiffness Km½ �) and those due to
the oil-film and the foundation. Lastly, in (6.155) P is the vector of the generalised
forces due to natural mass.31

In order to solve the Eq. (6.155) we must numerically integrate the system by
calculating matrix DK½ � at generic time t. Similarly to what we saw for the two d.o.f.
model (Sect. 6.6.1), it is also possible to adopt a simplified approach for the n d.o.f.
model, which is valid in the event that the variations in stiffness EDJ are a small
percentage of the mean stiffness EJm. In this case, we consider the equation of static
equilibrium of the rotor defined by the following relation [derivable from (6.155)]:

Km

� �
x ¼ P ð6:156Þ

Once the static deformation xs has been calculated by solving the system (6.156),
we perform a change of variables:

x ¼ xs þ xd ð6:157aÞ

considering the perturbed motion xd around the position of mean static equilibrium
xs. Taking into consideration (6.157a), the equation of motion of the system (6.155)
becomes:

M½ �€xd þ R½ � _xd þ Km

� �
xd þ Km

� �
xs þ DK½ �xs þ DK½ �xd ¼ P ð6:157bÞ

Bearing in mind relation (6.156) and since the term DK½ �xd can be considered a
higher infinitesimal order (the variation of stiffness DK½ � due to the non-polar
symmetry is much lower than the mean stiffness Km

� �
as well as the displacements

xd are compared to the static value xs) (6.157b) can be simplified in the following
form:

M½ �€xd þ R½ � _xd þ Km

� �
xd ¼ � DK½ �xs ¼ Foe

i2Xt ð6:157cÞ

Therefore, for each time t and angular velocity of the rotor Ω it is possible to
solve system (6.157c) to obtain the value of variation of displacement xd around the
position of static equilibrium xs for each position of the rotor (univocally defined by

31In this discussion it has deliberately not considered the effect of other possible excitations such as
those induced by the umbalance.
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variables t and Ω). This solution reproduces the forced motion of a horizontal shaft
caused by the different stiffnesses of the rotor. By solving the homogeneous
equation associated with (6.155) we can, similarly to what was done in the two d.o.
f. model [6], obtain the conditions of instability that can arise for Ω that falls
between the two pulsations associated with the various rotor stiffnesses. In fact, the
dissipative terms due to the oil-film cancel out this type of instability. The solution
of the homogenous equation corresponding to (6.155) can be obtained using either
numerical techniques or approximate methods (perturbation, Flochet, see the bib-
liography on this subject).

6.7 The Hysteretic Damping Effect

The passive resistances that act on a rotating shaft can be classified into two groups:
external resistance and internal resistance. As previously discussed in the intro-
duction (Sect. 6.2.2) and in the chapter on systems surrounded by force fields
(Chap. 5), external resistances are mainly caused by resistance to air, to the effects
of the oil-film in hydrodinamically lubricated bearings or the actions of fluid in
seals. As we saw previously, the effects introduced by these bearings can be traced
back to nonconservative force fields: the positional terms of the oil-film (Chap. 5,
Sect. 5.3.2.2 and Sect. 6.2.2) can give rise to instability, whereas the corresponding
terms of velocity are generally dissipative. The effect associated with the dissipation
of energy caused by material deformation or internal slippage between the elements
that make up the rotor (slippage between flanged or bolted parts or slippage in the
windings of electric motors and alternators) is different: these phenomena are
normally defined as elastic hysteresis. The characteristic of this hysteresis is that it
does actually have a damping effect below the first critical speed (X\x1), whereas
at higher speeds (X[x1) it becomes destabilising. The internal frictions caused by
elastic hysteresis are generally less than the external frictions and so this form of
instability does not generally arise. Exceptions can be seen in cases where there are
other phenomena that give rise to instability, since then the energy supplied to the
shaft by elastic hysteresis, for X[x1, adds to that of the other concurrent causes of
instability.

6.7.1 Two-Degree-of-Freedom Model

We will now begin to examine the problems on the effect of passive hysteretic
resistances. We will refer to the simple model of a rotor, assumed to rotate at a
constant angular velocity Ω, shown in Fig. 6.59. In the mathematical model the
supports are considered to be rigid, we can assume the mass m positioned sym-
metrically with respect to the supports and we can neglect the gyroscopic effects.
O is the intersection between the axis that connects the two supports with the plane
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that contains the disk, S is the geometric centre of the disk and, lastly, G is its centre
of gravity, assumed to be shifted by ε with respect to S. If we neglect hysteretic
damping inside the rotor for the moment, then the equations of motion of the
system, using the complex notion, are again those obtained in Sect. 6.3, Fig. 6.59:

m €z
!þ r _z

!þ k z!¼ m e!X2eiXt þ m g! ð6:158Þ

having indicated with:

• z! the geometric vector that defines the position of the centre of the disk S with
respect to a Cartesian coordinate system (X-Y-Z) that has axis Z coinciding with
the rotation axis;

• k the stiffness of the shaft;
• r the viscous damping due to external damping.

The hysteretic damping, associated with the deformation of the shaft, in turn
rotating with respect to the absolute coordinate system, can easily be introduced
into a coordinate system n� l� fð Þ that rotates with angular velocity Ω and axis ζ
coinciding with axis Z: compared to this rotating coordinate system the geometric
centre of the disk S may be subject to displacements defined by a geometric vector
l!, since l! is correlated to the vector z! by means of the following relations:

z!¼ l! eiXt

_z
!¼ _l

!
eiXt þ iX l! eiXt

z!¼ €l
!

eiXt þ 2iX _l
!

eiXt � X2 l! eiXt

ð6:159Þ

X

Y O 

S 
G 

Ωt 

ξ 

η 

μ 

ε 

Fig. 6.59 Fixed (X-Y-Z) and
rotating n� l� fð Þ
coordinate system
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By replacing the links between the two independent coordinates defined in
relations (6.158) in the motion Eq. (6.159), we obtain:

m €l
! þ 2iX _l

! � X2 l!
� 	

þ r _l
! þ iX l!
� 	

þ k l!
� 	

eiXt ¼ m e!X2eiXt þ m g!

ð6:160Þ

If we wish to define these equations in respect to the rotating coordinate system
n� l� fð Þ, we will need to pre-multiply both members of the term e�iXt, to obtain:

m €l
! þ 2iX _l

! � X2 l!
� 	

þ r _l
! þ iX l!
� 	

þ k l!
� 	

¼ m e!X2 þ m g!e�iXt

ð6:161Þ

As we can see, compared to an observer rotating integrally with the system
n� l� fð Þ, the unbalance m e!X2 becomes a geometric vector that is constant in
modulus and direction, while the weight is represented by a vector that counter-
rotates with speed −Ω. In these equations it is possible to easily introduce the
hysteretic damping, associated, as mentioned, with the deformation of the shaft,
with an equivalent viscous damping with constant rI

32:

rI _l
! ð6:162Þ

thus obtaining:

m €l
! þ 2iX _l

! � X2 l!
� 	

þ r _l
! þ iX l!
� 	

þ k l! þ rI _l
!� 	

¼ m e!X2 þ m g!e�iXt

ð6:163Þ

It is simpler, for the following discussion, to bring this equation back to a
dimensionless form: by dividing (6.163) by the mass m and defining the different
constants as follows:

a ¼ r
m

b ¼ rI
m

x2
o ¼

k
m

ð6:164aÞ

32This model takes into account the fact that the energy is dissipated only if there is actually a
deflection of the rotor, bending associated with a motion in respect to the rotating coordinate: in

the case where the rotor rotates rigidly inflected, i.e. for _l
!¼ 0, there is no energy dissipation.
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we will obtain:

€l
! þ 2iX _l

! � X2 l!þ a _l
! þ iXa l! þ x2

o l
! þ b _l

!¼ e!X2 þ g!e�iXt

ð6:164bÞ

i.e.:

€l
! þ _l

!
2iXþ aþ bð Þ þ l! �X2 þ iXaþ x2

o

�  ¼ e!X2 þ g!e�iXt ð6:164cÞ

Now using the inverse relations of (6.159), i.e. by expressing the link between
the vector m, which defines the position of the centre of the disk S in the rotating
coordinate system n� l� fð Þ, with the vector z!, that defines the position in the
absolute coordinate system (X-Y-Z):

l!¼ z!e�iXt

_l
!¼ _z

!
e�iXt � iX z! e�iXt

€l
!¼ €z

!
e�iXt � 2iX _z

!
eiXt � X2 z! e�iXt

ð6:165Þ

and by replacing (6.165) in the motion equation of the rotor expressed in the
rotating coordinate system (6.164c), we arrive at:

€z
!

e�iXt � 2iX _z
!
e�iXt � X2 _z

!
e�iXt þ 2iXþ aþ bð Þ _z

!
e�iXt � iX z!e�iXt

� 	
� X2 z!e�iXt þ x2

o z
! e�iXt ¼ e!X2 þ g!e�iXt

ð6:166aÞ

After the appropriate simplifications and by multiplying all the terms by eiXt so
as to return to the absolute coordinate system, (6.166a) becomes:

€z
! þ aþ bð Þ _z!þ x2

o � iX b
� 

z!¼ g!þ e!X2 eiXt ð6:166bÞ

The presence of hysteretic damping, defined by the dimensionless term β
(6.166b), produces two effects: on the one hand it increases the equivalent structural
damping, to add to the external damping α (6.164a), on the other, it introduces an
imaginary equivalent stiffness iXb proportional to the angular velocity of the shaft
(6.164a). Now we will examine the effects of these terms both on the steady-state
response of the system, and in its actual stability.

6.7.1.1 Studying the Steady-State Solution (Particular Integrals)

First of all we will analyse the particular integral of (6.166b) caused solely by
runout of the centre of gravity of the disk (an unbalancing effect):
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€z
! þ aþ bð Þ _z!þ x2

o � iX b
� 

z!¼ e!X2 eiXt ð6:167aÞ

By imposing the steady-state solution in (6.167a):

z!e ¼ A
!

eiXt ð6:167bÞ

we obtain a complex algebraic equation in the unknown (complex) A
!

:

�X2 þ iX aþ bð Þ þ x2
o � iX b

� � 
A
!¼ e!X2 ð6:167cÞ

So the solution of (6.167c) becomes:

A
!¼ e!X2

�X2 þ iX aþ bð Þ þ x2
o � iX b

� �  ¼ e!X2

x2
o � X2 þ iXa

¼ A
!��� ��� ei/ ð6:167dÞ

of which modulus and phase equal, respectively:

A
!��� ��� ¼ e!�� ��ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

xo
X

� 2�1
� 	2

þ 2h xo
X

� 2r
/ ¼ a tan � 2h xo

X
xo
X

� 2�1

 ! ð6:167eÞ

having used h ¼ r
rc
to indicate the dimensionless damping ratio. As we can see, by

comparing (6.167c), (6.167d) and (6.167e) with the solution of the same damped
system, not considering hysteretic damping [(6.68b), Sect. 6.4.2], the two rotors
show the same particular integral z!e regardless of whether any hysteretic damping
is considered or not. This result can be attributed to the fact that, in steady-state
motion, the forces caused by hysteretic damping are not able to dissipate energy as
the shaft assumes a constant deflection with respect to the rotating coordinate
system n� l� fð Þ and so hysteretic damping, introduced by the term (6.162),
cannot dissipate energy. Now we will estimate the particular integral due solely to
the rotor’s weight, solution of:

€z
! þ aþ bð Þ _z!þ x2

o � iX b
� 

z!¼ g! ð6:168aÞ

The steady-state response, in this case, is defined by:

z!p ¼ g!
x2

o � iX b
�  ¼ z!p

�� �� eiw ð6:168bÞ
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where the modulus and the phase equal:

z!p

�� �� ¼ g

x2
o � iX b

� 
w ¼ atan

Xb
x2

o


 � ð6:168cÞ

Under the action of the natural mass, due to the effect of the hysteretic damping,
the centre of the disk S lowers by a quantity z!p

�� �� that is less than static deflection.
Furthermore, the deformation does not lie on the vertical, but is rotated by angle ψ
in the direction of rotation of the rotor.33 Figure 6.60 shows the trend of the
modulus of static deflection, compared to the value of deflection in the absence of

hysteretic damping, as a function of the ratio X
xo

� 	
, upon variation of parameter β.

As we can see, for high values of β or of Ω, in the presence of elastic hysteresis the
modulus z!p

�� �� tends to zero and the phase tends to 90o, i.e. the disk tends to lie
horizontally.

6.7.1.2 Analysing the Stability of the System

Now we will analyse the stability of the motion of the rotor under consideration: to
do this, we must study the solutions of the homogenous equation:

€z
! þ aþ bð Þ _z!þ x2

o � iXb
� 

z!¼ 0 ð6:169aÞ

Placing a possible solution in (6.169a):

z!¼ xþ iy ð6:169bÞ

the same motion equation becomes:

€xþ i€yð Þ þ aþ bð Þ _xþ i _yð Þ þ x2
o � iX b

� 
xþ iyð Þ ¼ 0 ð6:169cÞ

which can be brought back to two scalar equations of the form:

€xþ aþ bð Þ _xþ x2
o � iX b

� 
x ¼ 0

€yþ aþ bð Þ _yþ x2
o � iX b

� 
y ¼ 0

ð6:170Þ

33In particular, we can see that we can obtain parameter β from the experimental measurement of
angle ψ.
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By grouping the independent variables x and y in vector z:

z ¼ x
y

� �
ð6:171aÞ

the equations of motion in scalar form (6.170) can be rewritten in matrix form as:

M½ �€zþ R½ �_zþ K½ �z ¼ 0 ð6:171bÞ

where M½ � is the mass matrix:

M½ � ¼ 1 0
0 1

� �
ð6:171cÞ

R½ � is the damping matrix:

R½ � ¼ rxx rxy
ryx ryy

� �
¼ aþ b 0

0 aþ b

� �
ð6:171dÞ

and K½ � is that of stiffness, as the sum of two terms:

K½ � ¼ kxx kxy
kyx kyy

� �
¼ Ks½ � þ KF½ � ¼ x2

o 0
0 x2

o

� �
þ 0 Xb

�Xb 0

� �
¼ x2

o Xb
�Xb x2

o

� �
ð6:171eÞ

As we can see, the matrix K½ �, which takes into account both the elastic terms
Ks½ � and those KF½ � due to the positional terms of the force field that is generated by
the effect of elastic hysteresis, is, therefore, non-symmetrical with extra-diagonal
terms of opposite sign: so the system may become unstable. However, due to the
terms of velocity of the hysteretic force field, matrix R½ � is symmetrical and positive
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Fig. 6.60 Trend of the static deflection in the presence of hysteretic damping
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definite: so its effect is purely dissipative. Given that the non-symmetrical terms of
KF½ � are of the opposite sign, conditions of instability are established when the
energy introduced by these terms is greater than that dissipated by the terms of
velocity. Now we will analyse the stability of the system using the usual eigen-
values-eigenvectors procedure of (6.171b) (Chap. 2, Sect. 2.4.2): by placing in
(6.171b) the solution of the form:

z!¼ Zekt ð6:172aÞ

we will obtain:

k2 þ aþ bð Þkþ x2
o � iX b

� � 
Z ¼ 0 ð6:172bÞ

an equation that allows non-trivial solutions when:

k2 þ aþ bð Þkþ x2
o � iX b

� �  ¼ 0 ð6:173aÞ

Solutions of the Eq. (6.173a) are:

k1;2 ¼ � aþ bð Þ
2

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

aþ bð Þ
2


 �2

�x2
o þ iX b

s
ð6:173bÞ

which, once the natural pulsation of the damped system has been defined, as:

xd ¼ x2
o �

aþ bð Þ
2

ð6:173cÞ

become:

k1;2 ¼ � aþ bð Þ
2

þ i
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2

d � iXb
q

ð6:173dÞ

By developing the square roots that appear in the expression (6.173d) in series, β
being small: ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x2
d � iX b

q
¼ xd �

1
2
i
X b
xd

ð6:174aÞ

we obtain:

k1 ¼ � aþ bð Þ
2

þ X b
2xd


 �
þ ixd ¼ a1 þ ixd

k2 ¼ � aþ bð Þ
2

� X b
2xd


 �
� ixd ¼ a2 � ixd

ð6:174bÞ
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As α and β are definitely positive (6.164a), the following is always true:

a2 ¼ � aþ bð Þ
2

� X b
2xd

\0 ð6:175aÞ

and the solution k2, therefore, represents a stable motion, i.e. decreasing over time,
oscillating with pulsation xd . The solution:

k1 ¼ a1 þ ixd ð6:175bÞ

could, however, give an unstable expansive solution if:

a1 ¼ � aþ bð Þ
2

þ Xb
2xd

[ 0 ð6:175cÞ

i.e. for:

X [ xd
aþ bð Þ
b

ð6:175dÞ

Therefore, the relation (6.175d) defines the range of stability of the rotor being
analysed while taking into account the presence of internal hysteresis: if the hys-
teretic damping is zero b ¼ 0 there is no kind of instability. The presence of
hysteretic damping introduces destabilising effects at angular speeds Ω that are

higher than xd
aþbð Þ
b i.e. for speeds higher than the first critical speed, whereas at

lower values it leads to a dissipation of energy. To analyse the behaviour of the
system it is also possible to use the following energetic procedure, which is
approximate but closer to the physical problem, based on the hypothesis of per-
turbing the shaft around the steady-state position and forcing it to oscillate freely
with its natural pulsation xo

34; lastly, we assume that the trajectory of the centre of
gravity of the mass disk m is circular, that is, that the perturbed motion is defined by
the coordinates:

x ¼ A cosxot

y ¼ A sinxot
ð6:176Þ

Now we will consider the work performed by the nonconservative positional
force field, that generates matrix KF½ � and that performed by the dissipative terms,
linked to matrix R½ � (the work performed by the forces of inertia in a cycle is, as we
know, zero): by equalising these two expressions we will obtain the boundary
condition of instability. Lf being the work carried out by the positional forces:

34This perturbation is that which, for example, would occur due to the effect of the unbalance at the
passage of the critical speed, i.e. for X ¼ xo.
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Fx ¼ kxxxþ kxyy

Fy ¼ kyxxþ kyyy
ð6:177aÞ

in a cycle:

Lf ¼
ZX
0

Fxdx þ
ZY
0

Fydy ¼
ZT
0

Fx _xdt þ
ZT
0

Fy _ydt ð6:177bÞ

Taking into account (6.171e), (6.177b) becomes:

Lf ¼ �2XA2pb ð6:177cÞ

The work Ld of the dissipative forces is, however:

Ld ¼
ZX
0

F_xdx þ
ZY
0

F_ydy ¼
ZT
0

F_x _xdt þ
ZT
0

F_y _ydt ð6:178aÞ

since:

F _x ¼ rxx _xþ rxy _y

F _y ¼ ryx _xþ ryy _y
ð6:178bÞ

which, again, taking into account (6.171d), becomes:

Ld ¼ 2 aþ bð ÞA2pxo ð6:178cÞ

By establishing Lf [ Ld , from (6.177c) and (6.178c) we obtain:

X [ xd
aþ bð Þ
b

ð6:179Þ

With this energetic approach we also arrive at the same expression (6.175d)
already obtained previously with the usual eigenvalue-eigenvector procedure.

6.8 The Gyroscopic Effect

In the previous sections we neglected the moments of inertia caused by the rotation
and deflection of the axis of the rotor: if we wish to take into account the moments
of inertia, we must now define the geometry of the weights.
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The most common case that is of practical interest, is that of a rotor which can
usually be considered a solid of revolution with the axis coinciding with the lon-
gitudinal axis of the shaft: so this rotor has the main axis of inertia coinciding with
the axis of the undeformed shaft and moments of inertia that are equal in respect to
the other two main axes. To examine the problem, we can consider a simplified
model as shown in Fig. 6.61, as already mentioned: in literature this model is often
referred to as the Jeffcott rotor. In this case, if we wish to highlight the gyroscopic
effects, we now assume that the disk, in addition to moving perpendicularly to the
axis of rotation, can also rotate as shown in Fig. 6.62.

In this case, in addition to the rotation component Ω, the absolute angular
velocity of the disk has another two components around axes that are perpendicular
to axis Z.

We will now consider the rotor mounted on two rigid supports with a constant
angular velocity Ω imposed by the motor. We assume that weight M (with the
centre of gravity centred with respect to the geometric centre of the disk) is

Fig. 6.61 The Jeffcott rotor

Fig. 6.62 The Jeffcott rotor -
gyroscopic effect:
independent variables adopted
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concentrated at the centreline point of the shaft, which is without weight, and that it
has a polar moment of inertia J1 and two equal diametrical moments of inertia J2
(we should remember that, given the particular geometry, all the diametrical axes
are principal moments of inertia).

To write the motion equations of the system we will consider the displacements
x and y as independent variables, as in respect to a right-handed Cartesian coor-
dinate system (O–X–Y–Z) with axis Z coinciding with the rotation axis they define
the displacement of the centre of gravity of the weight M while neglecting the
longitudinal components.

Furthermore, the disk has another three d.o.f. associated with the three com-
ponents of rotation:

• the rotation of the disk around axis Z, with assigned angular velocity Ω assumed
to be constant, represents a constrained d.o.f.;

• the other two components α and β represent, together with x and y, the inde-
pendent variables needed to describe the motion of the system in question.

More in particular, the coordinates x and y define the perturbed motion around
the system’s position of static equilibrium: thus the weight of the rotor will not
appear in the motion equations. (Chap. 1, Sects. 1.4 and 1.5).

To define the motion equations we will use the Lagrange equation, adopting
several triplets of reference in order to write, directly and conveniently, the various
forms of energy of the system. In this example it is useful to introduce the matrix of
multi-body systems (Chap. 1, Sects. 1.6 and 1.7) to define the kinematics of the
system and, consequently, to define its dynamics.

To describe the kinematics of the system in the discussion that follows, it is
easier to introduce several reference triplets: the first reference triplet (O–X–Y–Z)

is, as mentioned, a right-handed absolute Cartesian system of vector units i
!
, j
!

and k
!

with origin O placed in the position occupied by the centre of gravity in the
undeformed system (Fig. 6.63). We can define a second triplet (O1–X1–Y1–Z1) with
origin O1 that is integral with the centre of gravity G of the weight M and unit

Fig. 6.63 The Jeffcott rotor definition of the reference triplets adopted
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vectors i
!

1 ¼ i
!
, j
!

1 ¼ j
!

and k
!

1 ¼ k
!

that translate parallel to the absolute
triplet: we assume the components x and y of the displacement of the origin O1 with
respect to the absolute triplet as the first two independent variables. Lastly, we
consider a third reference triplet (O2–X2–Y2–Z2) that is integral with the disk for all
the motions except for where the rotation defined by the vector Ω is concerned: the
reason for this choice is linked to the fact that all the axes perpendicular to that axis
are principal moments of inertia. The triplet (O2–X2–Y2–Z2) has origin O2 that

coincides with O1 and axes defined by unit vectors i
!

2, j
!

2 and k
!

2.
In order to fully define the motion of the weight M, we first need to define the

angular position assumed by the triplet (O2–X2–Y2–Z2) with respect to the triplet
(O1–X1–Y1–Z1) that is, with respect to the absolute triplet (O–X–Y–Z). The angular
position of the triplet (O2–X2–Y2–Z2) will be defined by means of Cardan angles
(Chap. 1, Sects. 1.6.4 and 1.6.5) which we indicate with the independent variables α
and β, which define the angular position of the disk.

In the discussion, which is necessary in defining the kinematics of the disk, it is
convenient to introduce an additional reference triplet of convenience
O0�Z0�Y0�X0ð Þ with origin O0 ¼ O1 ¼ O2 rotated by an angle α with respect to

the translating triplet O1�Z1�Y1�X1ð Þ (Fig. 6.63) and axis Y 0 ¼ Y j
!0 ¼ j

!
1

� 	
.

A subsequent rotation β around the axis X 0 ¼ X2 k
!¼ k

!
2

� 	
makes it possible to

define the angular position of the triplet O2�Z2�Y2�X2ð Þ that is integral with
weight M, with respect to the absolute triplet.

We will now write the motion equations for the Jeffcott rotor, while taking into
account the angular deflection that may affect the disk, using the Lagrange
equations.

The kinetic energy of the system (see Chap. 1, Sect. 1.7) expressed in matrix
form, can be defined as

Ec ¼ 1
2
VT M½ �V þ 1

2
xT

2 J½ �x2 ð6:180Þ

V being the geometric vector that defines the absolute speed of the centre of gravity
of the weight M:

V¼ hT _y¼
i
!
j
!
k
!

8<:
9=;

T
0
_x
_y

8<:
9=; ð6:181Þ

and M½ � being the mass matrix of the system:

M½ � ¼
M 0 0
0 M 0
0 0 M

24 35 ð6:182Þ
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In (6.180) x2

x2 ¼ h2
Tx2 ð6:183Þ

represents the vector angular velocity of the disk defined via the components x2x,
x2y and x2z projected on triplet (O2–X2–Y2–Z2) which is integral with the actual
weight and axes parallel to the principal axes of inertia of the body:

x2 ¼
x2x

x2y

x2z

8<:
9=; ð6:184Þ

and J½ � being the inertia tensor which, given the choice of the physical coordinates
adopted, becomes constant and diagonal (Sect. 1.7.5):

J½ � ¼
J1 0 0
0 J2 0
0 0 J2

24 35 ð6:185Þ

We must now define the physical variables x2 as a function of the independent
variables assumed, i.e. of the two components x and y of the displacement of the
centre of gravity G with respect to the absolute triplet (O –X – Y – Z) and the two
Cardan angles α and β, defined previously: for this purpose, we will now define the
absolute geometric vector angular velocity x! as the vector sum of the three
components of angular velocity35:

x!¼ j
!0

_aþ k
!

2
_bþ i

!
2X ð6:186Þ

which can be expressed in matrix form, using the algorithm just introduced, as:

x!¼
i
!0

j
!0

k
!0

8><>:
9>=>;

T
0
_a
0

8<:
9=;þ

i
!

2

j
!

2

k
!

2

8<:
9=;

T
X
0
_b

8<:
9=; ¼ h0Tx0 þ h T

2x2rel ð6:187Þ

The vector angular velocity is thus expressed as the vector sum of two different
terms expressed in two different bases; when analysing expression (6.187) it is
necessary to define the components of this speed with respect to the triplet that is

35Versus j
!0

; k
!

2 and i
!

2 attributed to components _a , _b and Ω derives from the definition of the
reference triplets assumed and the definition of the Cardan angles assumed (see Fig. 6.63).
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integral with the rotor (O2–X2–Y2–Z2). For this purpose it is necessary to use the
coordinate transformation matrix (see Chap. 1, Sect. 1.6) by rewriting (6.187) as:

x!¼ hT2 K02½ �x0 þ hT2x2rel ¼ h T
2 K20½ �Tx0

þ hT2x2rel ¼ hT2 K20½ �Tx0 þ x2rel

� � ¼ hT2x2

ð6:188Þ

To estimate the components x2 (physical variables adopted in the expression of
the kinematic energy (6.188) as a function of the independent variables) we must,
therefore, define the coordinate transformation matrix K20½ � (see Chap. 1, Sects. 1.2.4
and 1.2.5):

K0
2

� � ¼ cos b � sin b 0
sin b cos b 0
0 0 1

24 35 ð6:189Þ

Considering the transformation matrix of the coordinates, the components pro-
jected x2 on the triplet that is integral with the body (6.188) become:

x2 ¼
xz2

xy2

xx2

8<:
9=; ¼ K20½ �Tx0 þ x2rel

� �
¼

cos b � sin b 0
sin b cos b 0
0 0 1

24 35 0
_a
0

8<:
9=;þ

X
0
_b

8<:
9=;

8<:
9=; ¼

� sin b _a þ X
cos b _a

_b

8<:
9=;
ð6:190Þ

This expression makes it possible to clarify the physical velocity variables x2
(see also Chap. 1, Sect. 1.6.5) as a function of the independent variables organised
in the vector:

q
h
¼

hr
a
b

8<:
9=; ð6:191Þ

since hr ¼ Xt, as:

x2 ¼
� sin b _a þ X

cos b _a
_b

8<:
9=; ¼

1 � sin b 0
0 cos b 0
0 0 1

24 35 X
_a
_b

8<:
9=; ¼ A q

h

� 	h i
_q
h

ð6:192Þ

A q
h

� 	h i
being the Jacobian matrix, function of the same independent variables,

which correlates the physical variables x2 to the independent variables _q
h
. The
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expression of the kinematic energy as a function of the independent variables
becomes:

Ec ¼ 1
2

_xT M½ � _xþ 1
2
_qT
h
A q

h

� 	h iT
J½ � A q

h

� 	h i
_q
h

ð6:193Þ

By applying Lagrange equations directly to this energy, the Jacobian matrix

A q
h

� 	h i
being a function, in turn, of the same independent variables, we will arrive

at nonlinear expressions of the generalised forces of inertia. When developing the
expressions (6.193) in scalar form, we will have:

Ec ¼ 1
2
M _x2 þ 1

2
M _y2 þ 1

2
J1 X� sin b _að Þ2þJ2 cos b _að Þ2þJ2 _b

2 ð6:194Þ

If we wish to study the small oscillations around the position of steady-state
equilibrium, i.e. estimate the stability of perturbed motion, it is possible, by
assuming small Cardan angles, to confuse the sine with the angle and the cosine
with unit, to obtain:

Ec ¼ 1
2
M _x2 þ 1

2
M _y2 þ 1

2
J1 X� b _að Þ2þJ2 _að Þ2þJ2 _b

2 ð6:195Þ

In this case it is not possible to neglect the term b _a since it is summed with a
finite term, i.e. the angular velocity of the rotor Ω: upon performing squaring
X� b _að Þ2 in fact, the product �2Xb _a remains squared. By applying Lagrange in a
scalar manner, i.e. by deriving the kinetic energy with respect to the independent
variables and their derivatives, we obtain the generalised forces of inertia, while
neglecting the infinitesimals of higher order:

Qix ¼ M €x
Qiy ¼ M €y
Qia ¼ �J1X _bþ J2€a
Qib ¼ J1X _aþ J2€b

8>><>>: ð6:196Þ

The potential energy of the system V can be subsequently defined as:

V ¼ 1
2

x
y
Hy

Hx

8>><>>:
9>>=>>;

T k11 k12
k11 k12

k21 k22
k21 k21

2664
3775

x
y
Hy

Hx

8>><>>:
9>>=>>; ð6:196aÞ

having used Hy and Hx to indicate the rotations around the axes X and Y (unit

vectors i
!

and k
!
) of the absolute reference system. In (6.196a) the generic term kij

represents the stiffness of the shaft, i.e.:
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• k11 the force created on the shaft due to the effect of a unitary displacement
imposed on it;

• k12 ¼ k21 the force created on the shaft due to the effect of an imposed unitary
rotation36;

• k22 the torque created on the shaft due to the effect of a unitary rotation.

Rotations Hy and Hx do not correspond, for the more general case of large
displacements, to the independent variables α and β assumed to define the rotation
of the body M (which instead define, respectively, the rotations around the axes

defined by unit vectors j
!¼ j

!
1 ¼ j

!0
and k

!
2). However, in the case of small

rotations, which can therefore be compared to infinitesimals, the actual rotations Hy

and Hx become strictly:

Hy ¼ a

Hx ¼ b
ð6:196bÞ

This physically coincides with the fact that, if the rotations are small, the axes
around which the rotations connected with the Cardan variables occur can be
confused with the initial axes. The potential energy V of (6.216a) can then be
expressed solely as a function of the independent variables as:

V ¼ 1
2

x
y
a
b

8>><>>:
9>>=>>;

T k11 0 k12 0
0 k11 0 k12
k21 k22 0
0 k21 0 k21

2664
3775

x
y
a
b

8>><>>:
9>>=>>; ð6:196cÞ

and the corresponding generalised elastic forces become:

Qex ¼ k11xþ k12a
Qey ¼ k11yþ k12b
Qea ¼ k21xþ k22a
Qeb ¼ k21yþ k22b

8>><>>: ð6:196dÞ

Considering (6.195) and (6.196d) it is possible to write the equations of motion
of the system in scalar form:

M €xþ k11xþ k12a ¼ 0
M €yþ k11yþ k12b ¼ 0
�J1X _bþ J2€aþ k21xþ k22a ¼ 0
J1X _aþ J2€bþ k21yþ k22b ¼ 0

8>><>>: ð6:197Þ

36If the disk (Fig. 6.59) is positioned on the centreline of a symmetrical shaft, we have
k21 ¼ k12 ¼ 0.
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which in matrix form, having gathered the independent variables of the system in
vector x:

x ¼
x
y
a
b

8>><>>:
9>>=>>; ð6:198aÞ

become:

M½ �€xþ R½ � _xþ K½ �x ¼ 0 ð6:198bÞ

having indicated, with the usual nomenclature, with M½ �:

M½ � ¼
M 0 0 0
0 M 0 0
0 0 J2 0
0 0 0 J2

2664
3775 ð6:198cÞ

the mass matrix of the system, with R½ �:

R½ � ¼
0 0 0 0
0 0 0 0
0 0 0 �XJ1
0 0 XJ1 0

2664
3775 ð6:198dÞ

the damping matrix and, lastly, with K½ �

K½ � ¼
k11 0 k12 0
0 k11 0 k12
k21 k22 0
0 k21 0 k21

2664
3775 ð6:198eÞ

the stiffness matrix. As we can see, the matrices of mass and of stiffness are
obviously symmetrical and positive definite, while the damping matrix, due to the
gyroscopic terms, is non-symmetrical and a function of the angular velocity of the
rotor Ω. To estimate the natural frequencies of the system it is possible to attribute,
as usual, this calculation to evaluation of the eigenvalues and eigenvectors.
However, be exploiting the polar symmetry of the rotor, a more compact discussion
can be made by resorting to the algorithm of complex numbers [7]. As done
previously in Sect. 6.3, it is possible to associate a Guassian plane with plane
Y-X where the centre of gravity G of the mass moves (integrally with the origins O1

and O2 of the mobile reference systems), by attributing (quite arbitrarily) axis
X with the significance of real axis and Y that of imaginary axis: in this way, the

678 6 Rotordynamics



www.manaraa.com

displacement of the centre of gravity G ¼ O1 ¼ O2 instead of being described by
the two components according to the axes:

x ¼ xðtÞ
y ¼ yðtÞ ð6:199aÞ

will be defined by vector z (complex number):

z ¼ xþ iy ð6:199bÞ

In the same way, as far as the rotations α and β are concerned, it is possible to
use just one complex number γ:

c ¼ aþ ib ð6:199cÞ

the module of which represents the angle formed between the local axis of the disk
Z2 and axis Z1 (parallel to axis Z). Now by multiplying the second and fourth
equation by the imaginary unit i ¼ ffiffiffiffiffiffiffi�1

p
and summing, respectively, the first and

third equation, by grouping the terms we obtain, in complex terms:

M €zþ k11zþ k12c ¼ 0
�iJ1X _cþ J2€cþ k21zþ k22c ¼ 0

�
ð6:200Þ

In this way, the two complex equations are coupled just in the elastic terms
k21 ¼ k12. The solution of (6.196) then becomes of the form:

z ¼ Zeikt

c ¼ Cikt
ð6:201aÞ

which replaced in (6.200) lead to the following homogenous complex algebraic
system:

k11 � k2M
� 

Z þ k12C ¼ 0
k21Z þ k22 þ J1Xk� k2J2

� 
C ¼ 0

(
ð6:201bÞ

The non-trivial solutions of (6.201b) are those that annul the determinant of the
coefficient matrix, i.e.:

D k;Xð Þj j ¼ det
k11 � k2M
� 

k12
k21 k22 þ J1Xk� k2J2

� ���� ���� ¼ 0 ð6:201cÞ
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i.e.:

D k;Xð Þj j ¼ k11 � k2M
� 

k22 þ J1Xk� k2J2
� � k221 ð6:201dÞ

(6.201d) provides four values of λ, as a function of the angular velocity Ω: these
values are purely imaginary and can be obtained by placing (6.201d) in the form:

X ¼ k11 � k12ð Þ k22 � k2J2
� � k221

J1k k11 �Mvð Þ ð6:202aÞ

and plotting the curve X ¼ X kð Þ (Fig. 6.64): the 4 curve branches start from the
values:

k1o; k2o ¼ �k1o; k3o; k4o ¼ �k3o ð6:202bÞ

which are obtained by setting the numerator of (6.202a) [7] to zero:

k1;2;3;4 ¼ þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
2

k11
M

þ k22
J2


 �
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
4

k11
M

� k22
J2


 �2

þ k2
12

MJ2


 �svuut ð6:202cÞ

λ

Ω

λ30

λ3

λ1

λ2

λ4

λ10

λ20

λ40

Fig. 6.64 Trend of the 4
solutions in presence of the
gyroscopic effect
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These values, with two by two coincidents, represent the natural pulsations of
the free vibratory motion of the rotor at X ¼ 0. As the angular velocity of the rotor
increase:

• k1 grows, tending to a straight line k ¼
ffiffiffiffiffi
k11
M

q
;

• k2 lessens, tending to 0;
• k3 grows, tending to a straight line k ¼ J1

J2
X;

• k4 grows, tending to a straight line k ¼ �
ffiffiffiffiffi
k11
M

q
.

Therefore, the general integral will be given by:

z ¼ Z1e
ik1t þ Z2e

ik2t þ Z3e
ik3t þ Z4e

ik4t

c ¼ C1e
ik1t þ C2e

ik2t þ C3e
ik3t þ C4e

ik4t
ð6:203Þ

The solutions k1 and k3 represent circular motions that comply with the angular
velocity Ω and for this reason they will be defined as forward precession motions,
while the solutions k2 and k4 represent backward precession motions: the resultant
motion is, therefore, in general elliptic in the plane X–Y. Associated with the four
natural pulsations of the rotor we can define 4 vibration modes. Because of the
variability of the solutions with the angular velocity of the rotor, the phenomenon of
the bending critical speeds arises in a more complex form, similar to that defined in
presence of hydrodinamically lubricated bearings (Sect. 6.2). Upon analysing the
system forced with an excitation force FoeiXt the conditions of resonance can be
defined by intersecting the curves of Fig. 6.65 with the curve k ¼ X: the corre-
sponding values of Ω represent the critical speeds of the rotor. As we can see from
Fig. 6.65, the critical speeds can be one or two depending on whether the asymptote
k ¼ J1=J2X is more or less inclined than the bisectrix k ¼ X: more in particular, we
will have just 1 critical speed for J1 [ J2 and 2 critical speeds for J1\J2.

6.9 Oil-Film Instability

Studying the dynamic behaviour of rotating machines includes, as an essential stage
of design, verifying the dynamic stability of the complete shaft line. One of the
phenomena that can give rise to conditions of instability is, as already seen in
Sect. 5.3.2.2, that due to the presence of hydrodinamically lubricated bearings
which is known as oil-film instability. In Sect. 6.2.2.1 the forces that the oil-film
transmits both to the rotor and to the stator, in static conditions (rotating shaft with
no transversal vibrations) and in dynamic conditions (rotating shaft subject to
transversal vibrations) have already been analysed. Knowing these forces makes it
possible to study the conditions of stability, which can be carried out on a simplified
2 d.o.f. model, in the case of a shaft with two identical supports (as shown in
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Chap. 5, Sect. 5.3.2.2). Wherever the rotor is equipped with different bearings with
different characteristics, it is possible, with a more meticulous approach, to study
the system using the model with several d.o.f., described in Sect. 6.2.5. The for-
ces that the shaft and support exchange via the oil-film assume, as seen, nonlin-
ear expressions of the variables that define the relative journal-bearing position
(Sect. 6.2.2). To analytically describe the nonconservative force field due to the
oil-film, we linearised the expression of these forces around the position of static
equilibrium defined for a given angular velocity Ω, to obtain for each bearing, as a
consequence, a non-symmetrical equivalent elastic matrix and a symmetrical
damping matrix, positive definite, the effect of which is purely dissipative (although
it decreases as the angular velocity Ω increases). As described in Sect. 6.2.5, by
introducing the stiffnesses Kxx, Kxy, Kyx and Kyy and the equivalent dampings Rxx,
Rxy, Ryx and Ryy, we obtain a motion equation of the entire shaft + casing + founda-
tion + oil-film system of the form:

M½ �€xþ R½ � _xþ K½ �x ¼ 0 ð6:204Þ

Adding the contribution of the oil-film causes not just the non-symmetry of the
overall stiffness matrix K½ �, but also the presence of terms of coupling between the
vertical and horizontal displacements of the rotor: these facts do not allow for
analysis of the vibrations separately in the two planes (vertical and horizontal), as
the vibration modes are coupled due to the presence of the bearings: for this reason,
the study should be carried out simultaneously in the two planes of vibration.

λ 

Ω 

Ωcr 

λ = Ω 

λ = Ω 
J1 

J2 
λ 

Ω 

λ = Ω 

λ = Ω
J1 

J2 

Fig. 6.65 Critical speeds in a rotor considering the gyroscopic terms
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6.9.1 Estimating Instability Using the Eigenvalue
and Eigenvector Solution

Equation (6.204) can thus be attributed to a problem of eigenvalues-eigenvectors,
defined (Sect. 2.4.2.1, Chap. 2) by the equation:

B½ �_zþ C½ �z ¼ 0 ) _z ¼ A½ �z ð6:205aÞ

since:

z ¼ _x

x

� �
B½ � ¼ M½ � 0½ �

0½ � M½ �

� �
; C½ � ¼ R½ � K½ �

� M½ � 0½ �

� �
; A½ � ¼ B½ ��1 C½ �

ð6:205bÞ

The solution (particular integral) of the homogenous Eq. (6.205a) is given by:

z ¼ Zekt ð6:205cÞ

and the solutions (complex conjugates ki ¼ aiþixi) are obtained (Sect. 2.3.1) as
eigenvalues of the matrix A½ � and the vibration modes ZðiÞ are estimated as asso-
ciated eigenvectors. Analysis of the sign of the real part αi of the generic eigen-
solution makes it possible to highlight any conditions of instability of the entire
vibrating system (with ai [ 0). The non-symmetrical terms are, however, generally
small compared to the symmetrical terms of the conservative system: this fact often
creates difficulties of a numerical nature in calculating the solutions, difficulties that
may affect the results obtained and, therefore, call into question the reliability of the
conditions of stability calculated.

6.9.2 Estimating Instability with the Modal Method

There are various alternative methods to this procedure: first of all we should recall
the modal approach which rewrites (6.204) as:

M½ �€xþ R½ � _xþ Ks½ �xþ Kes½ �x ¼ 0 ð6:206aÞ

Ks½ � being the symmetric part of the stiffness matrix, the individual terms of which
are defined by the following relation:

Kði;jÞ
s ¼ Kði;jÞ þ Kðj;iÞ

2
ð6:2026bÞ
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while Kes½ � represents the antisymmetric part defined by the following relation:

Kði;jÞ
es ¼ Kði;jÞ � Kðj;iÞ

2
ð6:206cÞ

By neglecting, in a first approximation, both damping R½ �, and the skew-sym-
metric stiffness matrix Kes½ �, it is possible to calculate eigenvalues xi and eigen-
vectors XðiÞ of the reduced equation:

M½ �€xþ Ks½ �x ¼ 0 ð6:206dÞ

By using, for example, the first mainly vertical vibration mode Xð1Þ and the first
mainly horizontal mode Xð2Þ, it is possible to impose the coordinate transformation:

x ¼ U½ �q ¼ Xð1ÞXð2Þ
h i q1

q2

� �
ð6:207aÞ

where U½ � is the modal matrix (Chap. 2, Sect. 2.5.1), made up, in this case, of
just the first two vibration modes of the undamped system. This relation, placed in
(6.206a), leads to:

U½ �T M½ � U½ �€qþ U½ �T R½ � U½ � _qþ U½ �T Ks½ � U½ �qþ U½ �T Kes½ � U½ �q ¼ 0 ð6:207bÞ

Considering the known property of orthogonality (Chap. 2, Sect. 2.5.2.1) (6.
207b) can be rewritten as:

m½ �€qþ U½ �T R½ � U½ � _qþ k½ � þ U½ �T Kes½ � U½ �� �
q ¼ 0 ð6:207cÞ

with m½ � and k½ � diagonal matrices:

k½ � ¼ U½ �T M½ � U½ �
m½ � ¼ U½ �T Ks½ � U½ �

ð6:203dÞ

In (6.207c) the damping matrix in principal coordinates U½ �T R½ � U½ � is not
diagonal as, due to the presence of the oil-film, the matrix R½ � is not a linear
combination of M½ � and Ks½ �: similarly the stiffness matrix in principal coordinates
of skew-symmetric terms U½ �T Kes½ � U½ � is not symmetric or diagonal. So now it is
possible to calculate the solutions of (6.207c) by imposing the relation:

q ¼ Qekt ð6:207eÞ

to bring the same equation back to a problem of eigenvalues-eigenvectors.
Sometimes, due to the presence of terms U½ �T Kes½ � U½ �, though working on reduced
matrices (mxm if m are the vibration modes considered), the problem of determining
the threshold of instability can entail numerical uncertainties.
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6.9.3 Estimating Instability with the Forced Method

To overcome these drawbacks, it is possible to use an alternative approach defined
with the name of forced method. The method is essentially based on calculating the
energy introduced by the harmonic excitation forces applied on the global rotor-oil-
film-casing-foundation system. The ratio between the energy introduced by these
forces and the maximum kinetic energy of the system makes it possible to obtain37

the dimensionless damping ratio r=rc and by estimating this it is then possible to
estimate any threshold of instability. The motion equation of the entire forced
system then becomes:

37To demonstrate this property it is easier to consider a forced 1 d.o.f. system, the equation of
which is (Chap. 2, Sect. 2.3.1):

m€xþr _xþ kx ¼ FoeiXt ð6:37:1Þ

and the steady-state solution of which is given by:

x ¼ XeiXt ð6:37:2Þ

since

X ¼ Xj jei/ ) / ¼ a tan
iXr

k � X2m


 �
) Xj j ¼ 1

k � X2mþ Xr
ð6:37:3Þ

The energy introduced in a cycle by the excitation force is:

EF ¼
ZTo
0

xFðtÞdt ¼ � Xj jFop sin/ ¼ �Im Xj jFop ð6:37:4Þ

Hence, the maximum kinetic energy is:

Ecmax ¼ 1
2
mX2 Xj j2 ð6:37:5Þ

As the energy introduced by the excitation force EF is equal to the energy dissipated Ed :

EF

Ecmax
¼ Ed

Ecmax
¼ Xj j2rXp

1
2mX

2 Xj j2 ¼
2rp
mX

¼ 4p
r
rc

ð6:37:6Þ

hence:

r
rc

¼ EF

4pEcmax
¼ Ed

4pEcmax
¼ 1

4p
ImðXÞFop
1
2mX

2 Xj j2 : ð6:37:7Þ
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M½ �€xþ R½ � _xþ Ks½ �xþ Kes½ �x ¼ Foe
iXt ð6:208aÞ

where vector Foe
iXt represents the external forces applied to the system for which

we wish to verify the stability. Solutions of (6.208a) are of the form x ¼ XeiXt

which placed in (6.208a) lead to:

X ¼ X Xð Þ ¼ �X2 M½ � þ iX R½ � þ Ks½ � þ Kes½ �½ �� ��1
Fo ð6:208bÞ

The energy introduced by the excitation force for X ¼ xi, where xi is one of the
natural frequencies of the system, is, assuming Fo is real, that is, forcing in the
phase or opposition of phase between them:

EðiÞ
F ¼ p Im XT xið Þ� 

Fo ð6:208cÞ

having used Im XT xið Þð Þ to indicate the vector that contains the imaginary part of
the solution X Xð Þ obtained from (6.208b) for X ¼ xi. The maximum kinetic energy
is in approximate form:

EðiÞ
cmax ¼

1
2
x2

i X
T xið Þ M½ �X xið Þ ð6:208dÞ

having used X xið Þ to indicate the vector that contains the module of the solution
X Xð Þ obtained from (6.208b) for X ¼ xi. Considering (6.208c) and (6.208d), it is
possible to obtain the value of dimensionless damping hi:

hi ¼ � r
rc


 �ðiÞ
¼ 1

4p
EðiÞ
F

EðiÞ
cmax

¼ � ai
xi

ð6:208eÞ

Thus it is possible to estimate coefficient ai: if the latter assumes negative or zero
value the motion of the system is stable, or if not it is unstable. The forced method
illustrated is approximated [75–78, 80–82, 85, 86, 88, 89, 91–97]: in the practical
problem of rotors, the approximations introduced can, however, be neglected and,
on the other hand, there are numerous advantages offered by this approach with
respect to calculating eigenvalues and eigenvectors:

• the method is numerically more stable;
• it is possible to use the same procedure adopted for calculating the frequency

response;
• it is possible to introduce the mechanical impedances relating to the foundation

into the model, which would be impossible with the normal approach in the time
domain (eigenvalues-eigenvectors).
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6.9.4 Effect of Load Variations on Supports
on the Conditions of Instability

At the end of this section we show, as an example, the results obtained on a real
rotor of a 300 MW steam turbogenerator (taken from [79]. Figure 6.66 shows the
model of the complete line (made up of 4 rotors: high pressure, medium pressure,
low pressure rotors and alternator) and Table 6.1 shows the main properties of the
bearings. In these rotors (hyperstatic), changing the running conditions, can vary
the alignment of the supports and, as a consequence, the distribution of loads on the
actual supports. A variation in load causes a variation in the position of the static
equilibrium of the journal in each bearing, with a consequent variation of the runout
χ = ec/d (see Chap. 5, Sect. 5.3.2.2 and Sect. 6.3.1). In correspondence to the new
position reached, there is variation in the stiffnesses and the equivalent dampings
due to the linearised force field related to the oil-film and, as a consequence, the
conditions of stability of the overall rotor + oil-film + foundation system change.
The same effect can be caused by a change in thermal working conditions or
temperature of the lubricant. An increase in temperature of the lubricant on input
determines a decrease in the viscosity of the lubricant and an increase, all other
conditions being equal, of the runout χ of the journal inside the bearing; this leads to
an increase in the stability of the overall system (for v\vlim the bearing is always
stable, Sect. 5.3.2.2, Sect. 6.3.1). In the real case shown, due to the effect of a
deformation of the foundation caused by thermal effects, there is a change in
alignment that causes a decrease in the load borne by the bearing of the turbo-

Fig. 6.66 Model of the axis line analysed

Table 6.1 Principal properties of the bearings of the axis line in Fig. 6.66

Bear. no. 1 2 3 4 5 6

Type Elliptic

R(mm) 152.5 195.0 240.0 255.0 267.5 212.5

Width./R 1.50 1.28 1.46 1.58 1.17 1.38

Clear./R 0.266 %

h/R 0.133 %
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generator: Fig. 6.67 shows the conditions of alignment in correspondence to dif-
ferent temperature conditions.

The part of the shaft line that proves to be responsible for instability is that of
low pressure in correspondence to supports 3 and 4. Table 6.2 shows the loads on
the single bearings corresponding to cold machinery (test no. 1), with hot
machinery (lubricant input temperature at 42o, test no. 2) and again with hot
machinery but with a temperature of 49o (test no. 3). On the three different con-
ditions, the first and last bearing do not undergo any significant load variations,
whereas bearing 3 (between medium and low pressure) discharges considerably
(from 29.8 tons to 19.2): the same occurs, although less markedly, for bearing 4.
The same table also shows the value of dimensionless damping r=rc relating to the
single bearings analysed separately by estimating the energy introduced or dissi-
pated by the forces of the oil-film (the generic bearing dissipates energy for positive
values of r=rc); as we can see in case no. 2 all the bearings, considered separately,
are unstable except for the 5th and the 6th. The bearing that introduces the greatest
energy is the third, that is, the one that undergoes greater discharge. The last column
of the same table shows the value of r=rc estimated for the complete line under

Fig. 6.67 Different conditions of alignment upon variation of the temperature

Table 6.2 Loads on bearings with different working conditions and stability of the line

r/rc
Test no./
bear. No.

1 load
[kg]

2 load
[kg]

3 load
[kg]

4 load
[kg]

5 load
[kg]

6 load
[kg]

1 10841
−11E-5

6628
−63E-5

29795
−10E-3

32462
−68E-4

16525
−10E-4

23039
+12E-5

1.3E-3
stable

2 8803
−43E-6

18481
−59E-5

19256
−18E-3

25496
−22E-3

25756
+65E-5

21498
+26E-7

−4.2E-4
unstable

3 8803
−38E-6

18481
−41E-5

19256
−17E-3

25496
−19E-3

25756
+92E-5

21498
−72E-6

6.8E-5
threshold
of
instability
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different operating conditions: the machinery is stable when cold (test 1,
r=rc ¼ 1:3%) or when the oil temperature is above 49o (test 3, r=rc ¼ 0:07%),
whereas it is unstable at 42o (test 2, r=rc ¼ �0:4%). The stability of the entire line
with the simultaneous presence of local instabilities of the single bearings, is due to
the effect of damping of the shaft and of the foundation on the overall behaviour of
the entire system.

6.10 Torsional Vibrations

In crankshafts or straight shafts that have several disks fitted to them (for example
shafts with several gears or pulleys, turbine or pump couplings) fatigue failures
were experimentally noted for prolonged running at specific angular velocities Ω
without observing particularly high bending vibrations either on the shaft or the
support. These failures can be attributed to the torsional vibrations that shafts can be
subject to. To better understand the mechanism associated with these vibrations, we
can imagine the generic mechanical system shown in Fig. 6.68, which is part of the
transmission of a motor vehicle. The torque applied by the side of the motor varies,
in general, with law that depends on the characteristics of the motor used, while
from the side of the wheels it is possible to hypothesise the application of a resistant
torque which, in this case, for simplicity’s sake, is assumed to be constant.

The torque Mm that stresses the shaft is provided by the contribution of actions
produced by the pressure of gas in the cylinders, by the forces of inertia, by the
forces of gravity and by frictional forces. Figure 6.69 shows, as an example, the
trend, as a function of the crank angle φ, of this torque in the case of a two or four-
stroke internal combustion engine. As we can see, this torque is periodic and,
therefore, can be broken down in a Fourier series:

Mm ¼ Mo þM1 cos Xt þ w1ð Þ þM2 cos Xt þ w2ð Þ þ . . .

¼ Mo þ
Xn
i¼1

Mi cos Xit þ wið Þ ð6:209aÞ

ωm

Mm

Mr

Fig. 6.68 Schematisation of a generic power transmission
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Ω being the pulsation of the fundamental harmonic. In general the fundamental
harmonic Ω is linked to the angular velocity of rotation xm; this link depends on the
number of cylinders and on the type of engine, for example:

• in the case of a 2-stroke single cylinder engine (one combustion per rev):

X ¼ xm ¼ 2p
60

nm ½rad=s� ð6:209bÞ

• in the case of a 4-stroke single cylinder engine (one combustion every 2 revs):

X ¼ xm

2
¼ p

60
nm ½rad=s� ð6:209cÞ

• in the case of a 4-stroke, 4 cylinder engine (4 combustions every 2 revs):

X ¼ 2xm ¼ 4p
60

nm ½rad=s� ð6:209dÞ

nm being the number of revs of the actual engine.

Torsional critical speeds are the angular velocities xm at which pulsation Ω (or
one of its multiples) coincides with one of the natural torsional pulsations of the
shaft xi. We will now briefly examine the main methods of analysis used to
estimate these torsional critical speeds and the more commonly used models for this
purpose during analysis and planning. We refer the reader to the bibliography for

M 

M 

(a)

(b)

ψ 

π 

π 

3π 
2 

π 
2 

2π 

2π 3π 4π 

ψ 

Fig. 6.69 Torque transmitted
by an internal combustion
engine: two stroke (a) and
four stroke (b)
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more detailed discussion. The generic torsional elastic system of the engine and the
associated vehicle (Fig. 6.70) represents quite a complicated mechanical system due
to the real distribution of mass and of elasticity.

In order to make studying these systems easier, they are traditionally schema-
tised with much simpler dynamically equivalent models, which consist of
(Fig. 6.71) a straight massless shaft which supports a certain number of thin disks
that reproduce the inertias of the different elements connected to the shaft.38 These
disks are considered as rigid bodies with equivalent moments of inertia, connected
to each other by equivalent torsional elastic elements. The disks are usually placed
in correspondence to the centre of each crank and in correspondence to propellers,
engines and gears. More refined models even make it possible to analytically
reproduce the real distribution of mass and of stiffness. Obviously, schematisation
must include all of the shaft line, including the engine, transmission and user. So
with this approach, analysis of the torsional critical speeds must be preceded by
preliminary calculations based on static analysis of the complete system (crank-
shaft, disks, flywheels, clutches etc.) to define the equivalent stiffnesses of the
single segments of the rotor, and on dynamic analysis to determine the equivalent
moments of inertia of the individual rotating parts and the parts that move with
them (connecting rods and pistons).

Once the dynamically equivalent model has been defined (Fig. 6.71), it is then
possible to estimate both the natural frequencies and the relative vibration modes of
the free system and the response of the system forced by the torques and resistant
torques acting on it, using the normal analytical and numerical techniques already
widely described in the previous chapters. In the following sections we will address:

• the problem of reduction of the real mechanical system to a simplified
dynamically equivalent model (Sect. 6.10.1);

Fig. 6.70 A crankshaft for a
4 cylinder diesel engine with
flywheel

38Schematisation can be done using the usually three-dimensional finite element method, or we
can use it to define the parameters to be introduced into the simpler model with concentrated
parameters.
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• the schematisation of the problem with discrete systems with 1, 2, …, n d.o.f.
(Sect. 6.10.2);

• the schematisation of the problem using the typical continuum approach
(Sect. 6.10.3);

• the schematisation of the problem with the finite element approach (Sect. 6.10.4)
each time using real examples to simplify and lighten the discussion.

Lastly, in Sect. 6.10.5 we will mention some mechanisms that are useful in
reducing these torsional vibrations.

6.10.1 Methods for Reducing to an Equivalent System

For didactic purposes, it is easier to understand the following explanation if we
analyse the simple vibrating system shown in Fig. 6.72, which is made up of a
vertical shaft fixed at one end and which has a rigid disk fitted onto it. In the
hypothesis that the mass of the shaft is negligible compared to the added mass, this
system has just one d.o.f.: in this case it is easy to obtain the equivalent dynamic
model, which in this case, is similar to the real structure.

Assuming the rotation of the disk θ as an independent variable, the equations
that describe the free motion simply become:

J€hþ kth ¼ 0 ð6:210aÞ

J being the mass moment of inertia of the disk39 and kt the torsional stiffness of
the shaft. To estimate this stiffness it is useful to remember that a generic shaft

θ1 

I1

θ2 θ3 θ4 

θ5 

I2 I3 I4 I5

Fig. 6.71 A crankshaft for a 4 cylinder diesel engine with flywheel: schematisation with an
equivalent mechanical system

39With the assumption of a circular disk of weight W, with even thickness and diameter D:

J ¼ WD2

8g
: ð6:38:1Þ
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subject to torque Mt due to the effect of its elasticity (Fig. 6.73) torsionally deforms
and its relative rotation between the ends applies:

DH ¼ Mt l
GJp

ð6:210bÞ

where:

• G is the shear modulus;
• Jp is the polar moment of inertia of the section;
• l is the length.

Similarly to what is normally done for linear springs, we will call kt the torsional
elastic constant, i.e. the torque to be applied to the ends to obtain their unitary
rotation, that is DH ¼ 1, hence, from (6.210b) we have:

kt ¼ GJp
l

ð6:211Þ

l

θ
J

Fig. 6.72 Torsional
vibrations: 1 d.o.f. system

MT

MT

l

Fig. 6.73 Effect of torsion
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6.10.2 Schematisations with N-Degree-of-Freedom Systems

Now we will analyse the free torsional vibrations of a generic shaft with n rigid
disks fitted onto it, as shown in Fig. 6.74: this model has already been fully
analysed in Chap. 2, Sect. 2.3.5, below we will show, for ease of discussion, the
final results. This model could simulate, for example, the dynamic behaviour of a
real rotor.

In order to define the behaviour of the system we consider as independent
variables the absolute rotations of the single disks hi (i = 1, 2, …, n) clustered in
vector x:

x ¼

h1
. . .
hi
. . .
hn

8>>>><>>>>:

9>>>>=>>>>; ð6:212aÞ

The equations of motion are of the form (Sect. 2.4):

M½ �€xþ K½ �x ¼ 0 ð6:212bÞ

M½ � being the mass matrix of the system:

M½ � ¼

J1 0 0 0 0
0 . . . 0 0 0
0 0 Ji 0 0
0 0 0 . . . 0
0 0 0 0 Jn

266664
377775 ð6:212cÞ

Fig. 6.74 Model with n d.o.f. for studying torsional vibrations
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and K½ � the corresponding stiffness matrix:

K½ � ¼

k1 �k1 0 0 0
�k1 k1 þ k2 �k2 0 0
0 �k2 . . . . . . . . .
0 0 . . . . . . �kn
0 0 0 �kn kn

266664
377775 ð6:212dÞ

The solutions of (6.212b) are of the form:

x ¼ Xeixt ð6:213aÞ

which assume non-trivial values when the determinant is zeroed:

det �x2 M½ � þ K½ ��� �� ¼ 0 ð6:213bÞ

Each value of xi has a certain corresponding eigenvector, that describes the
vibration mode of the system being analysed in resonance. As mentioned, the
torques applied Mm to the system are generally periodic (Fig. 6.69) and they can be
represented as reported in (6.209a), where Mi is the generic complex harmonic
component and Xi ¼ iX is the generic pulsation, multiple of the fundamental
harmonic Ω (rad/s) equal to the angular velocity. The dynamic response to several
excitation forces is, therefore, equal to the sum of the responses to each single
forcing element. Once the forcing elementMm has been broken down into the single
harmonic components Mi (6.209a), it is possible to calculate the response of the
system to each component of the forcing element. If the system is forced by a
generic harmonic component:

F ¼

0
. . .
Mi

. . .
0

8>>>><>>>>:

9>>>>=>>>>;eiXit ¼ Foie
iXit ð6:214aÞ

applied to the generic ith disk, the equations of motion become:

M½ �€xþ R½ � _xþ K½ �x ¼ Foie
iXi t ð6:214bÞ

The solution of (6.214b) is given by a particular integral of the form:

x ¼ XeiXit ð6:214cÞ

which can be calculated with the method described in detail in the Chap. 2
regarding 2-n d.o.f. systems. As we have seen several times, whenever the pulsation
of the forcing element Xi coincides with one of the natural pulsations of the system
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xi there are conditions of resonance and the amplitudes h1; . . .; hn of the vibration
tend to infinity (actually, the vibration reaches only high amplitudes due to the
presence of damping). In the case of systems with shafts connected with gears
(Fig. 6.75), in the hypothesis of neglecting the clearance and deformability of the
teeth and in the hypothesis of considering the wheels to be rigid, the d.o.f. decrease
as the rotations of the coupled wheels are linked to the known kinematic relations
defined by the transmission ratio:

hi
hj

¼ �sij ð6:215Þ

As an example, we will analyse the model shown in Fig. 6.75a: the absolute
rotations of the four disks being assumed as physical variables Y :

Y ¼
h1
h2
h3
h4

8>><>>:
9>>=>>; ð6:216aÞ

kinetic energy Ec and potential V are:

Ec ¼ 1
2
_Y
T
MY½ � _Y

V ¼ 1
2
YT KY½ �Y

ð6:216bÞ

MY½ � being the matrix of mass of the system in physical coordinates:

MY½ � ¼
J1 0 0 0
0 J2 0 0
0 0 J3 0
0 0 0 J4

2664
3775 ð6:216cÞ

Fig. 6.75 Shafts linked with gears
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and KY½ � the corresponding stiffness matrix:

KY½ � ¼
k1 �k1 0 0
�k1 k1 0 0
0 0 k2 �k2
0 0 �k2 k2

2664
3775 ð6:216dÞ

Assumed as independent variables x the absolute rotations of three disks:

x ¼
h1
h2
h4

8<:
9=; ð6:217aÞ

and imposing the link between physical variables and independent variables:

Y ¼
h1
h2
h3
h4

8>><>>:
9>>=>>; ¼ K½ � x ¼

1 0 0
0 1 0
0 �s32 0
0 0 1

2664
3775 h1

h2
h4

8<:
9=; ð6:217bÞ

s32 being the gear ratio between the two wheels in contact (the minus sign
depending on the conventions assumed for the rotations, all assumed equally ori-
ented positive). Considering the transformation of coordinates (6.217b), the
(6.216b) become:

Ec ¼ 1
2
_Y
T
MY½ � _Y ¼ 1

2
_xT K½ �T MY½ � K½ � _x ¼ 1

2
_xT M½ � _x

V ¼ 1
2
YT KY½ �Y ¼ 1

2
xT K½ �T KY½ � K½ �x ¼ 1

2
xT K½ �x

ð6:217cÞ

M½ � and K½ � being the matrices of mass and of stiffness of the system in independent
coordinates:

M½ � ¼ K½ �T MY½ � K½ � ¼
J1 0 0

0 J2 þ s232J3 0

0 0 J4

264
375

K½ � ¼ K½ �T KY½ � K½ � ¼
k1 �k1 0

�k1 k1 þ s232k2 s32k2
0 s32k2 k2

264
375

ð6:217dÞ

and the equations of motion of the form shown in (6.31b).
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6.10.3 Schematisation with Continuous Bodies

In the case where the mass of the shaft is not negligible in respect to the concentrated
masses, the shaft cannot be schematised with a purely elastic element, we must take
into account the actual distribution of mass. To solve this type of problem we can use
the typical continuum approach (Chap. 3, Sect. 3.5) or the finite element approach
(Chap. 4, Sect. 4.2.2). As an example, we will analyse the rotor in Fig. 6.72 where,
however, we take into account the mass of the shaft (ρ is its density). The equation
that defines the torsional motion of a generic homogenous section of shaft with no
irregularities is given by the following relation (Sect. 3.5, Chap. 3):

hx ¼ A cos
x
C
nþ B sin

x
C
n

� 	
eixt ð6:218aÞ

C being the wave propagation speed:

C ¼ G
q

ð6:218bÞ

The constants A and B can be defined, together with the natural pulsation of the
system ω, by imposing the boundary conditions which, in the case under exami-
nation shown in Fig. 6.72, are:

hx nð Þjn¼0 ¼ 0

GJp
@hx
@n

����
n¼l

¼ J
@2hx
@t2

����
n¼l

ð6:218cÞ

from here we can obtain:

A ¼ 0

B GJp
x
C
cos

x
C
lþ Jx2sin

x
C
n

� 	
¼ 0

ð6:218dÞ

Upon finding the zeroes of the function (coefficient matrix):

GJp
x
C
cos

x
C
lþ Jx2sin

x
C
n ¼ 0 ð6:218eÞ

it is possible to calculate the natural frequencies xi of the system under examina-
tion: hence the generic vibration mode becomes:

UðiÞ nð Þ ¼ sin
xi

C
n

� 	
: ð6:218fÞ
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6.10.4 Finite Element Schematisation

Similarly to what we observed with regard to bending vibrations, it is also possible
to analyse the torsional vibrations of a shaft by means of a finite element approach.
In this regard, we consider a beam of which only the torsional motions are taken
into account (these motions are actually, with excellent approximation, uncoupled
from the other motions). To describe the motion of this system we assume the
rotations of the end nodes of the generic finite element hxi and hxj (Fig. 6.76).
Assuming small oscillations around the steady-state position (shaft that rotates at a
certain constant angular velocity with no oscillations) it is possible to approximate
the deformation within the generic jth finite element via a linear shape function that
coincides with the static deformation and obtain (Chap. 4, Sect. 4.2.2) the stiffness
and mass matrix, which we show here for convenience:

Khx½ � ¼ GJp
lj

1 � 1
2� 1

2 1

� �
; Mhx½ � ¼ qJlj

1
3

1
6

1
6

1
3

� �
ð6:219Þ

If we wish to study the free torsional vibrations of a generic rotor, for ease of
discussion we will use the specific rotor shown in Fig. 6.77: we will schematise it
using 5 beam elements (the corresponding matrices of mass Mhx½ � and of stiffness
Khx½ � are shown in (6.219). The complete matrices of stiffness K½ � and mass M½ � are
assembled as shown in Fig. 6.78. Thus the usual techniques can be used to calculate
the natural frequencies and the relative vibration modes. It should be highlighted
that as there are no external constraints, a structure made in this way has a possi-
bility of free motion (rigid rotary motion). So for this model there is a zero pulsation
x1 ¼ 0 with deformation of the form:

Xð1Þ ¼
h
. . .
h

8<:
9=; ð6:220Þ

Fig. 6.76 Torsional
vibrations in the beams: d.o.f.
relating to the generic finite
element
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thus corresponding to a rigid motion

hð1Þ1 ¼ 
 
 
 ¼ hð1Þi ¼ 
 
 
 ¼ hð1Þn ¼ h ¼ const: ð6:221Þ

6.10.5 Elements that Can Be Adopted to Reduce Torsional
Vibrations

Several methods can be used to reduce the torsional vibrations based on a free
wheel or free inertial element coupled elastically or by means of viscous or

Fig. 6.77 Torsional vibrations: finite element schematisation of a rotor

[K ] =

[KA ]
[KB ]

[KC ]

[KD ]

[KE ]

θ1

θ1

θ2

θ3

θ4

θ5

θ6

θ2 θ3 θ4 θ5 θ6

Fig. 6.78 Torsional
vibrations: assembly of mass
and stiffness matrices relating
to the finite element
schematisation of a rotor in
Fig. 6.74
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Coulomb friction elements. Figure 6.79 shows the Lanchester damper (based on dry
friction). Figure 6.80 shows a model of the Houdaille damper where a free wheel is
mounted in a casing with reduced clearances and filled with silicone fluid.
Figure 6.81 shows a damper made of rubber which acts both as an elastic element
and as a dissipating element.

Fig. 6.79 Lanchester damper

Fig. 6.80 Houdaille damper

Fig. 6.81 Damper with
rubber element

6.10 Torsional Vibrations 701



www.manaraa.com

These dampers behave like damped dynamic absorbers: for their use we refer the
reader to Chap. 2, Sect. 2.4.2.4 and to the bibliography. Centrifugal pendulum
vibration detuners can also be used to attenuate vibrations (Fig. 6.82): a thin rod is
used to attach a mass m to a rotating disk. If the disk vibrates during rotation, the
mass oscillates by a certain angle θ. The centrifugal forces Fc ¼ mX2L tend to
straighten the rod by generating a torque Cres ¼ hmX2L, thus bringing it back to
the OAB position.

Summary This chapter deals specifically with rotor dynamics, introduced as a
complete application example of a mechanical system subjected to force fields. The
text defines the most common layouts used in these machines and the numerical
models adopted to simulate their dynamic behaviour. Vibration and stability

O
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mlΩ2

Tres
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θ

Fig. 6.82 Pendulum detuners

Fig. 6.83 Definition of scalar product and vector product
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problems are analysed, also with reference to critical bending and torsional speeds.
Other problems associated with “n-per-rev” vibrations, material hysteresis and
gyroscopic effects are also analysed. Some methods used for rotor balancing are
described at the end of the chapter.
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Chapter 7
Random Vibrations

7.1 Introduction

In the previous chapters we analysed the behaviour of linear systems (Chaps. 1
and 2) and non-linear systems (Chap. 5) that are subject to deterministic forces, that
is, forces whose performance can be defined univocally over time (constant, har-
monic, periodic, non-periodic, see Table 7.1 and Fig. 7.1) the value of which can be
known in advance for each time t.

In f, excitations may also be of an aleatory or random nature (Fig. 7.2;
Table 7.2): these excitations are not deterministic, that is, the value assumed by
them, at a generic time t, cannot be defined in advance, except in probabilistic terms
[2, 4, 5, 9, 11, 16, 23]. Such sources of excitation cause the structure to behave in a
non-deterministic manner, examples include:

• the response of structures to wind turbulence (see the relative bibliography)
[26–34];

• the response of fluid machinery (turbine, pump, etc.) to excitation resulting from
the turbulent motion of the actual fluid;

• the response of structures to an earthquake;
• the response of offshore structures to wave motion (where the fluid-dynamic

forces are not periodic) (See the relative bibliography);
• the behaviour of land vehicles travelling along an uneven route (see the relative

bibliography);
• the response of an aircraft to atmospheric turbulence;
• the dynamic response of a missile to the noise emissions generated by the engine.

These sources of excitation cause a random response in the system, in terms of
displacements, accelerations, and the corresponding state of stress, which can be
analysed using specific techniques to define the behaviour of the system, as is done
for deterministic type excitations. A typical example is the fatigue analysis of a
system subject to random type stress. In fact, for this type of system it is not
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possible to estimate the fatigue accumulation of the material, as we do for harmonic
excitation, by simply using the material’s Wohler Curve. For systems subject to
random forces other methods should be considered, e.g. the rain-flow method [14]
amongst others. Similar problems can be seen, for example, when judging the
comfort of passengers of vehicles subject to random excitation, such as that caused
by uneven roads.

Table 7.1 Classification of deterministic forces

Deterministic

Periodic Non-periodic

Sum of 
harmonics

Sinusoidal TransientQuasi-periodic 

t

f(t)

t

f(t)

t

f(t)

Fig. 7.1 Examples of deterministic forces

t

f(t)Fig. 7.2 Examples of random
forces
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The study of random vibrations, using the theory of stochastic processes, is a
new branch in engineering and has developed significantly over recent decades.
Clearly the issues linked to random excitation cannot be analysed on a deterministic
basis, as discussed up until now in the previous chapters, a statistical or rather, a
probabilistic approach must be taken, where both the excitation, and the response of
the mechanical system to this excitation, can be defined in relation to several
statistical parameters.

Many random phenomena show characteristic statistical regularity in that,
although the time histories differ from one another, some average quantities remain
constant. In this case, the excitation and the response are considered random pro-
cesses (or stochastic processes) that can be described using a few statistical
parameters and appropriate statistical functions, such as the power spectral density
function.

This chapter merely seeks to offer an introduction to the complex issues asso-
ciated with random vibrations: for a more thorough analysis refer to the bibliog-
raphy at the end of the chapter. In particular, the following discussion will
introduce:

• the concept of the stochastic process;
• descriptions of the characteristic quantities (mean, variance, autocorrelation

function, power spectral density etc.) associated with it, both in the time and the
frequency domain;

• methods required to evaluate the response of vibrating mechanical systems
(linear and non-linear) that are subject to random excitations;

• some examples of applications.

Table 7.2 Classification of random forces

Random

Stationary Non-stationary

Non-ergodicErgodic Classification of Non-
stationary

7.1 Introduction 711
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7.2 Defining a Random Process

Now let us consider a generic experiment where a random quantity is measured (the
signal analysed may represent an applied force, impressed displacement, the
vibration measured at a point in a mechanical system, etc.).

Given that x1ðtÞ is a recorded time history (Fig. 7.3); by measuring the same
quantity, under similar test conditions, it is possible to measure a second time
history x2ðtÞ: this time history will differ from the previous (the reason for these
differences is usually very complex as often the factors that affect the actual phe-
nomenon being analysed are unknown). By repeating several measurements ði ¼
1; 2; . . .;NÞ it is possible to obtain a sequence of recordings like those shown in
Fig. 7.3. The generic time history xiðtÞ ði ¼ 1; 2; . . .;NÞ (for example, a recording of
wind speed made with an anemometer) is referred to as random variable, whereas,
the entire set of time histories (a set of recordings made under the same conditions,
for example, same site and same mean value and average wind direction) represents
the so-called random process or stochastic process.

Each observation (aperiodic) has an overall trend that is similar to the others, but
differs in the detail: it is possible to define some of the constant statistical param-
eters of these quantities, known as statistically normal random quantities.

In general, a stochastic process can be a function of both time and of space
xðt; nÞ: in this chapter we will be discussing time-dependent processes only. In
general, the generic random variable xiðtÞ does not represent the entire process,
except in those random processes defined as stationary and ergodic where, as we
will discuss in more detail, it is possible to obtain the statistical information for an
entire random process by analysing just one of its variables.

As mentioned, to analyse the random process we must define some significant
quantities (statistics) that characterise the actual process and the value of which
tends to a constant value for N (number of observations) tending to infinity. When
this occurs, the stochastic quantity is defined as being statistically normal.

t

x
1
(t)

t

x
2
(t)

t

x
3
(t)

t

x
n
(t)Fig. 7.3 Random process

defined by several random
variables
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7.3 Parameters Defining the Statistical Characteristics
of a Random Process

Before performing an in depth analysis of aleatory phenomena, we will briefly
introduce the significant quantities to statistically define their characteristics. Given
a generic time history xðtÞ (Fig. 7.2) is defined as:

• mean value (or static component)1:

0 2 4 6 8 10
-3

-2
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0

1

2

t

x(
t)

-3 -2 -1 0 1 2

0

0.2

0.4

0.6

0.8

1

x

P
(x

)

Meaning of the probability distribution function

1We should remember that the symbol E[g] is used to define the expected value of the generic
quantity g(x) [2, 9] defined as

E½g� ¼
Zþ1

�1
gðxÞpðxÞdx ð7:1:1Þ

p(x) being the probability density function, defined as:

pðxÞ ¼ dPðxÞ
dx

ð7:1:2Þ

where P(x) is the probability distribution function which represents the probability that x(t) is
lower than a given value x (figure below). Let us briefly recall the properties of this function:

0\PðxÞ\1

Pð�1Þ ¼ 0

Pð1Þ ¼ 1

PðxÞ ¼
Zx
�1

pðnÞdn

ð7:1:3Þ

The mean value lx is calculated, in general, as the first moment in relation to the probability
density by assuming that g ¼ x in (7.1.1): in the case of a stationary and ergodic process (see
Sect. 7.4) the mean value can be estimated using:
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lx ¼ E½x� ¼ lim
T!1

1
T

ZT
0

xðtÞdt ð7:1Þ

• mean square value (i.e. dynamic component)2:

w2
x ¼ E½x2� ¼ lim

T!1
1
T

ZT
0

x2ðtÞdt ð7:2Þ

• RMS (root mean square), the square root of the mean square value:

RMS ¼
ffiffiffiffiffiffi
w2
x

q
ð7:3Þ

• variance:

r2x ¼ lim
T!1

1
T

ZT
0

ðxðtÞ � lxÞ2dt ¼ w2
x � l2x ð7:4Þ

(Footnote 1 continued)

lim
T!1

1
T

ZT
0

xðtÞdt: ð7:1:4Þ

2This quantity is defined as the second moment of x, obtained by assuming g(x) = x2 in (7.1.1): in
the case of a stationary and ergodic process (see Sect. 7.4, [9]) Ψx

2 can be estimated using the
expression:

lim
T!1

1
T

ZT
0

x2ðtÞdt ð7:2:1Þ

Assuming that the generic time history is sinusoidal x(t) = Arccos(ωt + ϕ), with period To = 2π/ω,
the mean square value is

w2
x ¼

1
T0

A2
ZT
0

cos2ðxt þ /Þdt ¼ A2

2
: ð7:2:2Þ
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• standard deviation (quantity that defines the fluctuations of the quantity in
question around the mean value lx

3):

rx ¼
ffiffiffiffiffi
r2x

q
ð7:5Þ

Furthermore, the following is also defined as an autocorrelation function4:

RxxðsÞ ¼ lim
T!1

1
T

ZT
0

xðtÞxðt þ sÞdt ð7:6Þ
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p(
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3If, for example, the time history is characterised by an x Gaussian (or normal) distribution, the
probability density function p(x) becomes:

pðxÞ ¼ 1
2prx

e
� x�lxð Þ2

2r2x

� �
ð7:3:1Þ

That is, it is defined univocally by the mean value and by the standard deviation: the following
table shows the probability pð�xÞ that an event �x falls within the range of values around the mean
value lx and of a size that is 1, 2 and 3 times the standard deviation rx:

�x ¼ lx � rx ) pð�xÞ ¼ 68:26%

�x ¼ lx � 2rx ) pð�xÞ ¼ 95:44%

�x ¼ lx � 3rx ) pð�xÞ ¼ 97:74%:

ð7:3:2Þ

4Alternatively, the time covariance function can be introduced, defined as:

CxxðsÞ ¼ lim
T!1

1
T

ZT
0

ðxðtÞ � lxÞðxðt þ sÞ � lxÞdt: ð7:4:1Þ
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This quantity has the following properties [1, 12, 13, 18]:

Rxxð0Þ ¼ lim
T!1

1
T

ZT
0

xðtÞxðt þ 0Þdt ¼ w2
x ð7:7aÞ

RxxðsÞ ¼ Rxxð�sÞ ð7:7bÞ

Rxxð0Þ� RxxðsÞj j ð7:7cÞ

The autocorrelation function is often defined in non-dimensional form:

�RxxðsÞ ¼ RxxðsÞ
Rxxð0Þ ¼

RxxðsÞ
w2
x

) �1\�RxxðsÞ\1 ð7:8aÞ

For:

�RxxðsÞ ¼ 1 correlation is maximum
�RxxðsÞ ¼ 0 correlation is null
�RxxðsÞ ¼ �1 correlation is maximum,

but variations are in counterphase

ð7:8bÞ

Figure 7.4 shows the trend of the autocorrelation function RxxðsÞ for some char-
acteristic functions.5

Let us consider the case where there are two different histories, xðtÞ and yðtÞ,
defining the function of cross-correlation6:

RxyðsÞ ¼ lim
T!1

1
T

ZT
0

xðtÞyðt þ sÞdt ¼ �RyxðsÞ ð7:9Þ

5We should remember that a time signal defined by a sequence of uncorrelated random variables,
all with the same expected value and the same variance, whose power spectral density (Eq. (7.10),
Sect. 7.3.1) is evenly distributed in the frequency range ½0;1�, is defined as white noise.
6Alternatively, the time covariance function can be introduced, defined as:

CxyðsÞ ¼ lim
T!1

1
T

ZT
0

ðxðtÞ � lxÞðyðt þ sÞ � lyÞdt ¼ �CyxðsÞ ð7:6:1Þ

which, in non-dimensional form, is given by the correlation coefficient function qxyðsÞ
�� ��� 1:

qxy ¼
Cxy

rxry
ð7:6:2Þ

For s ¼ 0;Cxyð0Þ is the covariance and qxyð0Þ is the correlation coefficient.
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Unlike autocorrelation, Rxy(t) is not an even function, i.e.:

RxyðsÞ 6¼ Rxyð�sÞ ð7:9aÞ

but the following relation still applies:

RxyðsÞ 6¼ Ryxð�sÞ ð7:9bÞ

If RxyðsÞ is zero for each t the two processes are statistically uncorrelated: Fig. 7.5
shows some examples of this function.

These quantities provide information about the random process in the time
domain. In Fig. 7.5 we can see a case regarding a typical phenomenon of propa-
gation: the delay τ, which has a corresponding high value of cross-correlation,
corresponds to the delay with which the perturbation reaches the two different
measurement points: this approach is used, for example, to locate the source of
noise in problems regarding noise emissions.

Auto-correlation, as mentioned, defines the characteristics of the signal xðtÞ in
the time domain, whereas the power spectral density function defines it in the
frequency domain.

The power spectral density function (or one sided auto-spectral density function)
is the Fourier transform of auto-correlation:

0

0

τ

R
xy

0

0

t

x(
t)

0

0

τ

R
xy

0

0

t

x(
t)

0

0

t

y(
t)

0

0

t

y(
t)

0T 0T

0T

0T

0T

Fig. 7.5 RxyðsÞ for some characteristic functions x(t) and y(t)
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Gxxðf Þ ¼ 2
Z1
�1

RxxðsÞe�i2pf sds

GxxðxÞ ¼ 2
Z1
�1

RxxðsÞe�ixsds; con 2pf ¼ x

ð7:10Þ

For this definition, the power spectral density provides the same information about
a random process that is given by the defined auto-correlation function, but in the
frequency domain.7 This quantity has the following properties:

Z1
0

Gxxðf Þdf ¼
Z1
0

GxxðxÞdx ¼ w2
x ¼ r2x þ l2x ð7:11Þ

i.e. the area under the curve defined by the function Gxxðf Þ represents the mean
square value. This property immediately gives the following relation:

Gxxðf ÞDf ¼ w2
xðf Þ

GxxðxÞDx ¼ w2
xðxÞ

ð7:12Þ

where w2
xðf Þ, by sufficiently small Df or Dx, represents the average mean square

value associated with just the generic frequency f, i.e. w2
xðf Þ represents the portion

of the mean square value filtered at the frequency f of band Df .
Now we will examine other properties of the power spectral density function [9]:

• GxxðxÞ is a real quantity8

7The presence of the term 2 in the definition of (7.10) is due to the fact that the one-sided auto-
spectral density function [9] is defined only in the positive frequency field ½0;1�.
8The relation:

GxxðxÞ ¼ 2
Z1
�1

RxxðsÞe�ixsds ð7:8:1Þ

can, in fact, be developed as follows:

GxxðxÞ ¼ 2
Z1
�1

RxxðsÞðcosðxsÞ � i sinðxsÞÞds ð7:8:2Þ

By analysing the integral:

Z1
�1

RxxðsÞ sinðxsÞds ¼
Z0
�1

RxxðsÞ sinðxsÞdsþ
Z1
0

RxxðsÞ sinðxsÞds ð7:8:3Þ
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• GxxðxÞ� 0
• the inverse transform of GxxðxÞ is given by9 [2, 9]:

RxxðsÞ ¼
Z1
0

GxxðxÞ cosðxsÞdx ¼ <e
Z1
0

GxxðxÞeixsdx
0
@

1
A ð7:13Þ

If a generic function xðtÞ is periodic, we can define its complex line spectrum,
where the generic harmonic is constant in magnitude and phase; for a random
function xðtÞ, however, the power spectral density (real quantity) only defines
the mean square value of the amplitudes of the single harmonics.

Figure 7.6 shows some significant examples of power spectral density function
for different periodic or random signals. Those random processes characterised,
respectively, by a narrow peak form (centred around the frequency corresponding to
the peak) of the power spectral density or where the actual quantity is characterised
by significant values of the power density in a wide frequency camp, are defined as
narrow band processes or wide band processes.

In extreme cases where there is only one harmonic (with random phase) the
power spectral density presents a function δ (Dirac function), whereas a constant
power spectral density value defines the so-called white noise.

In parallel, see Fig. 7.4, narrow band processes show a trend in the sinusoidal
auto-correlation function RxxðsÞ modulated by a decreasing exponential, whereas in
wide band processes RxxðsÞ decreases rapidly. In the case of white noise we have
RxxðsÞ 6¼ 0 only for s ¼ 0.

If we analyse two different random processes xðtÞ and yðtÞ is possible to define:

• the cross-spectrum, a complex quantity (also known as cross-spectral density
function), defined as the Fourier transform of the cross-correlation:

Gxyðf Þ ¼ Gyxðf Þ ¼ 2
Z1
�1

RxyðsÞe�i2pf sds ð7:14Þ

(Footnote 8 continued)

Taking into account (7.7a–7.7c) whereby RxxðsÞ ¼ Rxxð�sÞ and the fact that the sine function is
an odd function so sinðxsÞ ¼ � sinð�xsÞ, this integral cancels itself out, therefore (7.8.2) is
reduced to:

GxxðxÞ ¼ 2
Z1
�1

RxxðsÞ cosðxsÞds ¼ 4
Z1
0

RxxðsÞ cosðxsÞds ð7:8:4Þ

hence it is possible to affirm that, as RxxðsÞ is real, then GxxðxÞ is also real.
9Equations (7.8.4) and (7.13) go under the name of Wiener-Khintchine equations.
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• the coherence function c2xyðf Þ (real quantity), i.e. the non-dimensional cross-
spectrum, defined by the following relation:

c2xyðf Þ ¼
jGxyðf Þj2

Gxxðf ÞGyyðf Þ ð7:15Þ

Unlike the power spectral density Gxxðf Þ, the cross-spectrum is a complex
quantity as RxyðsÞ is not an even function, (7.9a).

7.3.1 Calculating the Power Spectral Density Function
and Cross-Spectra

Functions GxxðxÞ and GxyðxÞ can be estimated using the same definition shown in
(7.10) and (7.14) or analogically, or using the Fourier transform of the actual time
histories xðtÞ and yðtÞ.

7.3.1.1 Calculating the Power Spectral Density Function Analogically

A first approach in estimating the power spectral density consists of the following
sequence of analogical operations, shown in Fig. 7.7:

• the generic time history is obtained xðtÞ;
• the signal is filtered through a band-pass filter with bandwidth Dx and

central frequency xk (this instrument has a transfer function like that shown in
Fig. 7.8: the filtered signal is thus cleansed of all the frequencies except the
central one xk);

Band-pass filter

Squarer -
AveragerDivisor

2

( ) =
xk

xx kG
ψ

ω
ωΔ

2 21
= ( )

T

x kk
o

x t dt
T

ψ ∫

t

x k

t

x

2
T

π
ω

=

Fig. 7.7 Analogue definition of power spectral density
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• the filtered output signal xkðtÞ is almost harmonic, given the randomness of the
input signal;

• the instantaneous value of the signal xkðtÞ is squared;
• and it is averaged in a period T using:

w2
xk ¼

1
T

ZT
o

x2kðtÞdt ð7:16Þ

• thus obtaining the mean square value of the filtered signal w2
xk ;

• this value is divided by the bandwidth Dx to obtain, by the definition shown in
(7.12), an estimation of the power spectral density function in correspondence to
the central frequency of the filter xk:

GxxðxkÞ ¼
w2
xk

Dx
ð7:17Þ

• by subsequently changing the frequency of the filter xk, it is possible to define
the function Gxx ¼ GxxðxÞ in the entire field of frequency concerned.

At present, this approach is usually replaced by an approach based on the Fourier
transform of the signal xðtÞ, as described in the following section.

7.3.1.2 Calculating the Power Spectral Density Function Using Fourier
Series Development

At present the most common method used to define the power spectral density is
numeric and is based on Fourier series development:

• The generic time history xðtÞ (Fig. 7.9) is divided into equal periods
T01 ¼ T02 ¼ � � � ¼ T0N ¼ T0; each individual history xiðtÞ ði ¼ 1; 2; . . .;NÞ is
assumed periodic: to this end, windowing is carried out on it [3, 13, 18], i.e. xiðtÞ
is multiplied by a specific function, for example, the Hanning window, making

0

1

ω

F
D

T ωΔ

Fig. 7.8 Transfer functions
of a band-pass filter
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it possible to eliminate the discontinuities at the beginning and at the end of the
history (Fig. 7.10);

• once the signal has been made periodic, the Fourier series development is
performed:

xiðtÞ ¼
XN
1

jXnij cosðnx0t þ /niÞ i ¼ 1; 2; . . .;N ð7:18aÞ

being:
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Xni ¼ Xiðnx0Þ ¼ XiðxnÞ ¼ 2
T0

ZT0
0

xiðtÞe�inx0tdt i ¼ 1; 2; . . .;N ð7:18bÞ

having indicated with:

x0 ¼ 2p
T0

ð7:18cÞ

the pulsation of the fundamental harmonic associated with the period T0 of the
chosen window and Xni the amplitude of the generic harmonic corresponding to
the pulsation xn ¼ nx0. Xni is a complex number defined as:

Xni ¼ jXnijei/ni ð7:18dÞ

• in correspondence to the generic recording xiðtÞ it is possible to define a com-
plex spectrum XniðxÞ, as shown in Fig. 7.9: each spectrum will be different both
in magnitude jXnij and in phase /ni, given the randomness of the process being
analysed.

It is possible to show [1–3, 17] that:

GxxðxnÞ ¼ E
XniX�

ni

2x0

� �
¼ E

jXnij2
2x0

" #
ð7:19Þ

having indicated the expected value with E½ � and the complex conjugate generic
quantity with the superscript*.10 In other words, the power spectral density is
estimated as the expected value, i.e. the mean value, of the square mean value of the

0 T
0

1

t

Hanning

0 T

t

x

0 T

t

x

Fig. 7.10 Effect of the Hanning window

10Equation (7.19) simply derives from the function GxxðxÞ ¼ W2
x=Dx (see Eq. (7.12)) where Dx

in this case equals x0 and from the fact that W2
x of a harmonic signal of amplitude jXnij is equal

to jXnij2=2.
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amplitude of different spectra divided by the fundamental pulsation x0. These
operations are usually performed using special dedicated computers called spectrum
analysers with 1, 2 or more channels [3, 13].

7.3.1.3 Calculating the Cross-spectrum GxyðxÞ Using the Fourier Series

Calculating the cross-spectrum using Fourier series development is done as shown
in the previous section.

• The two different time histories xðtÞ and yðtÞ (Fig. 7.11) are divided into equal
periods T01 ¼ T02 ¼ � � � ¼ T0N ¼ T0;

• each single history xiðtÞ ði ¼ 1; 2; . . .;NÞ and yiðtÞ ði ¼ 1; 2; . . .;NÞ is made
periodic with the windowing operation;

• Fourier series development is performed on these signals that have been made
periodic (Fig. 7.11):
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niϕ
ω

eℜ
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ω
niψ
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x n(t
)

Fig. 7.11 Definition of the generic harmonic of the cross-spectrum

726 7 Random Vibrations



www.manaraa.com

Xni ¼ Xiðnx0Þ ¼ XiðxnÞ ¼ 2
T0

ZT0
0

xiðtÞe�inx0tdt

Yni ¼ Yiðnx0Þ ¼ YiðxnÞ ¼ 2
T0

ZT0
0

yiðtÞe�inx0tdt

ð7:20Þ

Xni and Yni being the amplitudes of the generic harmonics corresponding to the
frequency xn ¼ nx0:

Xni ¼ jXnijei/ni

Yni ¼ jYnijeiwni
ð7:20aÞ

• in correspondence to the generic recording xiðtÞ and yiðtÞ it is possible to define
a complex spectrum XniðxÞ and YniðxÞ, as shown in Fig. 7.12: each spectrum
will be different both in magnitude and in phase, given the randomness of the
process being analysed.

eℜ
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( )xy nG ω
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niϕΔ
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Fig. 7.12 Trend of the product upon variation of the observation performed (i = 1, 2, …, N):
a case of high coherence, b case of low coherence
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It is possible to show [1–3, 17] that the cross-spectrum can be estimated using:

Gxyðnx0Þx0 ¼ Gyxðnx0Þx0

¼ 1
N

XN
i¼1

XniY�
ni

2
¼ E

XniY�
ni

2x0

� � ð7:20bÞ

Now let us try to understand the physical significance of this operation: the generic
product defined in (7.20b) can be developed, taking into account (7.20a) as:

XniY
�
ni ¼ jXnijjYnijei/nie�iwni

¼ jXnijjYnijeið/ni�wniÞ ¼ jXnijjYnijeiðD/niÞ
ð7:21Þ

Therefore, the product XniY�
ni represents a complex number whose magnitude

jXnijjYnij and phase D/ni change as the frequency varies fn ðn ¼ 0; 1; . . .; nfreqmaxÞ
and, given the same frequency, change as the observation performed varies
ði ¼ 1; 2; . . .;NÞ.

Figure 7.12 shows a possible trend for this product, at the same frequency f ¼ fn,
upon variation of the observation, in the case (a) of correlation and in the case (b) of
non-correlation. As we have seen, the cross-spectrum can be estimated as:

GxyðxnÞ ¼ E
XniY�

ni

2x0

� �
¼ 1

N

XN
i¼1

XniY�
ni

2x0

¼ 1
2x0N

XN
i¼1

jXnijjYnijeiðD/niÞ
ð7:22Þ

If the spectra of the two processes xðtÞ and yðtÞ, for the frequency f ¼ fn analysed,
have a phase-relationship that is almost constant, D/ni ¼ cost:, (Fig. 7.12a), then
there is a correlation at that frequency; otherwise (Fig. 7.12b) the two processes are
uncorrelated.

Let us consider the example in Fig. 7.13a where the two signals xðtÞ and yðtÞ are
obtained by overlaying the sine wave with white noise: obviously in this case the
coherence will only be high in correspondence to the common frequency present in
both signals with a constant relative phase.

Figure 7.13b, however, shows the case in which the two signals are represented
by the same sine wave but, upon variation of the observations, the phases vary
randomly: in this case the coherence at that frequency proves to be zero.

7.3.1.4 An Example of Coherence Function Application

Now we will describe one possible application of the coherence function c2xyðf Þ
(7.15), i.e. of the non-cross-spectrum Gxyðf Þ. We will analyse a linear system
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(Fig. 7.14) subject to a known random input IðtÞ with UðtÞ being the corresponding
output: the input could represent a force, whereas the output a displacement or
acceleration at a generic point of a structure. The same figure shows a possible trend
of the spectral density function of the input GIIðxÞ and the output GUUðxÞ.

If IðtÞ is the only signal present on input, i.e. assuming there is no noise or other
form of excitation present simultaneously at IðtÞ, between the power spectral
density function on input GIIðxÞ and the power spectral density function at output
GUUðxÞ the following relation applies:

GUUðxÞ ¼ jHðxÞj2GIIðxÞ ð7:23Þ

where HðxÞ is the transfer function of the system in question (Chap. 1, Sect. 1.3.5):
this relationship will be demonstrated subsequently in Sect. 7.5, Eqs. (7.34a, 7.34b).

In this case, when we know the power spectral density on input GIIðxÞ and
measure the power density on output GUUðxÞ, (7.23) makes it possible to obtain the
magnitude jHðxÞj of the transfer function of the system in question.

However, in general, IðtÞ is not the only input as the system is not isolated from
the outside world but is also excited by noise NðtÞ introduced by other disturbances
which often cannot be eliminated, are not easy to identify or are even impossible to
estimate. If we wish to use these measurements to obtain the magnitude of the
transfer function of the system jHðxÞj, assumed in this analysis to be unknown (this
procedure goes under the name of identification process, see Chap. 8 on this
subject), it is possible to exploit the fact that the coherence function c2UI of the two
signals IðtÞ and UðtÞ, i.e. the cross-spectrum GUIðxÞ provides the part of UðtÞ that
is coherent with IðtÞ, i.e., due only to the known input IðtÞ, i.e. where the following
relation applies (as demonstrated in [1, 2], Chap. 4):
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Fig. 7.13 Examples of coherence forces
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GUIðxÞ ¼ HðxÞGIIðxÞ ð7:24aÞ

The system being analysed, which is assumed to be linear, transforms the input IðtÞ
by modulating and phase shifting it, at the same frequency, in a constant manner:
the output UðtÞ effectively caused by the input is, therefore, univocally coherent,
whereas the portion of the output due to noise NðtÞ is not. If coherence c2UI is high
in the entire field of frequency being analysed, the output can be virtually attributed
to the input only IðtÞ, while, on the contrary, the data will show little correlation
with the actual input: under these conditions it is impossible to define an estimation
of the magnitude of the system’s transfer function jHðxÞj from the measurements.
From these considerations the transfer function HðxÞ (complex quantity) of a
generic linear system subject to a random input IðtÞ and, simultaneously, to noise
NðtÞ can be obtained from the following relation:

Fig. 7.14 Using the coherence function in identification processes
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HðxÞ ¼ GUIðxÞ
GIIðxÞ ð7:24bÞ

7.4 Defining the Random Stationary and Ergodic Process

Often the complex mechanism that generates a stochastic process does not signif-
icantly change its characteristics with longer time periods than the fluctuation time
scale: for example, if we analyse different recordings of wind speed at a given point,
the various time histories are obviously different, but the statistical characteristic
remain almost constant (since the actual mean quantities are linked to the orography
of the terrain). For these processes it is legitimate to assume the random phe-
nomenon, as a stationary phenomenon.

The term stationary phenomenon (in the strict sense) is used to define those
phenomena where all the statistical quantities are not affected by a translation of the
time axis, i.e. they do not change over time. Normally, it is not possible to estimate
all the statistical quantities, so it is never actually possible to verify whether the
process is stationary in the strict sense: by analysing a generic random process
(defined by a sequence of random variables xiðtÞ), the process can be defined as
stationary in a broad sense if (Fig. 7.15):

• the mean value of the random process at a given generic time t1 (assuming
statistical regularity):

lxðt1Þ ¼ lim
N!1

1
N

XN
0

xiðt1Þ ð7:25aÞ

• the mean square value of the random process at a given time t1:

w2
xðt1Þ ¼ lim

N!1
1
N

XN
0

x2i ðt1Þ ð7:25bÞ

• the autocorrelation function:

Rxxðt1; sÞ ¼ lim
N!1

1
N

XN
0

xiðt1Þxiðt1 þ sÞ ð7:25cÞ

prove to be independent of the time t1 considered, i.e. when the process being
analysed maintains constant the statistical characteristics that define it.

When analysing just one random variable (i.e. a single recording), as is often the
case, we only have one recording xiðtÞ of a stationary process available: in this case
it is natural to estimate the statistical quantities as the mean lx and the correlation
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function Rxx with averaging on the time history xiðtÞ (Fig. 7.15). One possible
estimation of the mean lx for a recording of duration T may be given by:

• mean time value:

lx ¼ lim
T!1

1
T

ZT
0

xðtÞdt ð7:26aÞ

• square mean time value:

w2
x ¼ lim

T!1
1
T

ZT
0

x2ðtÞdt ð7:26bÞ

• time autocorrelation function:

Rxx ¼ lim
T!1

1
T

XT
0

xðtÞxðt þ sÞ ð7:26cÞ

The process is also assumed to be ergodic if the mean times defined by (7.26a–
7.26c) coincide with:
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Fig. 7.15 a Definition of a random stationary and ergodic process. b Example of a stationary but
not ergodic process
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lx ¼ lxðt1Þ ¼ cos t:

w2
x ¼ w2

xðt1Þ ¼ cos t:

Rxx ¼ Rxxðt1Þ ¼ cos t:

ð7:27Þ

In this case just one recording is sufficient to obtain the statistical quantities that
define its characteristics (in (7.15) we can see an example of a stationary, but not
ergodic, process).

In actual fact, random quantities (such as, for example, wind turbulence) are not
strictly stationary and ergodic, but they are assumed to be so by defining the
statistically significant quantities with a limited number (not infinite) of observa-
tions: in other words, by assuming that the phenomenon of turbulence is a sta-
tionary and ergodic phenomenon, it is possible to obtain the statistical quantities
from a limited, and not infinite, number of time recordings.

In practical applications, when the process is stationary it is commonly assumed
to be ergodic too: thus it is possible to define the necessary statistical characteristics
(mean value and correlation) from one, or just a few, recordings.

7.5 The Response of a Vibrating System to Random
Excitation

Before beginning to study the response of a vibrating system subject to random
excitation, we should recall some of the concepts used for studying the response of
a system to periodic forces.

As we saw in Chap. 1, the periodic function has a waveform that constantly
repeats itself after a period T0:

xðtÞ ¼ xðt þ T0Þ ð7:28Þ

This quantity can thus be transformed in the frequency domain via Fourier series
development:

xðtÞ ¼
X
n

jXnj cosðnx0t þ /nÞ ð7:29aÞ

being:

Xn ¼ jXnjei/n ¼ 2
T0

Z1
�1

xðtÞe�inx0tdt ð7:29bÞ
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The time history can then be represented by the line spectrum which shows in
magnitude and phase the amplitude and the phase of the individual harmonics that
make up the signal.

By repeating this operation in different periods, as it is periodic, we always
obtain the same complex spectrum.

We will now analyse a generic periodic force (Fig. 7.16) which can be repre-
sented as:

FðtÞ ¼
X
n

jFnj cosðnx0t þ /nÞ ð7:30Þ

being:

Fn ¼ jFnjei/n ¼ Fðnx0Þ ¼ 2
T0

Z1
�1

xðtÞe�inx0tdt ð7:31Þ

The steady-state response of a vibrating system can be performed using the transfer
function HðxÞ ¼ jHðxÞjeiaðxÞ (Chap. 1, Sect. 1.3.5) as:

Xn ¼ jXnjeiwn ¼ Xðnx0Þ ¼ Hðnx0ÞFnðnx0Þ ð7:32Þ

from which it is possible to reconstruct the response over time xðtÞ as:

xðtÞ ¼
X
n

jXnj cosðnx0t þ wnÞ ð7:33Þ

being:

wn ¼ /n þ an ð7:33aÞ

Now we will analyse the response of a linear system with an aleatory force and with
no disturbances. Gff ðxÞ is the power spectral density of the aleatory force. The
power spectral density of the response GxxðxÞ [1, 3, 13] is:

0 10 20 30
0

2

4

6

8

ω

G
ff( ω

)

0 0.5 1 1.5 2
-200

-100

0

100

200

t

F
(t

)

Fig. 7.16 The generic random force
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GxxðxÞ ¼ H2ðxÞGff ðxÞ ð7:34aÞ

while the cross-spectrum is defined by the relation:

Gxf ðxÞ ¼ HðxÞGff ðxÞ ð7:34bÞ

being:

H2ðxÞ ¼ HðxÞH�ðxÞ ð7:35Þ

a real quantity. Figure 7.17 illustrates the sequence of operations needed to define
the system’s response.
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If we wish to reconstruct the time history of the response xðtÞ of the system, we
can use (7.29a)11:

xðtÞ ¼
X
n

jXnj cosðnx0t þ hnÞ ð7:36Þ

hn being a random phase chosen from 0 and 2p, while jXnj is the amplitude of the
generic harmonic obtained from the power spectral density function (Eq. 7.34a)
from:

GxxðxÞ ¼ jXnj2
2x0

ð7:37Þ

We will now demonstrate the relation (7.34a, 7.34b). The power spectral density
function is given by the relation:

Gff ðxÞ ¼ jFnj2
2x0

ð7:38aÞ

The transfer function (which can only be defined for a linear system) makes it
possible to shift from the force spectrum to the response spectrum as:

Xn ¼ Hðnx0ÞFn ð7:38bÞ

From this relation it is easy to see that:

• if the input is stationary then the response is also stationary;
• if the excitation has a zero mean the response will also have a zero mean.

The power spectral density function of the output Gxx thus becomes, taking into
account (7.38b):

GxxðxÞ ¼ jXnj2
2x0

¼ H2ðnx0ÞjFnj2
2x0

¼ H2ðnx0ÞGff ðxÞ
ð7:39Þ

If the system, with 1 degree of freedom, is subject to low damping and if excitation
is wideband, the response is represented by a narrow band process with the peak
around the system’s natural frequency.

11This is not the only way to reconstruct a possible time history of the aleatory quantity, defined
starting from the relative spectrum: other methods are discussed in literature, for example, the
ARMA method. For further details see [15, 17, 22].
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If the excitation is Gaussian and the system is linear then the response is also
Gaussian and so the probability distribution of the response is univocally defined by
the mean and by the variance.

If the system is non-linear, superposition of the effects cannot be applied so it is
not possible to work in the frequency domain. In this case, once the power spectral
density function of the force has been assigned Gff , for example, we must recon-
struct a possible time history for the force using, for example, development in
series:

FðtÞ ¼
X
n

jFnj cosðnx0t þ hnÞ ð7:40Þ

hn being a random phase between 0 and 2p and from (7.39):

Gff ðxÞ ¼ jFnj2
2x0

ð7:40aÞ

This force can be assigned on input in the system’s equations of motion which, in
the case of a linear system, are of the form:

M½ � x::þ R½ � _xþ K½ �x ¼ FðtÞ ð7:41aÞ

while generically, in the case of a non-linear system:

Fiðx; x; xÞ þ Fsðx; xÞ þ FeðxÞ ¼ FðtÞ ð7:41bÞ

from which it is possible to obtain the response xðtÞ of the system, using numerical
integration.

However, (7.40) represents just one of the possible time histories of the random
process: in order to fully reproduce the process we must generate several time
histories with different random phase generations.

When generating the time history (7.40) we must also ensure that the period T0

assumed to correspond to the fundamental harmonic, with which the force was
developed in series, is greater than the period of integration: otherwise a fictitious
periodicity is introduced into the response of the system, a periodicity that is not
present in the real random phenomenon. One alternative approach [10] is to use
linear filters: with this approach a sequence of random numbers, uniformly dis-
tributed and with zero mean value (white noise), are introduced in a numerical filter
defined with an appropriate transfer function. In this way, the random process is
generated by the filter whose transfer function is defined in such a way as to obtain
a signal upon output with the desired power spectral density. In this case, by using,
for example, an ARMA method, i.e. autoregressive-moving-average model [6–8,
15, 25], we can generate the history in the time domain starting from our knowledge
of the autocorrelation function, or of its power spectral density transfer function.
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7.5.1 Analysis with Several Correlated Processes

Up until now the discussion has been limited to analysing just one random process:
if the random processes are more than one, we must define the correlation between
them. In this regard, there are several different methods [19–22] of reproducing
correlated processes:

• the superposition of effects method (WSWA methods, [24]) using development
in series of harmonics, obtained from the matrix of cross-spectra (similar to the
covariance matrix);

• the ARMA method with several processes, already described briefly for the
generation of a single process, which again uses the covariance matrix [10].

These procedures are remarkably complex; please refer to the bibliography at the
end of the chapter for further reading: in the next section (Sect. 7.6) we will
introduce a simplified method for reproducing several correlated random processes
(Sects. 7.6.1 and 7.6.3).

7.6 Some Examples of Application

7.6.1 Response of a Structure to Turbulent Wind

Real wind is turbulent, that is, it is variable in time and in space in an aleatory
manner: Fig. 7.18 shows a generic space-time history of real wind speed (horizontal
component). However, the characteristics of this phenomenon are such that it may
be considered as a stationary and ergodic process. The action of turbulent wind on
some types of structures (such as, for example, tall buildings, towers, chimneys,
bridges, electrical power transmission lines) causes vibrations of significant
amplitudes and therefore high static and dynamic stresses caused both by force
phenomena and problems of instability. In Sect. 5.3.2, the issues regarding the
definition of aerodynamic forces acting on structures, having assumed a known and
constant confined flow, were introduced: in this section we will analyse the main
characteristics of real wind (see the bibliography in this chapter, section Effects of
wind on structures).

7.6.1.1 Characterisation of Turbulent Wind

Wind is caused by differences in atmospheric pressure. At a great height the motion
of the air is independent from the roughness of the surface of the earth, while in the
area below a certain height, described as the gradient height δ (boundary layer), the
flow is modified by the surface friction, thus generating turbulent motion of the
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confined flow. The gradient height δ varies depending on the type of terrain. As an
indication, we can, for example, assume12:

The time history of the longitudinal wind speed can be expressed as:

UðtÞ ¼ �U þ uðtÞ ð7:42Þ

where �U is the mean value of the speed (averaged on a period that ranges from
10 min to 1 h) and uðtÞ is the dynamic or fluctuating part. Real wind, in addition to
having a fluctuating component in a horizontal direction, also has a vertical and
transverse component with zero mean values13: Fig. 7.19 shows the generic wind
speed vector and the relative components.

The mean value of wind speed �U depends on the height z at which the actual
speed is measured as shown, for different types of terrain, in Fig. 7.20.

The variance in the mean value of the speed, shown in Fig. 7.20, can be
expressed in relation to the height by an exponential law of the form:

�UðzÞ ¼ �Ug
z
zg

� 	a

ð7:43Þ

�Ug being the mean speed defined in correspondence to the gradient height zg ¼ d:
the coefficient α is a function of the type of terrain and assumes the following
values:

Fig. 7.18 A generic
space-time history of real
wind

12The orography of the site modifies the flow lines even at much greater heights than the defined
gradient height, in the case of orography with the presence of tall obstacles like hills, headlands
and mountains.
13This is true by definition as the mean value is usually attributed to the so-called horizontal
component which, in fact, is itself a vector that has three components of which the orthogonal
component on the surface of the terrain is small, but not null.
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The fluctuating part uðtÞ of the wind is less sensitive to variation with height and
is a random variable quantity both in space and in time. The main statistical
quantities that characterise fluctuations in the confined flow are:

• the intensity of turbulence It;
• the power spectral density Gvðf Þ;
• the cross-correlation between measured speed at different points in space RxyðnÞ;
• the speed probability distribution.

The intensity of turbulence It is defined as:

It ¼ r
�U

ð7:44Þ

σ being the standard deviation of the flow speed.
The index It is usually made to depend on the drag coefficient of the terrain

k using the relation:

It ¼ b
ffiffiffi
k

p
ð7:45Þ

where k applies, for different terrains:

Fig. 7.19 Generic components of wind speed

Fig. 7.20 Vertical profiles of mean speed �U (continuous line) and range of fluctuations (dotted
line)
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The coefficient β for the horizontal component is normally equal to b ¼ 2:45.
The index of real wind turbulence varies between 5 and 25 %. The energy asso-
ciated with the fluctuations in the flow is distributed over a wide field of fre-
quencies: this distribution in relation to the frequency is described using the power
spectral density function Gvðf Þ which, we should remember, is correlated with the
variance via the relation:

Z1
0

Gvðf Þdf ¼ r2 ð7:46Þ

Often this function is plotted in non-dimensional form, as shown in Fig. 7.21
where it is shown in terms of experimental data (blue line) and in terms of analytical
interpolation formulation (Von Karman formula (7.48), red line), where:

• f is the frequency in Hz;
• r2 the variance, obtained from the index of turbulence using (7.44), i.e. the type

of terrain (Table 7.4 and 7.5);
• δ is the gradient height (a function of the type of terrain, Table 7.3).

The relationship ðf =�UÞ is defined as “inverse of wavelength” and is associated
with the sizes of atmospheric vortices. This length can then be compared to a
characteristic dimension, known as an integral scale L, defined as the wavelength of
vortices corresponding to the peak of the spectrum (this quantity is also defined as

Fig. 7.21 The power spectral
density of wind

Table 7.3 Gradient height δ
depending on the type of
terrain

Open sea terrain δ = 300 m

Wooded areas and city suburbs δ = 450 m

Central areas of large cities δ = 600 m
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the autocorrelation barycentre): normally L is in the region of a hundred metres.
This makes it possible to define a non-dimensional frequency �f (known as the
Strouhal number or reduced frequency):

�f ¼ Lf
�U

ð7:47Þ

The power spectral density function Gvðf Þ ¼ Gvð�f Þ is obtained, by measuring
the wind, with the methods defined in the previous section and it is possible to
interpolate this, as mentioned, using the so-called Von Karman formula:

Gð�f Þ ¼ 4k �U
L=�U

2þ �f 2ð Þ5=6
ð7:48Þ

where �f is the non-dimensional frequency (7.47), �U the mean speed value (m/s) and
L the integral scale (m), see Fig. 7.21. The spatial correlation of the wind speed
measured at two different points x and y is described by the coherence function:

c2xyðf Þ ¼
jGxyðf Þj2

Gxxðf ÞGyyðf Þ 0� c2xyðf Þ� 1 ð7:49Þ

where Gxy is the cross-spectrum and Gxx and Gyy are the power spectral density Gv

obtained, as explained earlier, from the signals of the two measurement points using
the Fourier transform of the auto and cross-correlation.

Table 7.5 Drag coefficient k
in relation to the type of
terrain

Open sea terrain k = 0.005

Wooded areas and city suburbs k = 0.015

Central areas of large cities k = 0.050

Table 7.4 Coefficient α as a
function of the type of terrain

Open sea terrain α = 0.16

Wooded areas and city suburbs α = 0.28

Central areas of large cities α = 0.40

Fig. 7.22 Auto and cross-correlation functions (Dx ¼ 150m)
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For example, Fig. 7.22a shows the autocorrelation function RxxðsÞ estimated
from a generic time history of the wind speed, measured using an anemometer. The
characteristic autocorrelation trend RxxðsÞ clearly shows (for clarification see the
examples shown in Sect. 7.3, Fig. 7.4) how the phenomenon of wind turbulence is
characterised by a wide band of frequencies. Figure 7.22b, on the other hand, shows
the cross-correlation function RxyðsÞ relating to the wind speed measured at two
points located at such a distance that the two time histories prove to have little
correlation.

The coherence function depends on the parameter ðfDx=�UÞ; Dx being the dis-
tance between the two points and �U the average speed: an appropriate approxi-
mation for representing this function could be the following:

c2xyðf Þ ¼ e�CðfDx=�UÞ ð7:50Þ

C being a constant (C ¼ 7 for the vertical component of the turbulence, C ¼ 15 for
the horizontal component). Figure 7.23 shows the trend of the coherence function in
relation to the non-dimensional frequency ðfDx=�UÞ: as we can see, at the same
frequency f and mean value �U, coherence decreases as the distance Dx increases
between two points of measurement; c2xyðf Þ, on the other hand, increases as the
mean value �U increases, while it decreases as the frequency f increases (i.e. upon
decrease of the dimensions of the vortex associated with that frequency).

7.6.1.2 Calculating the Dynamic Response of a Structure to Turbulent
Wind

In Chap. 5, Sect. 5.3.2, we saw how it is possible, once the time history of the wind
speed affecting a structure is known, to calculate the forces (drag, lift and torque)
exerted on it by the fluid.

The response of the system, considering the fluid-elastic coupling, must be
estimated by numerically integrating the non-linear equations of motion of the
form:

½Ms� x::þ½Rs� _xþ ½Ks�x ¼ Fð _x; x;Uðt; nÞÞ ð7:51Þ

x being the vector that contains the displacements of the mathematical model of the
structure (for example, a model with finite elements or a model using the principal
coordinates), ½Ms�; ½Rs� and ½Ks� the structural stiffness, damping and mass matrices
(diagonal if working with principal coordinates) and finally F the vector of the
generalised forces.

The generalised forces in (7.51) depend, in non-linear form, as seen in Sect. 5.2,
on the displacements and the velocities of the structure’s nodes and on the space-time
history of the turbulent wind Uðt; nÞ.
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The generic time history in a point of the structure can be obtained from the
power spectral density function Gvðf Þ:
• assuming a certain type of terrain, and therefore, a certain value of gradient

height δ (Table 7.3), a certain value of average speed.
• it is possible to obtain the power spectral density function Gvðf Þ from the non-

dimensional expression shown in (7.48), (7.21);
• assuming a certain fundamental frequency x0 ¼ 2pf0 and a certain number of

frequencies nmax:
• from the known relation:

GvðfnÞ ¼ Gvðnf0Þ ¼ jCnj2
2x0

ð7:52Þ

• it is possible the obtain the amplitudes of the individual harmonics jCnj;
• one possible time history can be estimated using the following expression:

UðtÞ ¼ �U þ
Xnmax
n¼1

jCnj cosðnx0t þ /nÞ ð7:53Þ

where /n is a random phase between 0 and 2p.

If we wish to define the wind history at several points of the structure, i.e. define
the space-time trend of the wind, we can proceed in several ways:

• using methods of harmonic superposition (Wave superposition Methods) that
are based on the use of cross-spectrum matrices [10];

• using ARMA methods (autoregressive-moving-average models, [24];
• other simplified approaches.

For an introduction to the complex issues linked to the space-time generation of
wind, we will briefly describe a more didactically suitable method, similar to the
harmonic superposition method.

We will consider two generic points i and j, distant from each other Dxij, where
we wish to reconstruct the wind time history. Given the characteristics of the
aleatory phenomenon analysed, we will have:

Gviðf Þ ¼ Gvjðf Þ ð7:54Þ

Furthermore, the coherence function is known c2nxyðf Þ, Fig. 7.23, (7.15), upon
variation of the frequency fn ¼ nf0 (Dxij and �U being set and constant).

The time history at generic point i can be defined using (7.53):

UiðtÞ ¼ �U þ
Xnmax
n¼1

jCnj cosðnx0t þ hnÞ ð7:55Þ
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The time history of the speed UjðtÞ, estimated at point j, can be seen as the sum of a
coherent term and Ucoer a non-coherent term Uuncoer:

UjðtÞ ¼ Ucoer þ Uuncoer ð7:56Þ

The coherent part [see Sect. 7.3.1.4 and the definitions shown in (7.35) and (7.15)],
will be expressed as:

Ucoer ¼ �U þ
Xnmax
n¼1

cnijjCnj cosðnx0t þ hnÞ ð7:57Þ

that is, a history reconstructed with the same phase hn used to generate UiðtÞ
(Eq. (7.55)). The non-coherent part is generated with different random phases /n
and by requiring that the two spatial histories have the same spectrum (7.54):

Uuncoer ¼
Xnmax
n¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� c2nij

q
jCnj cosðnx0t þ /nÞ ð7:58Þ

Ultimately we will have:

UjðtÞ ¼ �U þ
Xnmax
n¼1

cnijjCnj cosðnx0t þ hnÞ þ
Xnmax
n¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� c2nij

q
jCnj cosðnx0t þ /nÞ

ð7:59Þ

By analysing (7.59) we can see that, regardless of the frequency, if there was perfect

coherence c2nij ¼ 1
� �

we would have ðUiðtÞ ¼ UjðtÞÞ, whereas in the hypothesis of

complete incoherence c2nij ¼ 0
� �

the time history UiðtÞ would be completely dif-

ferent to the speed history at j, UjðtÞ, since the phases of reconstruction are
uncorrelated.

Subsequently, if we wish to reconstruct the time history of the speed UkðtÞ at a
further generic point k removed Dxjk from point j, it is possible to rewrite (7.59) as:

UjðtÞ ¼ �U þ
Xnmax
n¼1

jDnj cosðnx0t þ wnÞ ð7:60Þ

being:

jDnjeiwn ¼ cnijjCnjeihn þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� c2nij

q
jCnjei/n ð7:61Þ
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Thus, in the same way as for point j (7.56), the speed at point k is estimated using
the following expression:

UkðtÞ ¼ �U þ
Xnmax
n¼1

cnjkjDnj cosðnx0t þ wnÞ þ
Xnmax
n¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� c2njk

q
jDnj cosðnx0t þ anÞ

ð7:62Þ

where cnjk is the coherence function between points j and k. This procedure can be
repeated for all the other necessary points.

Returning to the resolution of the equations of motion (7.51), in cases where we
can ignore the fluid-elastic coupling, the response of the system can be estimated by
integrating the equations of motion, this time linear, in the time domain, of the
form:

½Ms�€xþ ½Rs� _xþ ½Ks�x ¼ FðUðt; nÞÞ ð7:63Þ

where F is the vector of the generalised forces, in this case a known explicit
function of time and space. The resolution of (7.63) can, in this case, also be
performed in the frequency domain. To simplify the matter (the discussion can also
be extended to systems with several degrees of freedom, see the bibliography at the
end of the chapter) we will consider the vibrations of a rigid cylinder restrained in
such a way as to represent an oscillating system with a single degree of freedom,
free to move in the direction of the average speed of the fluid: thus (7.63) are
reduced to:

Ms€xþ Rs _xþ Ksx ¼ FðUðtÞÞ ð7:64Þ

Fig. 7.23 Coherence
function in relation to the
non-dimensional frequency
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Assuming that the dimensions of the body are negligible in relation to the wave-
length of the influential flow and considering that the only resistance (drag) is the
force exerted by the wind, this becomes:

F ¼ FðUðtÞÞ ¼ 1
2
qCrAU

2ðtÞ ð7:65aÞ

Cr being the drag coefficient, generally a function of the Reynolds number only.
Taking into account (7.42), then (7.65a) can be expressed as:

FðUðtÞÞ ¼ 1
2
qCrA�U

2 1þ 2
uðtÞ
�U

þ u2ðtÞ
�U2

� 	
ð7:65bÞ

The term �D in (7.65b):

�D ¼ 1
2
qCrA�U

2 ð7:66aÞ

represents the static thrust acting on the structure due to the mean value, whereas
the terms:

FdðUðtÞÞ ¼ �D 2
uðtÞ
�U

þ u2ðtÞ
�U2

� 	
ð7:66bÞ

represent the fluctuating part: if, as is usually the case, uðtÞ\�U, the quadratic term
of (7.66b) can be neglected, so:

FdðUðtÞÞ ¼ �D 2
uðtÞ
�U

� 	
ð7:66cÞ

The power spectral density of the wind Gvðf Þ ((7.46) and (7.48), Fig. 7.21) can, in
this way, be correlated to the power spectral density of the force Gdðf Þ using
relation [9]:

Gdðf Þ
�D2

¼ 4
Gvðf Þ
�U2

ð7:66dÞ

If the body being analysed is large (Fig. 7.24), or rather, if the generic wavelength
can be compared to its dimensions, the forces acting on the cylinder FdðUðtÞÞ
change. In any case, if we wish to use the expression (7.66d) we must modify the
spectrum of the aerodynamic drag force using an appropriate transfer function Xaero,
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known as the aerodynamic admittance function, to obtain the following relation,
which replaces (7.66d):

Gdðf Þ ¼ 4jXaeroj2 Gvðf Þ
�U2

�D2 ð7:67aÞ

This function allows us to take into account the variations in the drag coefficient
and the decrease in the correlation of the vortices as the wavelengths approach the
diameter of the cylinder (in correspondence to wavelengths much greater than the
dimensions of the cylinder, the aerodynamic admittance function Xaero assumes
values that are close to unity).

The power spectral density of the system’s response Gxðf Þ (Sect. 7.5, (7.34a,
7.34b)) is defined by the product of the square of the system’s transfer function
magnitude Hðf Þ by the power spectral density of the force, i.e.:

Gxðf Þ
�x2s

¼ jHf j2 Gdðf Þ
�D2 ¼ 4jHf j2jXaeroj2 Gvðf Þ

�U2 ð7:67bÞ

�xs being the static deflection:

�xs ¼
�D
Ks

ð7:67cÞ

and H( f ) the transfer function of the system, defined in this case as:

Hðf Þ ¼ 1

�X2Ms þ iXRs þ Ks
; X ¼ 2pf ð7:67dÞ

Fig. 7.24 Passage from the power spectral density function of the wind to the power spectral
density of the response
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Recalling the link (7.11) between the variance rx and the power spectral density
function Gxðf Þ it is possible to immediately obtain [see (7.46) and (7.2)] the
maximum and minimum values of the response given by:

xmaxðtÞ ¼ �xs � 3rx ð7:68Þ

Furthermore, remembering the known relation:

GxðfnÞ ¼ Gxðnf0Þ ¼ jXnj2
2x0

ð7:69aÞ

it is possible to reconstruct possible time histories of the response using:

xðtÞ ¼ �xs þ
Xnmax
n¼1

jXnj cosðnx0t þ hnÞ ð7:69bÞ

hn being a random phase between 0 and 2p.

7.6.2 Response of a Structure to Wave Motion

When a generic disturbance perturbs the state of rest of the free surface of a fluid,
a motion is triggered that tends to bring the surface back to its state of rest: in this
way, waves of different shapes and sizes are created (Fig. 7.25) due to the presence
of gravity.

This surface motion corresponds to a speed distribution of the single particles
throughout the entire volume of fluid. The formation of this wave motion generates
forces, generically variable over time, that can dynamically excite both submerged
structures (such as, for example, off-shore structures, Fig. 7.26) and vessels (see the
bibliography shown in this chapter, section The Effects of wave motion on
structures).

Fig. 7.25 Various wave forms (sea state)
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Knowing the characteristics of these waves, and the relative motion induced in
fluid, is, therefore, a key element in planning any marine work or for fully opti-
mising the characteristics of a vessel.

The complex phenomenon of wave motion can be classified as a stationary and
ergodic random phenomenon and can, therefore, be characterised with the quan-
tities illustrated in the previous sections (see the bibliography on this subject).

In this section, intended to be an introduction to the complex issues linked with
wave motion and its effects, we will analyse the forces Fm transmitted by wave
motion on a submerged structure assuming that the wavelength associated with the
wave motion is much greater than the transverse dimension of the actual structure.

In this case, the induced forces can be estimated, as we will see in more detail
below, with the so-called Morrison formulas: according to this formulation, the
forces are functions of the velocity v of the fluid and of its acceleration _v as well as
the velocity and the acceleration that the actual structure is subject to.

So, wave motion generates a force field that is proportional to displacement,
velocity and to acceleration as, unlike aero-elastic problems, in the case of water the
inertial forces, given the high density value of fluid ρ, are not negligible.

Fig. 7.26 Typical off-shore
structure
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Therefore, the equations of motion of a structure submerged in water and subject
to wave motion, and schematised, for example, with finite elements, become of the
form:

Ms½ � x::þ Rs½ � _xþ Ks½ �x ¼ Fmðx
::
; _x; x; _v; v; tÞ ð7:70Þ

where x is the vector of the nodal displacements; Ms½ �; Rs½ � and Ks½ � are the system’s
matrices of mass, damping and stiffness and Fm is the vector of the generalised
forces caused by the wave motion.

Wave motion or sea state can always be seen as a superposition of elementary
states and is, therefore, of an aleatory nature: each single elementary state is defined
by a certain wave period, length and height (monochromatic wave).

The velocity v and the acceleration _v of the fluid (i.e. of the generic fluid particle)
are, therefore, random quantities, generally time and space functions: these quan-
tities, if referring to a single elementary state that makes up the wave motion,
depend on the height of the wave on the surface, on the wavelength, on the depth of
the ocean floor and, lastly, the distance of the point being considered from the free
surface.

Now considering the generic elementary state, there are different theories that
define the wave shape and that can be used to calculate the velocities and the
accelerations of fluid particles. We should remember, in particular (see the specific
bibliography at the end of the text):

• the linear theory, a theory that we will refer to in this discussion;
• the Stokes formulas (where motion is assumed to be the sum of small

perturbations):
• the Dean stream function solution, etc.

Figure 7.27 shows a graph illustrating the fields of validity of these theories.
The different wave theories have different fields of application depending on the

assumed values of parameters:

• depth of the ocean floor d;
• wave period T;
• wave height H;
• gravity acceleration g.

These theories make it possible to obtain the flow velocity since the trend of the
wave motion on the surface is known: for this reason, it is clear that in order to
properly estimate the forces that fluid exerts on a submerged structure, we need to
know the characteristics of the wave motion at the construction site.
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7.6.2.1 Characterisation of Wave Motion

Characterisation of wave motion can be carried out in three different ways, based on:

• visual observation of the principal statistical characteristics of the wave motion
(significant height, period, direction of the wave motion and recurrences);

• experimental readings that make it possible to also provide information on
correlations and spectra of the phenomenon;

• processing of meteorological data in the area in question.

Visual observations (historically the first to be used) are done from vessels so the
indications obtained are often unreliable; above all on routes that are used less
frequently and where there are severe conditions (conditions that ships tend to
avoid).

Experimental measurements, which provide more complete information about
sea states, can be performed using:

• instruments located above the surface (ships, platforms etc.) based on the
emission of laser, electromagnetic or acoustic waves and their reflections;

• instruments located on the surface, such as, for example, accelerometers
mounted on buoys (wave rider buoys);

• resistive, capacitive or inductive displacement sensors;
• instruments located under the surface, such as inverted echo sounders, pressure

transducers etc.

Fig. 7.27 Fields of application of the different wave theories
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Data are generally acquired analogically and stored on magnetic tape or on
computer in digital form, to be processed subsequently. On the basis of the
experimentally obtained data, subsequently we must (see specific bibliography):

• analyse the wave motion data and determine the fundamental statistical
parameters of the sea state;

• define the frequency of occurrence;
• define the functions of auto and cross-correlation and the power spectral density

functions;
• extrapolate these results to define the possible boundary conditions (extreme

waves) with both deterministic and probabilistic methods.

Normally, these indications are obtained from 15–20 min long recordings, taken
every three hours (approx. 2900 acquisitions a year). The fundamental quantities
that characterise the phenomenon are:

• the significant wave height Hs, i.e. the average height of the wave being
observed;

• the significant wave period T;
• the wave direction (it is generally accepted that wave motion is unidirectional);
• the occurrence value.

These quantities would be enough to define the phenomenon if it was harmonic:
in actual fact, the time history of the wave motion height is, as mentioned, of a
stationary and ergodic aleatory nature, so the following must also be defined:

• its auto and cross-correlation function
• its power spectral density functions, i.e. the mean square value in relation to

each frequency in the wave.

We will now illustrate one possible method of investigation used to analyse the
behaviour of a generic submerged structure subject to wave motion (an exhaustive
discussion of the subject is given in the texts recommended in the bibliography).

7.6.2.2 Generation of a Possible Time History of Wave Motion
and of Flow Velocity

As a hypothesis, the linear wave theory assumes an irrotational flow (corresponding
to a conservative field): the result being [39–41] that the flow velocity can be
represented by a potential function Uðx; y; z; tÞ. Taking into account the law of
conservation of mass (continuity equations) and assuming incompressible flow, the
motion of the single particles must satisfy the Laplace equation (Fig. 7.28):

@2U
@x2

þ @2U
@y2

¼ 0 ð7:71Þ
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The problem is solved by finding a solution to this equation that satisfies the
following boundary conditions:

• the velocity of the particles on the surface must be equal to the velocity of the
free surface;

• the particle on the bottom must have a normal velocity, null to the actual ocean
floor;

• the pressure on the surface must be equal to the atmospheric pressure.

In the hypothesis of a sine wave, the motion of the single particle of fluid, at a
certain depth z, is of an elliptical nature (Fig. 7.28), made up of two harmonic
components [horizontal uðx; z; tÞ and vertical wðx; z; tÞ] the magnitude of which
decreases exponentially towards the bottom (i.e. as the z magnitude increases).
More specifically, we can define with:

• X � Y � Z a Cartesian coordinate system, defining the height of the free surface
with z ¼ 0;

• gðt; xÞ the rise of the free surface in correspondence to the generic x-coordinate:
this hypothesis assumes a unidirectional wave and the problem is, therefore,
reduced to a plane problem;

• H the height of the wave (crest-crest), see Fig. 7.28;
• k the wave number k ¼ 2p

L ;

Fig. 7.28 Definition of the motion of the generic particle
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• L the wave length;
• ω the wave pulsation (or frequency) x ¼ 2p

T ;
• T the period;
• d the depth of the ocean floor;
• C ¼ L

T the wave speed;

The variation in the height of the free surface gðt; xÞ becomes, again in the case
of a sine wave, of the form:

gðt; xÞ ¼ H
2
cosðkx� xtÞ ¼ H

2
cos 2p

x
L
� t
T

� �� �
ð7:72Þ

The linear wave theory [35–38, 40] makes it possible, by linearising the boundary
conditions, to obtain the distribution of the velocity components uðx; z; tÞ and
wðx; z; tÞ and the accelerations of the generic particle of fluid using the following
relations:

uðt; x; zÞ ¼ gpH
xL

cosh 2pðzþdÞ
L

� �
sinh 2pd

L

0
@

1
A cos

2px
L

� xt

� 	

wðt; x; zÞ ¼ gpH
xL

sinh 2pðzþdÞ
L

� �
sinh 2pd

L

0
@

1
A sin

2px
L

� xt

� 	 ð7:73aÞ

_uðt; x; zÞ ¼ gpH
L

cosh 2pðzþdÞ
L

� �
sinh 2pd

L

0
@

1
A sin

2px
L

� xt

� 	

_wðt; x; zÞ ¼ gpH
L

sinh 2pðzþdÞ
L

� �
sinh 2pd

L

0
@

1
A cos

2px
L

� xt

� 	 ð7:73bÞ

being

• g gravity acceleration;
• z the depth from the free surface;
• L the wave length, which can be defined as:

L ¼ g2p
x2 tanh 2pd

L


 �
per bassi fondali d

L\0:04
L ¼ g2p

x2 per bassi fondali d
L\0:50

ð7:73cÞ

In actual fact, the oscillation of the free surface is not sinusoidal, but is a random
phenomenon (which can be considered as stationary and ergodic with a certain
sequence of wave heights): therefore, as such, the wave motion must be defined in a
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statistical manner, starting from the unidirectional power spectral density function
of the wave height (for example the Pierson-Moskwitz spectrum). The approach
used is based on:

• deterministic theories relating to waves (which univocally establish the link
between the shape of the free surface and the corresponding particle velocity, for
example, see the linear theory mentioned previously);

• determination of the statistical properties of the real wave motion;
• methods of spectral analysis.

More specifically, the real height of the wave is modelled as a sum of harmonics
with different magnitudes Hn and phases:

gðt; xÞ ¼
X
n

Hn

2
cosðknx� xnt þ /nÞ ¼

X
n

Hn

2
cos 2p

x
Ln

� t
Tn

� 	� 	
ð7:74Þ

being:

• Hn the height of the wave (crest-crest) in relation to the generic harmonic;
• kn the generic wave number kn ¼ 2p

Ln
;

• Ln ¼ L0
n the generic wavelength (sub-multiple of the fundamental wavelength

L0);
• xn the wave pulsation (or frequency) xn ¼ 2p

Tn
¼ nx0;

• Tn the period associated with the generic harmonic.

In (7.74) /n is a generic random phase chosen from 0 and 2p, while Hn, as
mentioned, is the amplitude of the generic harmonic determined by the power
spectral density function G0ðxnÞ of the sea state defined by the usual relation:

G0ðxnÞ ¼ G0ðnx0Þ ¼ jHnj2
2x0

ð7:75Þ

Figure 7.29 shows, as an example, the Pierson-Moskwitz spectrum G0PMðfnÞ
compared to that of Jonswap G0JðfnÞ [40, 41]14: the diagram shows the power
spectral density G0ðfnÞ in relation to the frequency fn ¼ xn

2pi non-dimensionalised

compared to the reference frequency f0 (i.e. in correspondence to which the power
spectral density function assumes maximum value). These spectra G0ðxnÞ can be
defined using a function of the form:

G0ðxnÞ ¼ H2
s a

xp

xn

� 	5

exp � 5
4

xp

xn

� 	4
 !

cb ð7:76Þ

14Only an in depth knowledge of the real characteristics of the wave motion at the construction site
of the structure can indicate the most suitable spectral formulation.
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where:

• Hs represents the significant wave height, i.e. the average height of the measured
wave;

• c is a coefficient that depends on the type of spectrum considered:

c ¼ 1 Pierson; c ¼ 3 Jonswap ð7:76aÞ

• xn is the generic pulsation;
• xp is the pulsation in correspondence to the peak of the power spectral density

function;
• α and β are two functions:

a ¼ 0:0624
0:23þ 0:0334c� 0:185

1:9þc

; b ¼ exp �
xn
xp

� 1
� �2

2r2

0
B@

1
CA ð7:76bÞ

being:

r ¼ 0:07 per xn\xp; r ¼ 0:09 per xn [xp ð7:76cÞ

Once we know the construction site of the structure, the significant wave height
Hs, the wavelength Ln and the corresponding period Tn, it is possible to define from
(7.76) the spectrum G0ðxnÞ, from which it is then possible to obtain the magnitude
of the single harmonics jHnj using (7.75), thus making it possible to reconstruct the
time history of the wave motion on the surface gðt; xÞ (7.74).

Fig. 7.29 Wave spectrum of
Pierson GPM (f) and
Moskwitz GJ (f)
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The generic space-time history of the flow speed v ¼ iuþ jw, at a certain depth z,
can be obtained using a wave theory, e.g. the linear theory, by applying the
superposition principle, like so:

uðx; t; zÞ ¼
X
n

unðx; t; zÞ; _uðx; t; zÞ ¼
X
n

_unðx; t; zÞ; ð7:77Þ

wðx; t; zÞ ¼
X
n

wnðx; t; zÞ; _wðx; t; zÞ ¼
X
n

_wnðx; t; zÞ; ð7:78Þ

where un and xn are obtained by assuming in (7.73a, 7.73b) H ¼ Hn [obtained
from (7.75)] and x ¼ xn. Equations (7.77) and (7.78) analytically represent the
state of the sea, obtained as a superposition of the individual elementary states.
Figure 7.30 shows, as an example, the reconstructed trend of the component uðt; zÞ
at a certain point in the flow velocity and the corresponding spectrum.

7.6.2.3 Definition of the Fluid Dynamic Forces Acting on a Cylinder

Assuming that the dimensions of the structure do not alter the influential fluid
dynamic field, and once the trend of the two velocity components of the stream is
known, using the Morrison equations it is possible to estimate the forces that the
fluid exerts on a segment of unitary length of cylinder placed crossways to the

Fig. 7.30 Example of time reconstruction of the flow velocity
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direction of the flow: these forces are the sum of a drag component and an inertial
component:

Fx ¼ 1
2
qDCdjv� vcj2 cos hþ ðCm � 1Þ pD

2

4
qð _u� €xÞ þ q

pD2

4
_u

Fz ¼ 1
2
qDCdjv� vcj2 sin hþ ðCm � 1Þ pD

2

4
qð _w� €zÞ þ q

pD2

4
_w

ð7:79Þ

being:

• ρ the density of the fluid;
• D the diameter of the cylinder;
• Cd the drag coefficient (Fig. 7.31a);

(b)

(a)Fig. 7.31 a The aerodynamic
forces acting on a cylinder.
b Trend of the drag coefficient
Cd in relation to the Reynolds
number for cylinders upon
variation of the surface
roughness (smooth surface,
dotted line); mass coefficient
value Cmf for some
characteristic sections
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• v the absolute velocity of the fluid particle:

v ¼ iuþ jw ð7:80aÞ

• vc the velocity of the cylinder:

vc ¼ i _xþ j_z ð7:80bÞ

• Cm the added mass coefficient (Fig. 7.31b);

sin h ¼ u� _x
jv� vcj

; cos h ¼ w� _z
jv� vcj

ð7:80cÞ

Once the forces exerted on the single length of the cylinder are known, assuming
that the structure has been modelled with finite elements, it is possible to use the
usual techniques to calculate the generalised forces concentrated on the nodes of the
model and thus estimate the Fm of the Eq. (7.70). The same equations of motion can
be numerically integrated and provide the displacements and, therefore, the stresses
induced on the structure.

By linearising (7.70) around the position of static equilibrium it is possible to
arrive at:

Ms½ � þ Ms½ �½ � x::þ ½Rs� þ ½Rf �
� 

_xþ ½Ks� þ ½Kf �
� 

x ¼ Fmðv; _vÞ ð7:81Þ

where ½Ms�; ½Rs� and ½Ks� are the matrices of mass, damping and structural stiffness
while ½Mf �, ½Rf � and ½Kf � are the corresponding matrices due to the presence of the
fluid dynamic force field: these matrices are obtained by linearising the actual forces
caused by the fluid.

However, for this linearised system it is possible to apply the spectrum approach:

• once the spectrum of the wave is known G0ðxnÞ it is possible to obtain the
spectrum of the velocity and of the acceleration of the wave motion;

• from this it is possible to estimate the spectrum of the force;
• by multiplying the power spectral density of the force by the square of the

system’s transfer function, it is possible to obtain the power spectral density of
the response from which, as seen in the previous section, it is possible to obtain
possible time histories of the system’s response.

7.6.3 Irregularities in the Road Profile

Another interesting example of aleatory quantity is represented by irregularities in
the surface of a road: (see the bibliography on this subject provided in this chapter,
in the section Effects of irregularities on the dynamic behaviour of road and rail
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vehicles): to analyse the effect of these irregularities on a generic vehicle, in a first
approximation, we must schematise and analyse the surface using a rigid body
connected to the ground with purely elastic and dissipative elements that represent
the elasticity and overall damping of the suspensions and tyres (Fig. 7.32).

More specifically we will, first of all, analyse only movement along a straight
line and on a level, while assuming a set and constant speed v. Having assumed the
vertical displacement of the carriage x, the rotation θ and displacements x1 and x2
impressed at the two connection points as independent variables:

x ¼
x
h
x1
x2

8>><
>>:

9>>=
>>; ð7:82Þ

In this case the equations of motion are of the form:

½M� x::þ½R� _xþ ½K�x ¼ FðtÞ ð7:83Þ

being:

½M� ¼
M 0 0 0
0 JG 0 0
0 0 0 0
0 0 0 0

2
664

3
775 ð7:83aÞ

2x

x

, Gm J
v

1x

1r

1k
2r

2k

G

1s2s

θ

2l 1l

Fig. 7.32 Model of the vehicle for estimating response to irregularities in roads
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½K� ¼
k1 þ k2 �k1l1 þ k2l2 �k1 �k2

�k1l1 þ k2l2 k1l21 þ k2l22 k1l1 �k2l2
�k1 k1l1 k1 0
�k2 �k2l2 0 k2

2
664

3
775 ð7:83bÞ

½R� ¼
r1 þ r2 �r1l1 þ r2l2 �r1 �r2

�r1l1 þ r2l2 r1l21 þ r2l22 r1l1 �r2l2
�r1 r1l1 r1 0
�r2 �r2l2 0 r2

2
664

3
775 ð7:83cÞ

In (7.83a–7.83d) the vector of the forces F becomes:

F ¼
0
0
R1

R2

8>><
>>:

9>>=
>>; ð7:83dÞ

R1 and R2 being the dynamic reactions transmitted from the terrain to the vehicle in
correspondence to the DOFs x1 and x2.

By partitioning the same equations of motion (7.83a–7.83d) and using xV to
define the set degrees of freedom and xL for those that are free:

x ¼

x
h
� � �
x1
x2

8>>>><
>>>>:

9>>>>=
>>>>;

¼ xL
xV

� �
ð7:84aÞ

it is possible to rewrite (7.83a–7.83d) as two subsystems of matrix equations, the
first of which:

½MLL�x::L þ ½RLL� _xL þ ½KLL�xL ¼ �½MLV �x::V � ½RLV � _xV � ½KLV �xV ¼ FðtÞ ð7:84bÞ

makes it possible, once the irregularity of the runway is known, i.e. the value of
xV ; _xV and x

::

V , to define the response xL of the system. Once this is resolved, the
second equation:

½MVL�x::L þ ½RVL� _xL þ ½KVL�xL þ ½MVV �x::V þ ½RVV � _xV þ ½KVV �xV ¼ RðtÞ ð7:84cÞ

makes it possible to obtain the reactions RðtÞ exchanged with the terrain.
Assuming that the runway is considered to be rigid (an assumption that is not

acceptable if we wish to simulate a vehicle travelling on a deformable structure, for
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example, a viaduct), the displacements of the wheels xV are to be attributed solely to
irregularities, so:

xV ¼ i1
i2

� �
ð7:85Þ

Irregularity, as mentioned, is a random phenomenon (Fig. 7.33), which can be
classified as stationary and ergodic: its characteristics can be defined by the power
spectral density function Gið1=kÞ and the spatial cross-correlation function RxyðnÞ, ξ
being the spatial coordinate and λ the generic wavelength. These functions can be
obtained using the procedures described previously in Sect. 7.3.1. Figure 7.34
shows a typical trend of the power spectral density function of the irregularity.

Once the power spectral density function is known, it is possible to reconstruct a
possible spatial history of the irregularity for the front wheel starting from the actual
definition of PSD:

Gið1=knÞ ¼ jCnj2
2ð1=k0Þ ð7:86Þ

as:

i1ðs1Þ ¼
X
n

jCnj cos n2p
k0

s1 þ /n

� 	
ð7:87Þ

Fig. 7.33 An example of road surface irregularity

Fig. 7.34 Power spectral
density of the irregularity
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s1 being the position reached by the front wheel, jCnj the generic amplitude, 1=k0
the fundamental spatial frequency, k0 the fundamental wavelength (usually
assumed to be 1 km) and lastly /n a random phase chosen from 0 and 2p.

Taking into account that the position reached by the front wheel equals:

s1 ¼ vt ð7:88Þ

(7.88) becomes:

i1ðs1Þ ¼ i1ðtÞ ¼
X
n

jCnj cos n2p
k0

vt þ /n

� 	
ð7:89Þ

and assuming

X0 ¼ 2pv
k0

ð7:89aÞ

i1ðs1Þ ¼ i1ðtÞ ¼
X
n

jCnj cos nX0t þ /nð Þ ¼
X
n

jCnj cos Xnt þ /nð Þ ð7:89bÞ

The rear wheel “sees” the same irregularity of the pitch p out of phase, therefore, as
s2 ¼ vt þ p is the x-coordinate reached by the rear wheel, we will have:

i2ðtÞ ¼
X
n

jCnj cos n2p
k0

s2 þ /n

� 	
¼
X
n

jCnj cos n2p
k0

ðvt þ pÞ þ /n

� 	
¼
X
n

jCnj cos nX0t þ wnð Þ ¼
X
n

jCnj cos Xnt þ wnð Þ
ð7:90aÞ

being:

wn ¼ /n þ n
2p
k0

p ð7:90bÞ

Thus the system is excited by sinusoidal forces:

FðtÞ ¼ �½MLV �x::V � ½RLV � _xV � ½KLV �xV ¼ <e
X
n

F0ne
iXnt

 !
ð7:91Þ

with generic pulsation Xn equal to:

Xn ¼ nX0 ¼ n
2p
k0

v ð7:91aÞ

which depends on the inverse of the generic wavelength kn ¼ ðn=k0Þ and the
forward velocity v.
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Therefore, there is a possibility that one or more of these pulsations, for par-
ticular wavelengths kn ¼ ðn=k0Þ and particular forward velocities v, excite the
system into resonance (a fact which often occurs when passing over a viaduct where
there are expansion joints at regular intervals).

The generalised forces on the front and rear axle are out of phase with each other
as a function of the pitch p and the harmonic being considered.

In this case the equations of motion (7.84b), taking into account (7.91), become:

MLL½ �x::L þ RLL½ � _xL þ KLL½ �xL ¼ <e
X
n

F0ne
iXnt

 !
ð7:92Þ

and can be numerically integrated with split-step methods.
The resolution of (7.92) can also be carried out in the frequency domain: to

simplify the issue, we will consider the system with a single degree of freedom in
Fig. 7.35 (the discussion can then be extended to systems with more degrees of
freedom, see the specific bibliography at the end of the text), so (7.92) are reduced to:

ms x
::þrs _xþ ksx ¼ ksx1ðtÞ þ rs _x1ðtÞ ¼ FðtÞ ð7:93Þ

Once a specific forward velocity ν has been assigned to the vehicle, it is possible
to define the spectrum of irregularities as a function of Ω instead of ð1=kÞ as:

X ¼ 2p
k
v ð7:94aÞ

thus moving from function Gið1=kÞ to function GiðXÞ.

1x

x

sm

sr
sk

vFig. 7.35 Vehicle as a
system with 1 DOF
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The power spectral density of the force, similarly to what we saw for the
aerodynamic forces, is equal to:

Gf ðXÞ ¼ jXif ðXÞj2GiðXÞ ð7:94bÞ

Xif being the transfer function that makes it possible to obtain the spectrum of the
force as a function of the spectrum of the irregularities:

Xif ¼ iXrs þ ks ð7:95Þ

The power spectral density of the system’s response GxðXÞ is thus defined by:

GxðXÞ ¼ jHðXÞj2Gf ðXÞ ¼ jHðXÞj2jXif ðXÞj2GiðXÞ ð7:96Þ

HðXÞ being the transfer function of the actual system:

HðXÞ ¼ 1

�X2ms þ iXrs þ ks
ð7:97Þ

Recalling the link (7.11) between the variance rx and the power spectral density
function GxðXnÞ it is possible to immediately obtain the maximum and minimum
values of the response given by:

Xmin�maxðtÞ ¼ �3rx ð7:98Þ

In the event that we should wish to create an irregularity, taking into account the
three-dimensional nature of the problem, we must also consider the coherence
between the irregularity seen by the left and right-hand wheels of the same vehicle
(Fig. 7.36).

isðnÞ and idðnÞ being the irregularity seen by the two wheels and (from (7.87)):

Gisð1=knÞ ¼ Gidð1=knÞ ¼ Gið1=knÞ ð7:99Þ

di

ξ

ηΔ

v

si

Fig. 7.36 Reconstruction of
irregularity on a level runway
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being the power spectral density function (quantity which, as seen is defined
experimentally and known, Fig. 7.34).

The two spatial histories are obviously correlated: we will use c2sd to define the
coherence function:

c2sd ¼
jGsdj2
GisGid

ð7:100Þ

Gsd being the cross-spectrum between the irregularity measured on the left-hand
wheel and the irregularity measured on the right-hand wheel. Figure 7.37 shows the
trend of the coherence function in relation to the non-dimensional frequency Dg=kn,
where Dg is the distance between the two wheels (Fig. 7.36).

Once Gið1=knÞ is known, as seen previously, it is possible to generate a possible
history of the irregularity as a function of the generic x-coordinate ξ:

isðnÞ ¼
X
n

jCnj cos n
2p
k0

nþ hn

� 	
ð7:101Þ

The history of irregularity of the other wheel can be written as:

idðnÞ ¼ id coer þ id uncoer ð7:102Þ

Fig. 7.37 Road surface irregularity: coherence function c2sd
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i.e. as the sum of one part id coer coherent with isðnÞ, and of one non-coherent part
id uncoer . The coherent part, by definition (7.100), will be expressed as:

id coerðnÞ ¼
X
n

csdjCnj cos n
2p
k0

nþ hn

� 	
ð7:103Þ

that is, a history reconstructed with the same phase hn used to generate isðnÞ
(7.101). The non-coherent part is generated with different random phase /n and by
requiring that the two spatial histories have the same spectrum (7.99) [42–48]:

id uncoerðnÞ ¼
X
n

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� c2sd

q
jCnj cos n

2p
k0

nþ /n

� 	
ð7:104Þ

Ultimately we will have:

idðnÞ ¼
X
n

csdjCnj cos n
2p
k0

nþ hn

� 	
þ
X
n

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� c2sd

q
jCnj cos n

2p
k0

nþ /n

� 	
ð7:105Þ

Summary This chapter introduces the basic concepts related to random vibrations.
After a brief description of the methods that can be used to analyse such processes,
three application examples, related to structure response to turbulent wind and to
wave motion, are presented. The approach used to evaluate the irregularity of road
and rail-track (to simulate the dynamic behavior of vehicles under this type of
excitation) is shown at the end of the chapter.
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Chapter 8
Techniques of Identification

8.1 Introduction

The need to precisely and accurately predict the dynamic behaviour of increasingly
complex machines or, more generally, of installations and structures, and the need
to predict their reliability and life span, have led to the need to develop increasingly
refined and complex calculation methods which have become indispensable tools
for design and operation. Such methods, based on the use of suitable mathematical
models, such as multi-body methods and finite element methods for mechanical
systems, seek to reproduce the behaviour of the real system and make it possible not
only to predict the system’s dynamic response to the action of different forms of
excitation but also its stability in different working conditions. During the design
phase, the advantage of having a sophisticated mathematical model offers the
possibility of avoiding partly, if not entirely, any experimental investigations on
prototypes or individual components, which would otherwise be necessary and
which is usually quite costly and requires often prohibitive implementation times.
The mathematical model associated with the real system is usually defined by:

• assuming that the system in question has certain properties (related to the laws
of physics or to purely mathematical hypothesis);

• including consolidated partial mathematical models.

So far in the discussion we have always assumed that the elastic, inertial and
damping characteristics of the mechanical system to be analysed are known (in
terms of stiffness, mass and concentrated and/or distributed damping), as is the type
of excitation that the system is subject to. With these assumptions, once a certain
mathematical model had been defined that was able to reproduce the true behaviour
of the system, the relevant equations of motion were defined and then they were
solved. Often, however, it is not possible to accurately define the value of some of

© Springer International Publishing Switzerland 2015
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the system’s typical parameters (such as, for example, the stiffness and damping
coefficients of some components). In this case the mathematical models are subject
to uncertainties and the comparison between analytical and experimental results
may show significant discrepancies, thus making the results obtained with the
mathematical model unreliable. Sometimes, given the complexity of the system, it
may not even be possible to define a mathematical model a priori whose equations
make it possible to adequately reproduce the true behaviour of the system. To
overcome these difficulties several methods have been developed over recent
decades, known as “identification techniques”, (Proceeding IFAC/IFOR,
Proceeding on Modal Analysis, [20]) that use experimental measurements on real
systems, making it possible to obtain:

• the characteristics of several parameters of a pre-established mathematical
model of the considered system (techniques of parameter identification);

• the equations relating to a mathematical model not corresponding to a physical
scheme, but reproducing the system as a “black box” (system identification
techniques);

• the characteristics of the sources of excitation that it is subject to.

So the term “identification techniques” means the set of methodologies which,
starting from experimental measurements, aims to define the characteristics of a
generic system: these methodologies were developed mainly as part of controls and
were only later extended to the study of systems of a mechanical, electrical, elec-
tronic, economic, biological nature etc., as well as to the study of generic processes.
In the specific issues of identification particular nomenclature and symbology are
traditionally used, usually by experts in the field of controls, where these tech-
niques, as already mentioned, have undergone important developments. The gen-
eric term “system” is used to define a set of several components (material objects)
which, being physically interconnected, act as a whole. In general, a mechanical
system is made up of a combination of interconnected rigid or flexible bodies with
elastic and damping elements interfaced with actuators or motors controlled in an
open or closed loop (e.g. a road or rail vehicle, a robot, a rotating machine,
including a rotor, bearings, case and foundation etc.). Anything that is not part of
the system is usually defined as the “outside world” separated from the system by a
physical (or ideal) surface. The objects that make up the system are known as
“components” or “subsystems”: the second term refers to the fact that, depending
on the type of investigation being carried out, a certain combination of objects may
be considered to be a stand-alone system or a subsystem (e.g. an articulated rod and
crank mechanism can itself be a system, while it can also become a subsystem of a
complete machine). A system that is subject to certain sources of excitation shows
certain behaviour defined as the system response: an unbalanced rotor shows
bending vibrations, a structure that is hit by turbulent wind oscillates around its
position of equilibrium etc. The dynamic behaviour of a generic system, or the
dynamic process that system is subject to, can often be described by relations
between:
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• input i (for a mechanical system inputs are represented by external forces or by
displacements impressed on the constraints)

• output u (the motion of the system, the stresses transmitted to the individual
components etc.).

These relations can be defined by the equations of a suitable mathematical model
which can generally be expressed both in the time domain and in the frequency
domain. The relations that link inputs and outputs can be displayed using appro-
priate block diagrams, such as the one shown in Fig. 8.1. These methodologies are
based on an analysis (statistical) of the response of the system subject to inputs
affected by disturbances, as well as deterministic inputs: with this assumption the
output also becomes a statistical variable. Definition of the parameters is, therefore,
performed in probabilistic terms, that is, the most likely values of the parameters are
defined and an estimation of them is made. In this context, filtering techniques,
meaning techniques aimed at separating the true signal from disturbances, are very
important [17, 28]. As mentioned, the mathematical model to be used in these
identification procedures can be classified into two main families:

• black box model;
• parametric model.

The black box model does not require a predefined structured mathematical
model (for example, the transfer function of a vibrating system can be considered as
such). The structured model, on the contrary, is obtained from the description of the
individual components of the given system, through laws that reproduce the
behaviour of the parts and to which a specific physical meaning is associated.
Therefore, identifying the characteristics of parametric models requires the use of
structured mathematical models, i.e., those whose equations are defined in advance
and the problem of identification can be traced back, in this case, to a problem in
estimating the parameters of the actual model. When discussing identification, the
term estimation is often adopted, and not evaluation, since the same techniques are
based, as already mentioned, on measurements carried out using experimental tests
and these are always physiologically affected by random errors: for this reason, we
need to introduce, as mentioned, appropriate statistical methodologies to reduce
these errors and obtain valid information in order to estimate, with sufficient
accuracy, the system’s unknown characteristics. A problem of identification,
regardless of the type of system or process to be analysed, thus involves both
theoretical considerations and experimental tests. For the experimental tests, the
following must be defined:

Fig. 8.1 Definition of a system: inputs and outputs
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• the testing conditions and the type of instrumentation;
• the excitation modalities of the system;
• the measuring techniques;
• the methods of obtaining and processing data.

Whereas the required theoretical analyses involve:

• choosing the most suitable mathematical model for defining the behaviour of the
system;

• choosing appropriate methods for estimating parameters;
• the numerical methods for carrying out identification.

The methods for identifying parameters can be applied to any type of system
(mechanical, electrical, electronic, etc.): in the following discussion we will obvi-
ously be referring to mechanical systems.

8.1.1 Identifying the Parameters of a Mechanical System
in the Time and Frequency Domain

The methods of identification, regardless of the type of model of the system
adopted, can be developed both in the time domain and in the frequency domain.
The equations of motion of a generic mechanical system, assuming it is schematised
with a reasonable mathematical model, are generally of the form shown below (see
Chaps. 1 and 2):

Fi x; _x;€xð Þ þ Fs x; _xð Þ þ Fe xð Þ ¼ F x; _x; tð Þ ð8:1aÞ

where x is the vector of the independent variables, Fi, Fs, and Fe are the forces of
inertia, damping and elastic (in general, non-linear functions of the independent
variables x). Lastly, F can group together all the forces not included to the left of the
equals sign, associated with field actions, with the presence of a control system or,
more generally, with external forces that are explicit functions of time. In the case
where the system is linear, or it is linearized (see Chap. 5, regarding systems
surrounded by force fields), then (8.1a) becomes:

M½ �€xþ R½ � _xþ K½ �x ¼ F tð Þ ð8:1bÞ

where [M], [R] and [K] are, respectively, the equivalent matrices of mass, damping
and stiffness of the actual system. As already illustrated in Sect. 2.4.2.2, (8.1b)
defined with y the vector of velocity:

y ¼ _x ð8:2aÞ
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Equation (8.1b) can be redefined on the basis of the so-called state variables z:

z ¼ x
y

� �
ð8:2bÞ

i.e. they can be rewritten in the generic form, also known as the state transition
function:

_z ¼ f z;F tð Þð Þ ð8:2cÞ

and for the linear or linearized system:

_z ¼ A½ �zþ u tð Þ ð8:2dÞ

A½ � being the so-called transition matrix (Sect. 2.4.2.2):

A½ � ¼ � M½ ��1 R½ � � M½ ��1 K½ �
� I½ � 0

� �
ð8:2eÞ

and u tð Þ the vector of known input terms:

u tð Þ ¼ F tð Þ
0

� �
ð8:2fÞ

(8.2c) or (8.2d) make it possible to determine the state of the system. In (8.2c) or
(8.2d) the vector F tð Þ or u tð Þ represents the input of the system i tð Þ, while usually,
in mechanical systems, the output is identified with one or more of the state
quantities z (8.2d). More generally, the system outputs y

u
tð Þ are correlated to the

state variables z by a relation, also defined as the output transformation function, of
the form:

y
u
tð Þ ¼ y

u
z tð Þ; i tð Þð Þ ð8:3Þ

which defines the output y
u
tð Þ of the system in relation to the existing input i tð Þ

and of the state of the system z. In the case of a generic vibrating mechanical
n-degree-of-freedom (d.o.f.) system, for example, the state variables may be rep-
resented by displacement x and by velocity _x of the d.o.f. associated with the motion
of the individual bodies making up the actual system. One possible output trans-
formation can be represented by the stresses induced on a component of the system,
a function, in general, both of the inputs and the state of the actual system.
Identification of the frequency domain generally aims to identify the harmonic
transfer function of the system. The techniques used to identify the modal
parameters of a mechanical system that is considered linear can be traced back to
this category. A non-structured model, i.e. a black box model can, in actual fact, be
represented in the frequency domain (Sect. 2.4.1.4.1) by a relation of the form:
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X Xð Þ ¼ H Xð Þ½ �F Xð Þ ð8:4Þ

where X Xð Þ represents the vector of complex amplitudes of the system’s response,
F Xð Þ is the vector of input harmonic forces and lastly H Xð Þ½ � is the matrix of
transfer functions (unknown): the terms of this matrix can be estimated regardless
of whether a mathematical model of the actual system has been defined a priori or
not. The basic principle of the identification techniques is that of minimising
the difference between the analytical response, assessed in the time domain using
(8.1a, 8.1b) or (8.2d) and in the frequency domain using (8.4), and the measured
response of the real system subjected to the same excitation. Various methods may
be used to minimise this difference (see the bibliography attached to this chapter),
though they can all be conceptually linked to a least squares approach. For this
reason, for mainly educational purposes, the following section will explain the basic
concepts of this method. In the discussion that follows (Sect. 8.2) we will give, as
an example, the description of some typical methods of modal identification in the
frequency domain; these methods, which are based on defining the transfer func-
tion, are currently the most commonly used in the field of mechanical systems.
Lastly, in Sect. 8.3 we will refer to, as an example, a method of identifying modal
parameters in the time domain.

8.1.2 The Least Squares Method

Introduced by Gauss in 1795 [1, 17] in relation to studies on the orbital motions of
the planets, the least squares method can be used as an identification technique.
Gauss realised that estimation of unknown parameters using experimental obser-
vations was conditioned by the number of measurements carried out and by the
errors that affect them. The studies by Gauss also led to the conclusion that esti-
mation was also influenced by the degree of approximation of the dynamic model.
The basic idea of the method is to minimise, in probabilistic terms, the difference
between the value predicted by the mathematical model and the observed value; in
other words it defines the best estimation of the most likely value of the unknown
parameters, assuming errors in the measurements that are independent of each
other. Let us assume that we wish to describe the behaviour of a certain real system
using the dynamic equation of motion (8.2a)–(8.2f) where we consider as
unknowns the masses, stiffness and damping ranked in a vector p:

pT ¼ m11 m12 . . . k11 k12 . . .f g ð8:5aÞ
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Suppose that we have n measured quantities xðsÞk ¼ xðsÞðtkÞ at m discrete moments of
time t1; t2; . . .; tm:

1 We use xk ¼ x ðp; tkÞ to indicate the value of displacements x
obtained at the generic moment of time t ¼ tk to integrate the equation of motion
(8.1a, 8.1b) having introduced a set of trial parameters p. The least squares method
makes it possible to obtain the most likely values of the parameters p by minimising
the sum of the squared residuals which can be formally expressed as:

J ¼ 1
2

Xm
k¼1

xðsÞk � xk p
� �� �T

Wk½ � xðsÞk � xk p
� �� �

ð8:5bÞ

where [Wk] is a matrix of weights [28]. This least squares approach can also be used
in the frequency domain. For example, when referring to a 1 d.o.f. system, the
transfer function h Xð Þ is (Sect. 2.4.1.4.1):

h Xð Þ ¼ 1

�X2mþ iXr þ k
ð8:6aÞ

It is assumed that we have a set of experimental measurements with different
frequencies Xk:

h sð Þ ¼ h sð Þ Xkð Þ ð8:6bÞ

The values of unknown parameters m, r and k, organised in vector p:

p ¼
m
k
r

8<
:

9=
; ð8:6cÞ

can be estimated by minimising the function:

J ¼ 1
2

Xm
k¼1

hðsÞ � hk p
� �� �T

Wk hðsÞ � hk p
� �� �

ð8:6dÞ

hk p
� �

being the expression (8.6a) estimated for the different values of X corre-

sponding to those of the experimental measurements hðsÞ: Often (8.6d) is written in
matrix form and the weights Wk organised in a matrix [W] which is normally
assumed to be diagonal, if the measurements are mutually independent and
uncorrelated, where the terms of the diagonal are assumed to be inversely pro-
portional to the elements of the matrix of covariance. The unknown parameters m,
r and k can be estimated by minimising the function J, i.e. by cancelling the

1In the following discussion we will use the superscript(s) to indicate the experimentally measured
generic quantity.
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derivatives with respect to the actual parameters; this corresponds to solve a system
of non-linear algebraic equations.

8.2 Modal Identification Techniques

8.2.1 Introduction

The term modal identification refers to the set of methods used to describe the
dynamic properties (characterised by modal parameters) of a structure or machine
based on experimental data obtained by testing the actual structure.

Modal identification uses the modal approach as analytical support, meaning that
it reconstructs the analytical transfer function hjk Xð Þ of the system considering it as
if it were made up of many one d.o.f. systems (Sect. 2.5), since the various d.o.f. are
defined by the modal variables. hjk Xð Þ represents the harmonic transfer function for
an input at the generic point k and the output at the generic point j of the n d.o.f.
system considered. So this transfer function will have modal parameters as
unknown quantities:

hjk Xð Þ ¼ hjk X;xi;mi; ki; ri;X
ðiÞ

� �
ð8:7Þ

being:

• xi the natural frequencies;
• mi the generalised masses;
• ki the generalised stiffness;
• ri the modal damping;
• XðiÞ the modes of vibration.

With this approach the dynamic response of the structure subjected to a set known
excitation is measured at several points (the relative quantities will be shown below
with the subscript j); this dynamic response, expressed in terms of experimental

transfer functions hðsÞjk Xð Þ, is then compared to the analytical response hjk Xð Þ defined
beforehand by minimising the difference between the analytical values and the
experimental ones. It is thus possible to determine the set of modal parameters needed
to characterise the static and dynamic behaviour of the system being analysed.

8.2.2 An Outline of the Basic Equations

Now, for ease of discussion, we will outline the main results obtained by analysing
a discrete generic n d.o.f. system using the modal approach (the full discussion of
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this issue has already been dealt with in Sect. 2.5.2). So, we will consider a generic
linear vibrating system, discretized with a n d.o.f. model (Fig. 8.2): the vibrating
system can be described, regardless of the method of discretization (with concen-
trated parameters, with finite elements etc.) by a system of second-order linear
differential equations with constant coefficients. In matrix form we have:

M½ �€xþ R½ � _xþ K½ �x ¼ F tð Þ ð8:8aÞ

where x represents the vector of the independent coordinates that represent the
displacements of some points of the structure:

xT ¼ x1 x2 . . . xj . . . xnf g ð8:8bÞ

[M], [R] and [K] are, respectively, the matrices of mass, damping and stiffness and
lastly, F is the vector of external forces. We can use transformation into principal
coordinates, see Sect. 2.5:

x ¼ U½ �q ð8:8cÞ

where the matrix U½ � is the modal matrix (generally rectangular (n · p) obtained by
arranging in columns the first p modes of vibration XðiÞ of the free, undamped
structure:

U½ � ¼ Xð1Þ;Xð2Þ; . . .;XðiÞ; . . .;XðpÞ
h i

¼

Xð1Þ
1 . . . XðiÞ

1 . . . XðpÞ
1

. . . . . . . . . . . . . . .
Xð1Þ
j . . . XðiÞ

j . . . XðpÞ
j

. . . . . . . . . . . . . . .
Xð1Þ
n . . . XðiÞ

n . . . XðpÞ
n

2
66664

3
77775 ð8:8dÞ

XðiÞ
j is the generic jth component relative to the ith mode of vibration. So by

applying the transformation of coordinates (8.2c) to the Eq. (8.8a), the same
equation of motion of the system can be rewritten, if the damping matrix [R] is a
linear combination of those of mass and stiffness, such as:

Fig. 8.2 Generic discrete vibrating n d.o.f. system
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m½ �€qþ r½ � _qþ k½ �q ¼ U½ �TF tð Þ ¼ Q tð Þ ð8:9Þ

[m], [r] and [k] being diagonal. The equations of motion of the generic mode of
vibration can be rewritten as n distinct and uncoupled equations:

mi€qi þ ri _qi þ kiqi ¼ Qi tð Þ ¼ XðiÞTF tð Þ ¼
Xn
k¼1

XðiÞ
k Fk tð Þ ði ¼ 1; pÞ ð8:10Þ

Fk tð Þ being the generic k-th generalised component of the forces vector F according
to the kth d.o.f. Xk. So to fully describe the dynamic behaviour of the discretized
system with a n d.o.f. model it is enough to know:

• the natural pulsation of the system x2
i ¼ ki

mi
;

• the generalised mass mi and, from the previous definition, the generalised
stiffness ki;

• the generalised damping ri;
• the modes of vibration XðiÞ.

These modal parameters may be determined:

• analytically, when the characteristics of the elements making up the structure in
question are known a priori, i.e. the matrices M½ �, R½ � and K½ � of the Eq. (8.8a),
and by subsequently applying the transformation of coordinates (8.8c) to obtain
(8.10);

• experimentally, by measuring the response of the real structure and assessing the
same modal parameters at a later stage.

The modal identification techniques described in this section are, as already men-
tioned, based on the experimental definition of the dynamic response of the system

using a harmonic transfer function hðsÞjk Xð Þ (in this regard, see Sect. 2.4.1.4.1),
which can be obtained, for a linear system, by exciting the system with one or more
harmonic forces like Fk tð Þ ¼ FkoeiXt or with one or more assigned spectrum forces
(8.3).

Basically, there are two different approaches used to identify the modal
parameters of a mechanical system (as will be further explained and illustrated
below):

• using a single external excitation (single-input; multi-output);
• using different excitations simultaneously (multi-input; multi-output).

Here, for educational purposes, we will analyse several methods that require just
one input: so when adopting such an approach the Lagrangian component Qi tð Þ
relative to the generic ith mode of vibration, caused solely by the harmonic force
applied Fk ¼ FkoeiXt becomes:
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Qi tð Þ ¼ FkoeiXtX
ðiÞ
k ¼ QioeiXt ð8:11Þ

The equation relating to the generic mode of vibration (8.10) thus becomes (steady
state motion for a single harmonic force FkoeiXt):

mi€qi þ ri _qi þ kiqi ¼ FkoeiXtX
ðiÞ
k ð8:12Þ

Establishing in (8.12) the steady state solution as:

qi ¼ qioeiXt ð8:12aÞ

we have:

qio ¼ FkoeiXtX
ðiÞ
k

�X2mi þ iXri þ ki
ð8:12bÞ

The response of the system, in terms of independent variables and nodal dis-
placements x, will be of the form:

x ¼ Xoe
iXt ð8:13Þ

where, taking into account the coordinate transformation (8.8c),:

Xo ¼

Xo1k

Xo2k

. . .

. . .
Xojk

. . .

. . .

8>>>>>>>><
>>>>>>>>:

9>>>>>>>>=
>>>>>>>>;

¼ Xð1Þq1o þ Xð2Þq2o þ � � � þ XðiÞqio þ � � � þ XðpÞqpo ð8:14Þ

The response Xojk Xð Þ of the system at the generic point j estimated analytically for
an applied force FkoeiXt at generic node k is, therefore, taking into account (8.8c)
and (8.12b):

Xojk Xð Þ ¼
Xn
i¼1

XðiÞ
j qio ¼

Xn
i¼1

XðiÞ
j

FkoX
ðiÞ
k

�X2mi þ iXri þ ki
ð8:15Þ

We should remember the definition of harmonic experimental transfer function

hðsÞjk Xð Þ, defined (see Fig. 8.3) as the ratio between the response XðsÞ
ojk Xð ÞeiXt of the

system at generic point j to a harmonic force Fk ¼ Fko Xð ÞeiXt of variable pulsation
X, applied on generic node k and the actual force:
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hðsÞjk Xð Þ ¼ XðsÞ
ojk Xð Þ
Fko

ð8:16Þ

which, therefore, represents the response of the system for a unit force applied at
generic point k. So, similarly, the analytically estimated transfer function hjk Xð Þ is
defined as:

hjk Xð Þ ¼ XðsÞ
ojk Xð Þ
Fko

¼
Xn
i¼1

XðiÞ
j XðiÞ

k

�X2mi þ iXri þ ki
ð8:17Þ

In conditions of resonance, in correspondence to the generic ith mode of vibration
(X ¼ xi), if the contribution of the adjacent modes is negligible (true condition if
damping is small and the modes are distanced), the analytical transfer function
hjk Xð Þ X¼xij can be rewritten as:

hjk Xð Þ��
X¼xi

¼ XðiÞ
j XðiÞ

k

ixiri
¼ � i XðiÞ

j XðiÞ
k

xiri
ð8:18aÞ

The same quantity may be expressed, by dividing numerator and denominator by
the value of critical damping rci ¼ 2mixi as:

hjk Xð Þ��
X¼xi

¼ � i XðiÞ
j XðiÞ

k

2mi
r
rc

� �ðiÞ
x2

i

ð8:18bÞ

Fig. 8.3 Definition of
transfer function hjk Xð Þ
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and defining as damping factor ri the product:

ri ¼ r
rc

	 
ðiÞ
xi ð8:19Þ

lastly (8.18b) may be rewritten as:

hjk Xð Þ��
X¼xi

¼ � i XðiÞ
j XðiÞ

k

2mirixi
ð8:20Þ

(8.17) and (8.20) represent, in the case of pulsation of the generic force X, and in
the case of X ¼ xi, the response of the vibrating system in terms of harmonic
transfer function, i.e. the response of the jth generic d.o.f. for a harmonic force
applied at the kth point. As we can see, this function is uniquely defined as the
modal parameters of the system are known. Using the identification techniques to
minimise the difference between the measured experimental transfer function

hðsÞjk Xð Þ (8.16) and the analytical transfer function hjk Xð Þ, defined in relation to the
function of modal parameters (unknown) (8.17) and (8.20), it is possible to estimate
the actual modal parameters, i.e. natural pulsation xi, generalised mass mi, gen-
eralised damping ri and mode of vibration XðiÞ. In the definition of the analytical
transfer function hjk Xð Þ, it is possible, about xi, to use the expression (8.17), while
neglecting the contribution of non-resonant modes in the summation: in this case a
defined modal approach with one d.o.f. is used. The use of (8.17) in complete form,
on the other hand, considers the contribution of the other modes and so, in this case,
a several d.o.f. approach is used (in this regard, see [8, 11, 22]).

8.2.3 Graphic Representations of the Transfer Function

The generic transfer function hjk Xð Þ (both analytical and experimental) can be
plotted in different ways taking into account the difficulty in representing, in a
plane, a complex quantity fully defined by 3 quantities:

• frequency Ω;
• two scalar quantities [magnitude hjk Xð Þ�� �� and phase /jk Xð Þ];
• real part Re hjk Xð Þ� �

and imaginary part Im hjk Xð Þ� �
.

The three most common graphic representations are summarised below:

• Bode plot, which consists of two graphs that show, respectively, magnitude
hjk Xð Þ�� �� and phase /jk Xð Þ of the transfer function in relation to frequency X
(Fig. 8.4 shows this quantity for a 1 d.o.f. system);
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• the graph of the real part Re hjk Xð Þ� �
and the imaginary part Im hjk Xð Þ� �

of the
transfer function in relation to the frequency Ω (Fig. 8.5);

• the graph of the imaginary part Im hjk Xð Þ� �
in relation to the real part

Re hjk Xð Þ� �
upon transformation of X: this graph, known as the Nyquist plot or

plot in the Argand plane, does not explicitly contain information about the
frequency Ω (Fig. 8.6).

This graph (in the Argand plane) represents a circumference: the vector ðP� OÞ
defines the magnitude and phase of the transfer function hjk Xð Þ in correspondence
to a generic value of Ω. The vector ðB� OÞ represents the transfer function in
conditions of resonance with phase /jk Xð Þ equal to 90°.

Often the Bode plot or the graph of the real and imaginary parts is represented in
logarithmic scale to avoid the issues linked with the graphic representation of
quantities, such as, in fact, the transfer function, which can attain values that are
very different to each other.

These different representations of the same quantity hjk Xð Þ are used during the
identification phase in relation to the algorithm adopted. For example, Figs. 8.7, 8.8
and 8.9 show, respectively, the Bode plots of the real and imaginary part and the
Nyquist plots for a vibrating 2 d.o.f. system.

Fig. 8.4 Bode plot for a 1 d.o.f. system (linear scale)
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8.2.4 Defining the Experimental Transfer Function

In this section we will briefly deal with the main methods that can be used to

experimentally measure the transfer function hðsÞjk Xð Þ in (8.16), while referring to
specialised texts (listed in the bibliography) and to other courses (e.g. courses on

Fig. 8.5 Graph of the real
part and the imaginary part of
the transfer function for a 1 d.
o.f. system (linear scale)

Fig. 8.6 Nyquist plot for a 1
d.o.f. system
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Mechanical and Thermal Measurements, Industrial Diagnostics, etc.) for a more
detailed discussion. As we have already mentioned, there are two categories of
excitations:

• the method known as single-point excitation, which consists of exciting the
structure with a single source of excitation;

Fig. 8.7 Bode plots for a 2 d.o.f. system

Fig. 8.8 Plots of the real and
imaginary part of the transfer
function for a 2 d.o.f. system
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• the method known as multi-points excitation, which consists of simultaneously
exciting the stricture being analysed with several forces placed at different points
of the structure.

In this section we will refer solely to techniques of excitation with just one force.
The system for measuring the experimental transfer function is very simple, even if
there are many variants. The system must include:

• an excitation mechanism;
• a setup of transducers to measure the various quantities;
• a system to acquire and process data which makes it possible to extract the

necessary information from the signals, i.e. allowing estimation of the transfer
function.

Figure 8.10 shows a diagram of a typical measurement system: an additional
component that has become a requirement in all chains of measurement is the
controller; this role is performed by a mini or micro-computer which automates all
the operations relating to measurement and may also be used to analyse and display
the results obtained.

8.2.4.1 Preparing the Structure

The structure may be analysed either when free or constrained. If the structure is
analysed while free (i.e. free from constraints with the outside world) it is possible
to define its stiffness modes and therefore the overall characteristics of mass and
moments of inertia. In reality this condition cannot be achieved and, in practice, to
reproduce the behaviour of the free structure the actual structure must be con-
strained with interconnecting elastic elements (springs) that are extremely soft so
that the initial modes of the structure are rigid with frequencies close to zero and, in
any case, much lower than those relating to the vibration modes that cause the

Fig. 8.9 Nyquist plot for a 2
d.o.f. system
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structure to begin to deform. When analysing a constrained structure we must verify
that the supporting structure is sufficiently rigid so as not to introduce effects of
interaction between the structure to be analysed and that of support.

8.2.4.2 Exciting the Structure

Different forms of excitation can be transmitted to the structure: exciters can be
classified into two main families:

• contact exciters;
• non-contact exciters.

Contact exciters are connected to the structure during all the operations of excita-
tion, regardless of the type of excitation generated. Non-contact exciters do not
have any connection with the structure (for example, electromagnetic exciters) or
only remain in contact with the structure being analysed during the period that
excitation is applied (for example, impact hammers). The first family includes:

• mechanical exciters (unbalanced rotating masses);
• electromagnetic exciters (or tables) (a magnet moving within a magnetic field);
• electro-hydraulic exciters.

As already mentioned, system excitations can be of different types:

• simple sinusoidal excitation;
• sinusoidal excitation with slow variable frequency (slow sine sweep);
• periodic excitation;
• random excitation;
• impulse (or transient) excitation.

Fig. 8.10 Diagram of a measurement system
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Before examining the different types of excitation in more detail, we should
remember that a linear behaviour of the system is assumed and so the transfer
function is univocally defined. We should also recall that the system may be subject
to non-definable or uncontrollable external excitations, i.e. noise: the response of
the system, as widely discussed in Chap. 7, will of course be affected by such
excitations. The quantity that makes it possible to define the reliability of the
measurements performed is the function of coherence between the response of the
system and the applied force: when this quantity is close to the unit, the response of
the system is, in fact, caused solely by the force applied, when it approaches zero
the response of the system is due mainly to noise. As we have already seen in
Chap. 7, in the case of random excitation of the system, the transfer function of the
actual system can be defined using the cross-spectrum (7.24b) between force and
response.

We will now examine the main types of excitation adopted:

• Simple sinusoidal excitation This method is used to excite the system with a
harmonic force Fk ¼ FkoeiXt with a fixed amplitude Fko and assigned frequency
Ω. Variation in the pulsation Ω of the force is controlled in discrete steps DX,
either manually or automatically. Between one measurement of the dynamic

response XðsÞ
ojk Xð Þ and the next XðsÞ

ojk Xþ DXð Þ, with different force pulsations, we
must wait, however, until the transient, triggered by the discrete change of

frequency DX, has disappeared. The experimental transfer function hðsÞjk Xð Þ is
defined for each pulsation of the force Ω and for each point of measurement j on
the structure by:

hðsÞjk Xð Þ ¼ XðsÞ
ojk Xð Þ
Fko

ð8:21Þ

One advantage of this methodology is that it offers the possibility to set the pitch
DX and to therefore densify the points of analysis in proximity of the natural
frequencies xi and disperse them in areas further away from these.

• Sinusoidal excitation with slow variable pulsation This methodology requires a
variable frequency oscillator X ¼ X tð Þ that sends an analogue control signal to
the exciter: the frequency of excitation caused by the force Fk ¼ FkoeiXt is thus
made to vary slowly but constantly within the range of relevant frequencies.
Variation in pulsation (up or down) must take place quite slowly so that the
system can sweep constantly from one steady state to another: we should
remember that the harmonic transfer function is defined as being the relationship

between the response of the system in a steady state XðsÞ
ojk Xð Þ and the harmonic

force introduced Fko. To verify the validity of the sweep speed a run-up is
usually performed (i.e. a sweep with increasing pulsation frequency Ω) and a
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run-down (with decreasing frequency Ω), to check that the two curves obtained
are coincident.

In this case too, the experimental transfer function hðsÞjk Xð Þ is defined for each
pulsation of the force Ω and for each point of measurement j on the structure by
(8.28).

• Periodic excitation An extension of the previous method is to set periodic
excitation, i.e. a force that contains all the frequencies in the field of analysis:

Fk tð Þ ¼
X
n

Fko ei nXot ð8:22Þ

Xo being the pulsation of the fundamental frequency. Unlike the method that
uses a harmonic excitation, in this case the force is obtained as an overlap of
different harmonics in the frequency range concerned. The definition of the

experimental harmonic transfer hðsÞjk Xð Þ using a periodic excitation is based on
the fFourier transform: more specifically, harmonic analysis is performed (i.e. the
Fourier transform) of both the force signal Fk tð Þ and the dynamic response of the

system measured at generic point XðsÞ
ojk nXoð Þ:

Fkon nXoð Þ ¼ 2
T

ZT
0

Fk tð Þ e�i nXotdt ð8:23aÞ

XðsÞ
ojk nXoð Þ ¼ 2

T

ZT
0

XðsÞ
jk tð Þ e�i nXotdt ð8:23bÞ

This procedure makes it possible to simultaneously extract each harmonic

component both of the strength Fkon ¼ Fko nXoð Þ and the response XðsÞ
ojk nXoð Þ for

each frequency nXo. The experimental transfer function hðsÞjk Xð Þ is defined simul-
taneously (for each point of measurement j on the structure) in correspondence to
all the pulsations of the force Xn ¼ nXo using:

hðsÞjk Xð Þ ¼ XðsÞ
ojk Xð Þ
Fkn

ð8:24Þ

The experimental transfer function hðsÞjk Xnð Þ can be defined by simply dividing the

spectrum of the response XðsÞ
ojk nXoð Þ (8.23b) by the spectrum of the force applied

Fkon nXoð Þ, Eq. (8.23a).
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• Random excitation With this type of excitation the structure is forced with a
white noise (corresponding, as seen in Sect. 7.3, to a spectral power density
function of constant amplitude). Thus the spectrum of the response corresponds
to the transfer function of the system.

• Impulse excitation When using this methodology, the system is subjected to an
assigned impulse (for example, using an impact hammer). The Fourier transform
of the ideal impulse is characterised by a constant amplitude throughout the field
of frequencies. However, considering that the impulse is not actually perfect,
transformation of the force signal and the displacement signal is, in any case,
performed at the different points of measurement: the ratio of the corresponding

harmonics at various frequencies Xn defines the transfer function hðsÞjk Xð Þ:

hðsÞjk Xnð Þ ¼ XðsÞ
ojk Xnð Þ

Fkn Xnð Þ ð8:25Þ

8.2.5 Determining Modal Parameters

Having defined in Sects. 8.2.2 and 8.2.3 the basic equations needed to define the

link between analytic transfer function hðaÞjk Xð Þ and unknown model parameters to
be used in the modal identification techniques and, having experimentally obtained

the transfer function hðsÞjk Xð Þ by measuring the dynamic response of the system with
assigned forces (Sect. 8.2.4), we will now proceed to describe some of the most
basic algorithms used to define the actual modal parameters, i.e.:

• natural frequencies xi;

• non-dimensional damping r
rc

� �
i
;

• vibration modes XðiÞ;
• generalised mass mi.

8.2.5.1 Determining the Natural Frequencies of the System XI

8.2.5.1.1 Determining the Peaks of the Transfer Function

A simple method used to define the natural pulsations of the system xi is based on

the consideration that the amplitudes of vibration XðsÞ
ojk Xð Þ, and, therefore, the cor-

responding transfer functions hðsÞjk Xð Þ of a resonance forced system, are amplified
dynamically: in the summation given in (8.17) the contributions made by non-
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resonant modes are minimal, while that of the resonant mode is higher, being
X ¼ xi. After having plotted the trend of the experimental transfer function mag-

nitude hðsÞjk Xð Þ
��� ��� in relation to the frequency X of the force (Fig. 8.11), the method

allows us to define the natural frequencies as those frequencies to which there is a
corresponding maximum dynamic amplification, that is, a peak in the magnitude of

the harmonic transfer function hðsÞjk Xð Þ
��� ���.

The lesser the damping of the system the more accurate the results obtained will
be, as the contribution of the non-resonant vibration modes is less significant. The
method may cause errors in determining the natural frequencies if the experimental
transfer function analysed is that of a vibration node for the generic mode of
vibration: in actual fact, in this case even in conditions of resonance, displacement

is very limited so a peak in the plot of the hðsÞjk Xð Þ
��� ��� is unlikely to be highlighted. To

overcome this drawback, the transfer functions hðsÞjk Xð Þ
��� ��� at different points of the

structure should be analysed: correlation of the various experimental harmonic
transfer functions also makes it possible to eliminate random errors in measurement
and to exclude the effect of any other external sources of excitation. The point of
application of the force could be in a nodal point for one or more modes: in this
case, these modes would not be excited. In these situations the point of application
of the force must be moved to a different position.

Fig. 8.11 Trend of the experimental transfer function magnitude hðsÞjk Xð Þ in relation to the
frequency X of the force
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8.2.5.2 Calculating Generalised Damping r
rc

� �
i

8.2.5.2.1 Derivative of the Transfer Function Phase Method

This method makes it possible to obtain the value of r
rc

� �
i
starting with analysis of

the phase /ðsÞ
jk Xð Þ of the experimental transfer function hðsÞjk Xð Þ being:

hðsÞjk Xð Þ ¼ hðsÞjk Xð Þ
��� ���eiuðsÞ

jk Xð Þ ð8:26Þ

The justification for such an approach is as follows: the response of the system, in
terms of analytical transfer function, has been defined in (8.17): obviously this
response is complex. Under conditions of resonance X ¼ xi, if we consider neg-
ligible the contribution of non-resonant modes, we have:

hjk Xð Þ ¼ XðiÞ
j XðiÞ

k

�X2mi þ iXri þ ki
¼ XðiÞ

j XðiÞ
k

�X2mi þ ki
� �� iXri

�X2mi þ ki
� �2þ Xrið Þ2

ð8:27Þ

while the phase /ðsÞ
jk Xð Þ is defined as:

/jk Xð Þ ¼ arctg
�Xr

�X2mi þ ki
� � ¼ arctg

�2aihi
1� a2i

¼ arctg bð Þ ð8:28Þ

Fig. 8.12 Determining damping with the half power peaks method
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being (see Sect. 2.4.1.4.1):

b ¼ �2aihi
1� a2i

ai ¼ X
xi

hi ¼ ri
rci

¼ r
rc

	 
ðiÞ
¼ ri

2mixi

	 
 ð8:28aÞ

The derivative of /ðsÞ
jk Xð Þ with regard to ai is:

@/jk Xð Þ
@ai

¼ @arctg bð Þ
@b

@b
@ai

¼ 1
1þ b2

@b
@ai

ð8:29aÞ

that is:

@/jk Xð Þ
@ai

¼ 1

1þ 2aihi
1�a2i

� �2 �2hi
1� a2i

� �2aihi
1� a2ið Þ2

�2aið Þ ¼ �2hi 1� a2i
� �� 4aihi

1� a2ið Þ2þ4a2i h
2
i

ð8:29bÞ

Being in resonance conditions X ¼ xi ) ai ¼ 1 (8.36b) simply becomes:

@/jk Xð Þ
@ai

����
ai¼1

¼ � 1
hi

¼ � 1
ri=rci

ð8:30aÞ

hence:

@/jk Xð Þ
@ai

����
ai¼1

�����
����� ¼ 1

hi
¼ 1

ri=rci
ð8:30bÞ

The most commonly used expression, considering (8.30b) and (8.28), is the
following:

@/jk Xð Þ
@X

����
X¼xi

�����
����� ¼ @/jk Xð Þ

@ai

����
ai¼1

�����
����� @ai@X

¼ 1
ri=rcixi

¼ 1
ri

ð8:31Þ

the so-called damping factor being:

ri ¼ hixi ð8:31aÞ

The non-dimensional damping h of the i-th mode of vibration can thus be obtained

by plotting the progress of the phase /ðsÞ
jk Xð Þ of the experimental transfer function
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hðsÞjk Xð Þ in relation to the pulsation X of the force and by estimating the derivative of
the phase compared to the actual pulsation X in resonance, that is, for X ¼ xi.

8.2.5.3 The Half Power Point Method

This method can be used in vibrating systems with several d.o.f. where the natural
frequencies are sufficiently differentiated and damping is sufficiently low, so that,
under resonance conditions the predominant contribution to the response of the
actual system is mainly due to the resonant mode, making it behave like a 1 d.o.f.
system. For a 1 d.o.f. system we have seen how in resonance the coefficient of
dynamic amplification (Sect. 2.4.1.4.1) is:

Xo

Xst
¼ 1

2h
per

X
xo

¼ 1 ð8:32Þ

h ¼ r
rc

being the non-dimensional damping coefficient. The two frequencies x1 and
x2 are defined as half power points (Fig. 8.12), about the resonance (i.e. in the
sidebands to the peak) which correspond to:

X0

Xst
¼ 1

2

ffiffiffi
2

p 1
2h

for X ¼ x1 and X ¼ x2 ð8:32aÞ

It can be shown2 that the non-dimensional damping h is linked to the pulsations
x1 and x2 and to the natural pulsation of the system x0, with the relation:

2The response of the system in correspondence to a generic pulsation of the force, in non-
dimensional form (Sect. 2.4.1.4.1) can be expressed as:

Xo

Xst
¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� X
xo

� �2	 
2

þ 2hX
xo

� �2s ð8:2:1Þ

So assuming:

1

1� X
xo

� �2	 
2

þ 2hX
xo

� �2 ¼ 1
2

1
2h

	 
2

ð8:2:2Þ

we obtain

X
xo

	 
4

�2 1� 2h2
� � X

xo

	 
2

þ 1� 8h2
� � ¼ 0 ð8:2:3Þ

hence
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4h ¼ x2
2 � x2

1

x2
0

¼ 2
x2 � x1

x0
ð8:32bÞ

Therefore, to estimate the non-dimensional damping h it is possible to draw a
horizontal line in the dynamic amplification graph in correspondence to the value
0:5

ffiffiffi
2

p
of the maximum peak value: the intersections between the two curves

(Fig. 8.12) define the two pulsations x1 and x2, corresponding to the half power
peaks from which it is possible to obtain the value of damping, using (8.39b).

8.2.5.4 Determining Modes of Vibration XðiÞ

8.2.5.4.1 Determining the Imaginary Part of the Transfer Function

Several methods can be used to determine the vibration mode. One simple approach
can be that which uses the imaginary part of the generic transfer function. As
mentioned, the unknown modal parameters are estimated to minimise the difference

between the experimental hðsÞjk Xð Þ and the analytical hjk Xð Þ transfer function (8.15)
expressed as a function of the same unknown parameters.

Both the analytical hjk Xð Þ and the experimental hðsÞjk Xð Þ transfer function are, as
already mentioned, complex and therefore, using Re . . .ð Þ to indicate the real part of
the generic quantity and Im . . .ð Þ we have

hjk Xð Þ ¼
X

XðiÞ
j qio ¼

X
XðiÞ
j Re qioð Þ þ i

X
XðiÞ
j Im qioð Þ ð8:33Þ

(Footnote 2 continued)

X
xo

	 
2

¼ 1� 2h2
� �þ 2h

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ h2

p
ð8:2:4Þ

Assuming that h ≪ 1 it is possible to neglect the higher order terms in (8.2.4), to obtain:

X
xo

	 
2

¼ 1þ 2h ð8:2:5Þ

By assuming that the two corresponding frequencies at the roots of this equation are equal to x1
and x2 we have:

4h ¼ x2
2 � x2

1

x2
0

¼ 2
x2 � x1

x0
ð8:2:6Þ
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and

hðsÞjk Xð Þ ¼ Re hðsÞjk Xð Þ
� �

þ iIm hðsÞjk Xð Þ
� �

ð8:34aÞ

Under conditions of resonance X ¼ xi, ignoring the contribution of non-resonant

modes and equating hðsÞjk Xð Þ ¼ hjk Xð Þ, we find that the contribution of the resonant

mode to the experimental transfer function hðsÞjk Xð Þ is purely imaginary:

hðsÞjk Xð Þ ¼ Re hðsÞjk Xð Þ
� �

þ iIm hðsÞjk Xð Þ
� �

¼ �i
XðiÞ
j XðiÞ

k

Xri
ð8:34bÞ

In actual fact, under conditions of resonance X ¼ xi, if we ignore the other non-
resonant modes, the vibration caused solely by the ith resonant mode is out of phase
by 90° compared to the force and is, therefore, purely imaginary. Even if the other
modes are not ignored, if the corresponding natural frequencies are sufficiently
distant from that of the resonant mode and if the dampings are low (see Fig. 8.13),
the non-resonant modes have phases compared to the force that are close to 0° or to
180° and so with a contribution that is in quadrature and thus, in any case, negli-

gible. Up to a constant value XðiÞ
k

xiri
(dependent, as can be seen, only on the mode and

on the position of the force) the component relative to the jth mode of the eigen-

vector (mode of vibration) of the generic mode of vibration XðiÞ
j is definable in this

way like the imaginary part of the function of Im hðsÞjk Xð Þ
� �

estimated in resonance.

8.2.5.4.2 The Nyquist Method

This method makes it possible to simultaneously determine the natural frequencies,
damping factors and modes of vibration. For the sake of simplicity we will begin by

Fig. 8.13 Frequency
response of a vibrating system
with several d.o.f.:
contribution of the various
vibration modes
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analysing a single d.o.f. system. We will analyse the harmonic transfer function of a
1 d.o.f. system (see Sect. 2.4.1.4.1), represented on the Nyquist plot in Fig. 8.6:

h Xð Þ ¼ k � X2m
� �� iXr

k � X2m
� �2þ Xrð Þ2

ð8:35aÞ

Re h Xð Þð Þ ¼ k � X2m
� �

k � X2m
� �2þ Xrð Þ2

ð8:35bÞ

Im h Xð Þð Þ ¼ �Xr

k � X2m
� �2þ Xrð Þ2

ð8:35cÞ

If we introduce the concept of mobility, defined as the relationship between velocity
and force, the same one d.o.f. system can be represented by:

a Xð Þ ¼ iX h Xð Þ ð8:36aÞ

We can show that:

Re a Xð Þð Þ � 1
2r

	 
	 
2

þ Im a Xð Þð Þ2¼ 1
2r

	 
2

ð8:36bÞ

This function is always shown in the Argand plane as in Fig. 8.14. The plot of the
imaginary part Im a Xð Þð Þ as a function of the real part Re a Xð Þð Þ by X which ranges
from zero to infinity is thus represented by a circle of radius R equal to R ¼ 1=2r
and its centre has coordinates:

Re a Xð Þð Þ ¼ 1
2r

ð8:37aÞ

Fig. 8.14 Graph of mobility
in the Argand plane
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Im a Xð Þð Þ ¼ 0 ð8:37bÞ

It can also be shown that at the same pitch DX of the definition of the transfer
function, the arc of the circle defined by two successive positions of the vector a Xð Þ
and a Xþ DXð Þ in the Argand plane (see Fig. 8.14) is greater in the vicinity of the
natural frequency. Considering this property it is, therefore, easy to identify the
system’s natural frequencies.

Taking into account (8.37a) it is also possible to obtain the damping of the
system. For this purpose it is possible (proceeding in a deterministic way or using a
process of minimization) to draw a circumference through the points in the Argand
plane, corresponding to a Xð Þ about the natural frequency identified. Once the centre
and radius of the interpolating circumference has been defined, it is possible to
estimate the damping r of the system, using (8.44). By expanding to a n d.o.f.
system with a damping matrix [R] that typically may not even be a linear combi-
nation of mass and of stiffness matrices (thus non-proportional damping), in the
frequency range where the mode is predominant we have:

Re hðsÞjk Xð Þ
� �

þ Uj

2ri

	 
2

þ Im hðsÞjk Xð Þ
� �

þ Vj

2ri

	 
2

¼ U2
j þ V2

j

4r2i
ð8:38Þ

having used xi to indicate the generic natural pulsation of the system, ri ¼ r
rc

� �ðiÞ
xi

the damping factor associated with it and also Uj þ iVj to define the so-called residue
from which it is possible to obtain the generic mode of vibration. Equation (8.38)
represents the equation of a circumference passing through the origin of the axes,
with centre of coordinates:

xc ¼ � Uj

2ri

yc ¼ � Vj

2ri

ð8:39aÞ

while the radius equals:

R ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
U2

j þ V2
j

q
2ri

ð8:39bÞ

The residue Uj þ iVj associated with the ith vibration mode and relative to the jth
point of measurement is proportional to the diameter of the circumference.
Determining these circumferences allows us to define the vibration modes of the
structure when the values of the system’s natural frequencies have been defined
beforehand. So the residues may be defined, in magnitude and phase (or real part
and imaginary part), by imposing the passage of the circumference being sought
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through a suitable number of points of the transfer function close to the considered
resonance, then by applying a minimisation between the analytical function being
sought and the experimental points available. The accuracy of the results obtained
using this method is closely linked to the resolution with which the transfer
functions have been defined and to the number of points through which the passage
of the circumference sought is imposed.

8.2.5.5 Defining the Generalised Mass mi

Generalised mass mi can be obtained by minimising, in correspondence to the
generic natural pulsation xi i.e. by X ¼ xi, the difference between the analytical

hjk Xð Þ and experimental hðsÞjk Xð Þ transfer functions at all the system’s points of
measurement, while ignoring the contribution of non-resonant modes: to this end,

the quadratic error function
PN

j¼1 ej xið Þ� �2
is minimised:

XN
j¼1

ej xið Þ� �2 ¼XN
j¼1

hðsÞjk xið Þ � hjk xið Þ
� �2

¼
XN
j¼1

hðsÞjk xið Þ � 1
mi

XðiÞ
j XðiÞ

k

i2x2
i hi

 !2

¼ f mið Þ
ð8:40Þ

In (8.47) hðsÞjk Xð Þ is the experimental transfer function measured in correspondence

to the resonance, XðiÞ
j and XðiÞ

k are the eigenvectors of the ith mode of vibration
measured using the method shown above (and therefore known) in correspondence
to the generic point j considered and point k where the force has been placed: the
generalised non-dimensional damping hðiÞ and natural pulsation xi have already
been defined previously. The only unknown in (8.40) is the generalised mass mi

which can be obtained by deriving f mið Þ with respect to mi, to obtain:

mi ¼
PN

j¼1 X
ðiÞ
j XðiÞ

kPN
j¼1 i2x

2
i hih

ðsÞ
jk xið Þ

ð8:41Þ

In (8.47) the transfer function hðsÞjk Xð Þ calculated in resonance is purely imaginary
(if we neglect the contributions of the non-resonant adjacent modes) and thus the
mass mi is real.
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8.2.5.6 Defining the Generalised Stiffness ki

Remembering the definition of the natural frequency of the system xi, the gener-
alised stiffness can be easily defined using:

ki ¼ mix
2
i ð8:42aÞ

8.2.5.7 Defining Generalised Damping ri

Once we know the natural pulsation xi and the non-dimensional damping r
rc

� �
i
the

generalised damping ri can be estimated by simply using:

ri ¼ 2mix
2
i

r
rc

	 

i

ð8:42bÞ

8.2.6 Applications and Examples

We will now consider one possible application of the results obtained using the
illustrated techniques of modal identification. We will consider the system in
Fig. 8.15 which outlines the foundation of a rotor.

Fig. 8.15 Outline of the real structure
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This structure has been modelled with beam type finite elements; the transfer
function hjk Xð Þ for a force Fk ¼ 1 eiXt applied to node 8 was calculated. Then we
assumed that we had to calculate the experimental transfer function of a real
structure by exciting it with a single excitation source. Figure 8.16 shows the
transfer function as a function of X, for the vertical and horizontal directions of
node 18.

From the peaks of these transfer functions it is possible to determine the natural
frequencies (see paragraph 8.2.5.1.1). Then the modes of vibration were identified
from the imaginary part of the transfer function (see paragraph 8.2.5.3.1).
Figure 8.17 shows the primary vibration modes identified compared to the exper-
imental ones. The derivative of the transfer function phase method was used to
estimate the damping factor hi of the ith vibration mode. Once identified, these
values make it possible to reconstruct the transfer functions which are shown
together with the experimental ones in Fig. 8.18.

Fig. 8.16 Transfer functions
estimated in node 18
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8.3 Identification in the Time Domain

Techniques for identifying physical or modal parameters (structured or black box),
either in the frequency or in the time domain, have become diversified both from a
point of view of the calculation algorithm, and the basic idea (objective function)
that supports them.

So we can refer to filter methods in the frequency domain [17, 19, 28], methods
for identifying the parameters of ARMA models [3, 4], identification using neural
networks [13, 18], etc.: as we are not able to explore all these topics in this
discussion, we refer the reader to the relative bibliography [5–7, 16, 20, 22–25, 28].

As an example we have included an algorithm that can be used to identify the
modal parameters of a mechanical system in the time domain [14, 15]. As we have
already seen, in general the experimental identification of the modal parameters of a
structure is performed by measuring the forces applied to it during the test and by
measuring the dynamic response resulting from these inputs. To simplify the
identification procedure, some testing techniques use the free motion of the defined
structure, when possible, by assigning it appropriate initial conditions or by ana-
lysing the dynamic response downstream of removal of the forces applied to the
system. In other cases it is possible to exploit environmental excitation, such as
turbulent wind on the structure, the passage of heavy vehicles over infrastructures,
excitation associated with the irregularities in the pavements or tracks of road and

Fig. 8.17 Identified and analytical vibration modes
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rail vehicles: in which case it is possible to obtain the response of the free system
using a specific technique known as the Random Decrement Technique [14].

This technique is based on the idea that, by extracting and averaging suitable
segments of measured time history Y1(t), associated with the response of a generic
mechanical system subjected to stochastic loads, it is possible to describe the
intrinsic properties of just the mechanical system being considered, thus eliminating
the effects caused by the actual random load applied.

The method is based on the concept that the response of the system at different
moments in time is made up of two components: the response to initial conditions
(general integral) and the response to forcing (particular integral). When operating
with numerous means on several segments Y1(t) characterised by the same initial
conditions, the part associated with random forcing which, as such, tends to
disappear, and the result of this averaging operation converges to the response

Fig. 8.18 Identified and
analytical Transfer functions
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of the system just at the initial conditions (Fig. 8.19). Another effect associated with
this averaging operation introduced by the R.D.T. is that of reducing the presence of
noise in the actual signal acquired.

Effectively [14] Y1(t) segments that satisfy a certain trigger condition that
determines the start T1 of each segment considered are extracted (in literature there
are several proposals for the choice of such triggers: the most commonly used
include those that consider, as a trigger, the passage of the signal measured by zero
with positive derivative, exceeding a given threshold value, peak values, etc.)

The R.D.T. technique subsequently foresees a time averaging operation on these
segments: since the time histories of the analysed signals are usually sampled at
discrete time with intervals of constant time Dt, this operation is described by the
following relation:

Xi mDtð Þ ¼ 1
N

XN
i¼1

Yi mDt þ Tið Þ ð8:43Þ

where N is the number of means adopted, m = 1, 2, …, M, T = M Dt being the
period of observation of the generic time segment being analysed.

Figure 8.20 shows a diagram of the R.D.T. procedure.

8.3.1 The Ibrahim Method

The method of identification in the time domain described here (suggested by
Ibrahim [15]) is a structured approach with modal parameters that analyses the free
motion of the system (obtained using one of the methods described previously) and
which aims to identify its natural frequencies and vibration modes.

The method is based on reconstructing the free response of a mechanical system
obtained as a sum of the contribution of the individual vibration modes expressed in

(a) (b)

Fig. 8.19 Time histories (a) response of mechanical system to stochastic excitation; (b) free
motion of the system identified with R.D.T
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complex terms. The approach assumes a certain number of d.o.f. of the system
(number of modes considered in the reconstruction of the response) and considers a
certain number of measured experimental time histories, appropriately shifted over
time. After a specific set of operations has been carried out on the actual mea-
surements, it is possible to extract the system’s unknown modal parameters by
tracing the problem back to a problem of eigenvalues-eigenvectors of a matrix
containing the same measurements. The method involves identifying the modes that
are actually present in the structure using an index of synthesis defined as the modal
confidence factor.

So, in order to describe and justify Ibrahim’s method, we will consider the
equation of free motion of a n d.o.f. system:

M½ �€xþ R½ � _xþ K½ �x ¼ 0 ð8:44Þ

which, as we know, accepts as general integral:

x ¼
X2n
i¼1

XðiÞeki t ð8:45Þ

i.e. a linear combination of vibration modes XðiÞ, being ki the eigensolutions of
(8.44). We assume to have a system to which p sensors have been associated and
which provide a signal with frequency 1=Dt, Dt being the sampling interval; xðsÞ is
the vector that contains these time signals. We excite the system with a pulse, so
that the response is the free motion of the system. The experimental response is
discrete both in time and space, as it is only estimated in the p measurement points
at certain instants of time tk ¼ kDt for a total time of 2rDt (where 2r is the total
number of points acquired). The method involves calculating the natural frequen-
cies and vibration modes by reconstructing the free motion of the system, requiring
that, at any given moment, the following relation applies:

Fig. 8.20 Diagram of RDT procedure
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xðsÞ tkð Þ ¼ x tkð Þ ð8:46Þ

having used xðsÞ tkð Þ to indicate the vector containing the experimental responses at
the p measurement points and with x tkð Þ:

x tkð Þ ¼
X2n
i¼1

XðiÞeki tk k ¼ 1. . .2rð Þ ð8:47Þ

i.e. the response obtained analytically in terms of natural frequencies and vibration
modes. Assuming we have p measurement points equal to n d.o.f. and considering
the matrix:

XðsÞ
h i

¼ XðsÞ t1ð ÞXðsÞ t2ð Þ. . .XðsÞ t2rð Þ
h i

ð8:48Þ

formed by placing in columns the 2r vectors xðsÞ tkð Þ, it is possible to arrange (8.47)
into an appropriate matrix form:

X2n
i¼1

XðiÞekitk ¼
X2n
i¼1

XðiÞeki t1
X2n
i¼1

XðiÞeki t2 . . .
X2n
i¼1

XðiÞeki t2r
" #

¼ Xð1ÞXð2Þ. . .Xð2nÞ
h i ek1t1ek1t2 . . .ek1t2r

. . .. . .. . .. . .. . .. . .

ek2N t1ek2N t2 . . .ek2Nt2r

2
64

3
75 ð8:49Þ

Thus (8.46) can be conveniently written in the form:

XðsÞ
h i

¼ X½ � K½ � ð8:50Þ

having arranged in the matrix:

X½ � ¼ Xð1ÞXð2Þ. . .Xð2nÞ
h i

ð8:51Þ

the 2n eigenvectors, estimated in p measurement points and being:

K½ � ¼
ek1t1 ek1t2 . . . ek1t2r

. . . . . . . . . . . .
ek2N t1 ek2N t2 . . . ek2Nt2r

2
4

3
5 ð8:52Þ

With this equation parity is established between the experimental and analytical
responses of the system’s free motion. The n d.o.f. system has 2n eigenvalues ki
and just as many vibration modes; as we only have, for the initial hypothesis, p = n,
measurement points, duplication is carried out over time. The individual
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experimental time histories are organised in the usual matrix form with the
instruction to phase shift them in time by one delay Dt3. By rewriting (8.46) for a
tk þ Dt3, we obtain:

xðsÞðtk þ Dt3Þ ¼ xðtk þ Dt3Þ ¼
X2n
i¼1

XðiÞekiðtkþDt3Þ ¼
X2n
i¼1

XðiÞeki tkekiDt3 ¼
X2n
i¼1

X
ðiÞ
eki tk

ð8:53aÞ

having indicated with:

X
ðsÞ ¼ XðiÞekiDt3 ð8:53bÞ

This leads to a second system of equations using the same operations described
above and which has the form:

�XðsÞ
h i

¼ �X½ � K½ � ð8:54Þ

where in �XðsÞ� �
the experimental time histories have been organised, shifted by a

time interval Dt3 compared to those shown in (8.48), in �X½ � the products XðiÞekiDt3
have been organised as in (8.51) and the matrix K½ � has the form (8.52) (the
symbols are used to identify the quantity measured at time þDt3). By ordering
(8.50) and (8.54) in a single matrix equation, we obtain:

UðsÞ
h i XðsÞ

h i
�XðsÞ
h i

2
64

3
75 ¼ X½ �

�X½ �

" #
K½ � ¼ Xd½ � K½ � ð8:55Þ

The method now involves accompanying (8.55) with a second equation, built in a
similar way, with the instruction to time shift the experimental time signals and the
analytical response by a time Dt1. By rewriting the Eqs. (8.47) and (8.53a) for one
time tk þ Dt1 and tk þ Dt3 þ Dt1, we obtain:

xðsÞðtk þ Dt1Þ ¼ xðtk þ Dt1Þ ¼
X2n
i¼1

XðiÞekiðtkþDt1Þ

¼
X2n
i¼1

XðiÞeki tkekiDt1xðsÞðtk þ Dt3 þ Dt1Þ

¼
X2n
i¼1

XðiÞekiðtkþDt3þDt1Þ ¼
X2n
i¼1

XðiÞeki tkekiDt1

ð8:56Þ
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By organising in a single equation, as already done in (8.55), and identifying with X̂
the terms relative to the phase shift of Dt1, we obtain:

Û
ðsÞh i

¼
X̂ðsÞ
h i
�̂XðsÞh i

2
64

3
75 ¼ X½ �

�X½ �

" #
a½ � K½ � ¼ Xd½ � a½ � K½ � ð8:57Þ

where the appropriately time shifted experimental time histories estimated at the

measurement points were organised in X̂ðsÞ� �
and �̂XðsÞh i

, the modes of vibration in

X½ � (8.51) and the same multiplied by the term ekiDt3 in X
� �

(8.53b). Lastly, time
shift Dt1 is taken into account in the diagonal matrix [α]:

a½ � ¼
ek1Dt1 0. . .0
. . .
00 . . .ek2NDt1

2
4

3
5 ð8:58Þ

By putting (8.61) and (8.63a, 8.63b) in a system we obtain:

UðsÞ
h i

¼ Xd½ � K½ �

Û
ðsÞh i

¼ Xd½ � a½ � K½ �
ð8:59Þ

Assuming that 2p = 2r demonstrates [14, 15] that the matrix UðsÞ� �
is square and

invertible: obtaining the matrix K½ � from the first equation of (8.59) and replacing it
in the second we obtain:

Û
ðsÞh i

Û
ðsÞh i�1

Xd½ � ¼ Xd½ � a½ � ð8:60aÞ

where the known experimental histories are organised in matrices UðsÞ� �
and Û

ðsÞh i
,

and matrices Xd½ � and a½ � contain the unknown eigenvectors and eigenvalues of the
system. A½ � indicates the matrix containing the appropriately memorised
measurements:

A½ � ÛðsÞh i
Û

ðsÞh i�1
ð8:60bÞ

(8.60a) becomes:

A½ � Xd½ � ¼ Xd½ � a½ � ð8:60cÞ
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(8.60c) can be written as:

A½ �Xð1Þ
d A½ �Xð2Þ

d . . . A½ �Xð2nÞ
d

h i
¼ Xð1Þ

d Xð2Þ
d . . .Xð2nÞ

d

h i ek1Dt1 . . . 0
. . . . . . . . .
0 . . . ek2 NDt1

2
4

3
5 ð8:61Þ

where XðiÞ
d is the generic column of the matrix Xd½ � (8.57):

XðiÞ
d ¼ XðiÞ

�XðiÞ

( )
ð8:62Þ

We now develop the matrix product to the second member of (8.61):

A½ �Xð1Þ
d A½ �Xð2Þ

d . . . A½ �Xð2NÞ
d

h i
¼ Xð1Þ

d ek1Dt1Xð2Þ
d ek2Dt1 . . .Xð2NÞ

d ek2NDt1
h i

ð8:63aÞ

Considering the single column of (8.63a) we obtain:

A½ �XðiÞ
d ¼ XðiÞ

d ekiDt1 ¼ aiX
ðiÞ
d ð8:63bÞ

where ai is the ith element of the diagonal of the matrix a½ �. Equation (8.63b) is
the equation of an eigenvalue problem whose solution allows us to obtain the

eigensolutions ai and eigenvectors XðiÞ
d . The eigensolutions αi are linked to the

eigenvalues ki of the original motion Eq. (8.44) by the relation:

ai ¼ ekiDt1 ð8:64aÞ

Therefore, the generic eigenvalue ki will be:

ki ¼ ai þ ibi ð8:64bÞ

with:

bi ¼ 1
Dt1

tan�1ðci
bi
Þ

� �
ð8:64cÞ

ai ¼ 1
2Dt1

lnðc2i þ b2i Þ ð8:64dÞ

bi and ci being the real and imaginary part of αi (8.64a). The approach described is
of a deterministic nature as it is assumed that we have 2r acquired points equal to
p points of measurement making it possible to have the square and invertible matrix
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U½ � (8.60a). In general this does not occur and it is shown [14, 15], using a method
of minimisation, that the solution can be obtained from an eigenvalue problem of a
new matrix [A] defined as:

A½ � ¼ Û
ðsÞh i

Û
ðsÞh iT� �

UðsÞ
h i

UðsÞ
h iT� ��1

ð8:65Þ

The initial hypothesis, of p points of measurement equal to the number n of system
modes is, in the case of a real system, unacceptable. If p is less than n, a new set of
pseudo-measurements is created by time shifting the experimental time signals by
an arbitraryDt2. Equation (8.46) becomes:

xðsÞðtk þ Dt2Þ ¼ xðtk þ Dt2Þ ¼
X2n
i¼1

XðiÞekiðtkþDt2Þ

¼
X2n
i¼1

XðiÞeki tkekiDt2 ¼
X2n
i¼1

X 0ðiÞekitk
ð8:66Þ

(the superscript will be used to indicate the quantities relating to the latter time
delay Dt2). (8.66) is written in the form (see (8.50)):

X 0ðsÞ
h i

¼ X 0½ � K½ � ð8:67aÞ

having indicated with:

X 0½ � ¼ X 0ð1ÞX 0ð2Þ. . .X 0ð2NÞ
h i

ð8:67bÞ

K½ � ¼
ek1t1 ek1t2 . . . ek1t2r

. . . . . . . . . . . .
ek2 N t1 ek2 Nt2 . . . ek2 Nt2r

2
4

3
5 ð8:67cÞ

The time shifts Dt2 are repeated until a number of measurements (real or pseudo-
measurements) greater or equal to the number of d.o.f. of the system are achieved.
The procedure is strictly that already described:

• with the time shift Dt2 we can obtain a real or fictitious number of sensors that is
greater than n and write the Eq. (8.67a) in the form:

XðsÞ
h i
X 0ðsÞ
h i

2
64

3
75 ¼ X½ �

X 0½ �

" #
K½ � ð8:68Þ
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• The time histories obtained in this manner are out of phase by an arbitrary Dt3
and organised with (8.55) in a single system:

Û
0ðsÞh i

¼

XðsÞ
h i
X 0ðsÞ
h i
�XðsÞ
h i
�X 0ðsÞ
h i

2
666666664

3
777777775
¼

X½ �
X 0½ �
�X½ �
�X½ �

2
6664

3
7775 K½ � ¼ Xd0½ � K½ � ð8:69Þ

• A second equation, estimated in a time increased by Dt1 is added (8.57):

Û
0ðsÞh i

¼ Xd0½ � a½ � K½ � ð8:70Þ

• The solution is reduced again to an eigenvalue problem with a matrix [A] built
as in (8.66) for a deterministic approach or in (8.65) using a procedure of
minimisation depending on the number of points acquired.

The method must reconstruct a signal via the summation (8.45): if this signal is
particularly disturbed it is not possible to establish equality (8.46) by taking into
account just the n presumed vibration modes. Therefore, the meaning of n loses
importance as more ways are needed to take into account the presence of noise and,
furthermore, in general the mechanical system is a continuous system. So, the
eigenvalues and eigenvectors, real and related to noise (this describes the modes
that are indispensable for reconstructing the signal due to the presence of noise)
become 2m (of which only 2n will be those associated with the actual vibration
modes). The method does not distinguish between real and noise related modes and
proceeds by calculating 2m eigenvalues and eigenvectors exactly as described
above. In order to identify the real vibration modes of the system, it is necessary to
have an index of goodness of fit. The model used is the Modal Confidence Factor
(M.C.F.). Remembering (8.62):

XðiÞ
d ¼ XðiÞ

�XðiÞ

( )
ð8:71Þ

the method calculates the eigenvectors XðiÞ
d that contain, in the first m positions, the

vibration modes (real or noise) of the system in question and in the subsequent
positions the same modes multiplied by the factor ekiDt3 . The control is performed
by exploiting this very characteristic: we calculate the complex ratio (M.C.F.)

between the identified eigenvector XðiÞ (first m positions of the vector XðiÞ
d ) multi-

plied by ekiDt3 and that identified in the second m positions.

812 8 Techniques of Identification



www.manaraa.com

M:C:F:ð ÞðiÞj ¼ XðiÞ
j ekiDt3

�XðiÞ
j

100 ð8:72Þ

having indicated Xj the jth element of the vector XðiÞ. The magnitude and phase of
the ratio (M.C.F.)j (for each component of each eigenvector) are calculated: thus the
vibration modes for which the M.C.F. has magnitude equal to 100 and zero phase
will be taken as the real vibration modes of the system.

8.3.1.1 An Example

We analysed the 4 d.o.f. system illustrated in Fig. 8.19, of which the inertial, elastic
and viscous characteristics are known.

While giving very general initial conditions, we estimated the displacement of
the four masses shown in Fig. 8.21 and this was taken as the experimental response
(Fig. 8.22).

Fig. 8.21 4 d.o.f. system
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Table 8.1 shows the comparisons between natural pulsations, vibration modes
and damping factor, between the results of the analyses with the Ibrahim method
and those calculated analytically, assumed to be accurate.

Noise was then added to the signal (Fig. 8.23) and the modal parameters were
identified. Table 8.2 again shows the accurate vibration modes compared to those
identified: note how the value of the magnitude and phase of the M.C.F. uniquely
identifies the real mode of the system.

Summary The basic concepts related to parameter identification techniques are
summarized in this final chapter. These methodologies allow for the identification
of some unknown parameters of numerical simulation models of machines and
structures, starting from experimental tests on prototypes or real structures. In
particular, the text describes modal identification techniques, both in the time and
frequency domain. Some examples are given.

Fig. 8.22 Time histories with no noise
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Table 8.1 Natural
frequencies and vibration
modes—calculated (a) and
identified (b)

Mode I Mode II (a)

Alpha Omega Alpha Omega

−0.30 8.87 −0.56 14.6

Eigenvector Eigenvector

Magnitude Magnitude Magnitude Phase

1.00 −80° 0.44 120°

0.42 −80° 1.00 −60°

0.04 −80° 0.31 −60°

0.02 −80° 0.14 −60°

Mode I (b)
Alpha Omega

−0.30 8.87

Eigenvector

Magnitude Phase MCF magnitude MCF phase

1.00 −90° 99.9 1.40E−5

0.42 −90° 100.0 4.45E−5

0.04 −90° 99.9 −1.40E−4

0.02 −90° 100.0 −2.70E−4

Mode II (b)
Alpha Omega

−0.56 14.6

Eigenvector

Magnitude Phase Magnitude Phase

0.48 90° 96.1 1.39

1.0 −90° 100.8 −0.21

0.32 −90° 100.3 −0.06

0.14 −90° 100.3 −0.07
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Fig. 8.23 Time histories with noise

Table 8.2 Natural
frequencies and vibration
modes—calculated (a),
identified (b)

Mode I Mode II (a)

Alpha Omega Alpha Omega

−0.30 8.87 −0.56 14.6

Eigenvector Eigenvector

Magnitude Phase Magnitude Phase

1.00 −80° 0.44 120°

0.42 −80° 1.00 −60°

0.04 −80° 0.31 −60°

0.02 −80° 0.14 −60°

Mode I (b)
Alpha Omega

−0.35 8.84

Eigenvector

Magnitude Phase MCF magnitude MCF phase

1.00 −10° 100.7 −1.00E−1
(continued)
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